1
|
Ye G, Chen C, Lin J, Peng X, Kumar A, Liu D, Liu J. Alkali /alkaline earth-based metal-organic frameworks for biomedical applications. Dalton Trans 2021; 50:17438-17454. [PMID: 34766180 DOI: 10.1039/d1dt02814f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With the steady development of metal-organic framework (MOF) materials, this peculiar class of three-dimensional materials has found application prospects in a myriad of areas. The integration of different metals with various categories of ligands engendered a full gamut of frameworks, which of course are supplemented by diversified modification methods. Amongst many metal centers utilized to design and synthesize targeted MOFs, alkali/alkaline earth metal-based MOFs are gaining significant attention because these metal centers can be regarded as human endogenous metals. Numerous studies have shown that alkali/alkaline earth metal MOFs (A/A-E MOFs) tend to have better properties than other metals. This is because A/A-E MOFs offer better biocompatibility, so it is expected to be used in a broader field of biomedicine in the near future. This review mainly introduces the application of A/A-E MOF materials in drug delivery, sensing, and some materials with unique biomedical applications, and elaborates the challenges, obstacles and development of some A/A-E MOF materials in the biomedical field.
Collapse
Affiliation(s)
- Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Chen Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Jingzhe Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India.
| | - Dong Liu
- Shenzhen Huachuang Bio-pharmaceutical Technology Co. Ltd, Shenzhen, 518112, Guangdong, China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
2
|
Xian S, Lin Y, Wang H, Li J. Calcium-Based Metal-Organic Frameworks and Their Potential Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005165. [PMID: 33140577 DOI: 10.1002/smll.202005165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) built on calcium metal (Ca-MOFs) represent a unique subclass of MOFs featuring high stability, low toxicity, and relatively low density. Ca-MOFs show considerable potential for molecular separations, electronic, magnetic, and biomedical applications, although they are not investigated as extensively as transition metal-based MOFs. Compared to MOFs made of other groups of metals, Ca-MOFs may be particularly advantageous for certain applications such as adsorption and storage of light molecules because of their gravimetric benefit, and drug delivery due to their high biocompatibility. This review intends to provide an overview on the recent development of Ca-MOFs, including their synthesis, crystal structures, important properties, and related applications. Various synthetic methods and techniques, types of building blocks, structure and porosity features, selected physical properties, and potential uses will be discussed and summarized. Representative examples will be illustrated for each type of important applications with a focus on their structure-property relations.
Collapse
Affiliation(s)
- Shikai Xian
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Yuhan Lin
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
3
|
Mathe Z, Pantazis DA, Lee HB, Gnewkow R, Van Kuiken BE, Agapie T, DeBeer S. Calcium Valence-to-Core X-ray Emission Spectroscopy: A Sensitive Probe of Oxo Protonation in Structural Models of the Oxygen-Evolving Complex. Inorg Chem 2019; 58:16292-16301. [PMID: 31743026 PMCID: PMC6891804 DOI: 10.1021/acs.inorgchem.9b02866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 12/12/2022]
Abstract
Calcium is an abundant, nontoxic metal that finds many roles in synthetic and biological systems including the oxygen-evolving complex (OEC) of photosystem II. Characterization methods for calcium centers, however, are underdeveloped compared to those available for transition metals. Valence-to-core X-ray emission spectroscopy (VtC XES) selectively probes the electronic structure of an element's chemical environment, providing insight that complements the geometric information available from other techniques. Here, the utility of calcium VtC XES is established using an in-house dispersive spectrometer in combination with density functional theory. Spectral trends are rationalized within a molecular orbital framework, and Kβ2,5 transitions, derived from molecular orbitals with primarily ligand p character, are found to be a promising probe of the calcium coordination environment. In particular, it is shown that calcium VtC XES is sensitive to the electronic structure changes that accompany oxo protonation in Mn3CaO4-based molecular mimics of the OEC. Through correlation to calculations, the potential of calcium VtC XES to address unresolved questions regarding the mechanism of biological water oxidation is highlighted.
Collapse
Affiliation(s)
- Zachary Mathe
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Heui Beom Lee
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Richard Gnewkow
- Institute of Optics and Atomic Physics, Technical University of Berlin, Hardenbergstraße 36, D-10587 Berlin, Germany
| | - Benjamin E. Van Kuiken
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Theodor Agapie
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Serena DeBeer
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Zhang X, Zhong F, Liu J, Xu H, Gao J, Xu S. A New Three‐dimensional Metal‐organic Framework based on Dinuclear Rare Earth Cluster and Olsalazine. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Zhang
- Institute of Optoelectronic Materials and Devices China Jiliang University 310018 Hangzhou P. R. China
| | - Fangyuan Zhong
- School of Materials Science and Engineering Zhejiang Sci‐Tech University 310018 Hangzhou P. R. China
| | - Jun Liu
- Institute of Optoelectronic Materials and Devices China Jiliang University 310018 Hangzhou P. R. China
| | - Hui Xu
- Institute of Optoelectronic Materials and Devices China Jiliang University 310018 Hangzhou P. R. China
| | - Junkuo Gao
- School of Materials Science and Engineering Zhejiang Sci‐Tech University 310018 Hangzhou P. R. China
| | - Shiqing Xu
- Institute of Optoelectronic Materials and Devices China Jiliang University 310018 Hangzhou P. R. China
| |
Collapse
|