1
|
Beattie SR, Esan T, Zarnowski R, Eix E, Nett JE, Andes DR, Hagen T, Krysan DJ. Novel Keto-Alkyl-Pyridinium Antifungal Molecules Active in Models of In Vivo Candida albicans Vascular Catheter Infection and Ex Vivo Candida auris Skin Colonization. Antimicrob Agents Chemother 2023; 67:e0008123. [PMID: 37097144 PMCID: PMC10190616 DOI: 10.1128/aac.00081-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
New antifungal therapies are needed for both systemic, invasive infections in addition to superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to nonsystemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2 to 16 μg/mL) against medically important yeasts and molds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus. Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce Candida albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial preclinical data suggest that molecules of this class may warrant further study and development for nonsystemic applications.
Collapse
Affiliation(s)
- Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Taiwo Esan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison Wisconsin, USA
| | - Emily Eix
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison Wisconsin, USA
| | - Jeniel E. Nett
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison Wisconsin, USA
| | - David R. Andes
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison Wisconsin, USA
| | - Timothy Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Novel keto-alkyl-pyridinium antifungal molecules active in models of in vivo Candida albicans vascular catheter infection and ex vivo Candida auris skin colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524835. [PMID: 36711909 PMCID: PMC9882332 DOI: 10.1101/2023.01.19.524835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
New antifungal therapies are needed for both systemic, invasive infections as well as superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to non-systemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2-16 µg/mL) against medically important yeasts and moulds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus . Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce C. albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial pre-clinical data suggest that molecules of this class may warrant further study and development.
Collapse
|
3
|
Distributions of counterions on adsorption and aggregation behavior of Gemini quaternary ammonium salt. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci 2021; 22:6793. [PMID: 34202677 PMCID: PMC8268321 DOI: 10.3390/ijms22136793] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Quaternary ammonium compounds (QACs) belong to a well-known class of cationic biocides with a broad spectrum of antimicrobial activity. They are used as essential components in surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-, bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on QACs were published only in 2020, according to the modern literature. The structural variability and diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new types of biocides. QACs and ILs bear a common key element in the molecular structure-quaternary positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art research level and paramount demand in modern society recall the rapid development of a new generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial and antifungal properties, commercial products based on QACs, and the latest discoveries in QACs and ILs connected with biocide development.
Collapse
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| | | | | | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| |
Collapse
|
5
|
Vereshchagin AN, Minaeva AP, Egorov MP. Synthesis and antibacterial activity of new tetrakisquaternary ammonium compounds based on pentaerythritol and 3-hydroxypyridine. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3122-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Vereshchagin AN, Frolov NA, Konyuhova VY, Kapelistaya EA, Hansford KA, Egorov MP. Investigations into the structure-activity relationship in gemini QACs based on biphenyl and oxydiphenyl linker. RSC Adv 2021; 11:3429-3438. [PMID: 35424282 PMCID: PMC8693992 DOI: 10.1039/d0ra08900a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/25/2020] [Indexed: 01/19/2023] Open
Abstract
Eighteen novel gemini quaternary ammonium compounds were synthesized to examine the effect of linker nature, aliphatic chain length and their relative position on antibacterial and antifungal activity. The synthesized compounds showed strong bacteriostatic activity against a panel of both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and two fungi. Some of these compounds exhibited a wider and more potent antimicrobial spectrum than commonly-used antiseptics, such as benzalkonium chloride (BAC), cetylpyridinium chloride (CPC), chlorhexidine digluconate (CHG) and octenidine dihydrochloride (OCT).
Collapse
Affiliation(s)
- Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Procpekt 119991 Moscow Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Procpekt 119991 Moscow Russia
| | - Valeria Yu Konyuhova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Procpekt 119991 Moscow Russia
| | - Ekaterina A Kapelistaya
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Procpekt 119991 Moscow Russia
| | - Karl A Hansford
- Institute for Molecular Bioscience, The University of Queensland Brisbane Queensland 4072 Australia
| | - Mikhail P Egorov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Procpekt 119991 Moscow Russia
| |
Collapse
|
7
|
Vereshchagin AN, Frolov NA, Pakina AS, Hansford KA, Egorov MP. Synthesis and biological evaluation of novel bispyridinium salts containing naphthalene-2,7-diylbis(oxy) spacer. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Lev S, Li C, Desmarini D, Liuwantara D, Sorrell TC, Hawthorne WJ, Djordjevic JT. Monitoring Glycolysis and Respiration Highlights Metabolic Inflexibility of Cryptococcus neoformans. Pathogens 2020; 9:pathogens9090684. [PMID: 32839374 PMCID: PMC7559270 DOI: 10.3390/pathogens9090684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen that adapts its metabolism to cope with limited oxygen availability, nutrient deprivation and host phagocytes. To gain insight into cryptococcal metabolism, we optimized a protocol for the Seahorse Analyzer, which measures extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) as indications of glycolytic and respiratory activities. In doing so we achieved effective immobilization of encapsulated cryptococci, established Rotenone/Antimycin A and 2-deoxyglucose as effective inhibitors of mitochondrial respiration and glycolysis, respectively, and optimized a microscopy-based method of data normalization. We applied the protocol to monitor metabolic changes in the pathogen alone and in co-culture with human blood-derived monocytes. We also compared metabolic flux in wild-type C. neoformans, its isogenic 5-PP-IP5/IP7-deficient metabolic mutant kcs1∆, the sister species of C. neoformans, Cryptococcus deuterogattii/VGII, and two other yeasts, Saccharomyces cerevisiae and Candida albicans. Our findings show that in contrast to monocytes and C. albicans, glycolysis and respiration are tightly coupled in C. neoformans and C. deuterogattii, as no compensatory increase in glycolysis occurred following inhibition of respiration. We also demonstrate that kcs1∆ has reduced metabolic activity that correlates with reduced mitochondrial function. Metabolic inflexibility in C. neoformans is therefore consistent with its obligate aerobe status and coincides with phagocyte tolerance of ingested cryptococcal cells.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (S.L.); (C.L.); (D.D.); (T.C.S.)
- Sydney Medical School—Westmead, The University of Sydney, Westmead, NSW 2145, Australia;
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2050, Australia
| | - Cecilia Li
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (S.L.); (C.L.); (D.D.); (T.C.S.)
- Sydney Medical School—Westmead, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (S.L.); (C.L.); (D.D.); (T.C.S.)
- Sydney Medical School—Westmead, The University of Sydney, Westmead, NSW 2145, Australia;
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2050, Australia
| | - David Liuwantara
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia;
| | - Tania C. Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (S.L.); (C.L.); (D.D.); (T.C.S.)
- Sydney Medical School—Westmead, The University of Sydney, Westmead, NSW 2145, Australia;
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2050, Australia
| | - Wayne J. Hawthorne
- Sydney Medical School—Westmead, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia;
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (S.L.); (C.L.); (D.D.); (T.C.S.)
- Sydney Medical School—Westmead, The University of Sydney, Westmead, NSW 2145, Australia;
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2050, Australia
- Correspondence:
| |
Collapse
|
9
|
Synthesis and antibacterial activity of new dimeric pyridinium chlorides based on 2,2-bis(hydroxymethyl)propane-1,3-diyl spacer. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2808-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Vereshchagin AN, Gordeeva AM, Frolov NA, Proshin PI, Hansford KA, Egorov MP. Synthesis and Microbiological Properties of Novel Bis-Quaternary Ammonium Compounds Based on Biphenyl Spacer. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900319] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Procpekt 119991 Moscow Russia
| | - Alexandra M. Gordeeva
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Procpekt 119991 Moscow Russia
- Higher Chemical College of Russian Academy of Sciences; D. I. Mendeleev University of Chemical Technology of Russia; Miusskaya square 9 125047 Moscow Russia
| | - Nikita A. Frolov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Procpekt 119991 Moscow Russia
| | - Pavel I. Proshin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Procpekt 119991 Moscow Russia
- Higher Chemical College of Russian Academy of Sciences; D. I. Mendeleev University of Chemical Technology of Russia; Miusskaya square 9 125047 Moscow Russia
| | - Karl A. Hansford
- Hansford Institute for Molecular Bioscience; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Mikhail P. Egorov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky Procpekt 119991 Moscow Russia
| |
Collapse
|