1
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
2
|
Stockmann P, Kuhnert L, Krajnović T, Mijatović S, Maksimović-Ivanić D, Honscha W, Hey-Hawkins E. Carboranes as Potent Phenyl Mimetics: A Comparative Study on the Reversal of ABCG2-Mediated Drug Resistance by Carboranylquinazolines and Their Organic Isosteres. ChemMedChem 2024; 19:e202300506. [PMID: 38012078 DOI: 10.1002/cmdc.202300506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Multidrug resistance is a major challenge in clinical cancer therapy. In particular, overexpression of certain ATP-binding cassette (ABC) transporter proteins, like the efflux transporter ABCG2, also known as breast cancer resistance protein (BCRP), has been associated with the development of resistance to applied chemotherapeutic agents in cancer therapies, and therefore targeted inhibition of BCRP-mediated transport might lead to reversal of this (multidrug) resistance (MDR). In a previous study, we have described the introduction of a boron-carbon cluster, namely closo-dicarbadodecaborane or carborane, as an inorganic pharmacophore into a polymethoxylated 2-phenylquinazolin-4-amine backbone. In this work, the scope was extended to the corresponding amide derivatives. As most of the amide derivatives suffered from poor solubility, only the amide derivative QCe and the two amine derivatives DMQCc and DMQCd were further investigated. Carboranes are often considered as sterically demanding phenyl mimetics or isosteres. Therefore, the organic phenyl and sterically demanding adamantyl analogues of the most promising carborane derivatives were also investigated. The studies showed that the previously described DMQCd, a penta-methoxylated N-carboranyl-2-phenylquinazolin-4-amine, was by far superior to its organic analogues in terms of cytotoxicity, inhibition of the human ABCG2 transporter, as well as the ability to reverse BCRP-mediated mitoxantrone resistance in MDCKII-hABCG2 and HT29 colon cancer cells. Our results indicate that DMQCd is a promising candidate for further in vitro as well as in vivo studies in combination therapy for ABCG2-overexpressing cancers.
Collapse
Affiliation(s)
- Philipp Stockmann
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Lydia Kuhnert
- Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Tamara Krajnović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11108, Belgrade, Serbia
| | - Sanja Mijatović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11108, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11108, Belgrade, Serbia
| | - Walther Honscha
- Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Braun S, Jelača S, Laube M, George S, Hofmann B, Lönnecke P, Steinhilber D, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Synthesis and In Vitro Biological Evaluation of p-Carborane-Based Di- tert-butylphenol Analogs. Molecules 2023; 28:molecules28114547. [PMID: 37299023 DOI: 10.3390/molecules28114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.
Collapse
Affiliation(s)
- Sebastian Braun
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, School of Science, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Useini L, Mojić M, Laube M, Lönnecke P, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carborane Analogues of Fenoprofen Exhibit Improved Antitumor Activity. ChemMedChem 2023; 18:e202200583. [PMID: 36583943 DOI: 10.1002/cmdc.202200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Fenoprofen is a widely used nonsteroidal anti-inflammatory drug (NSAID) against rheumatoid arthritis, degenerative joint disease, ankylosing spondylitis and gout. Like other NSAIDs, fenoprofen inhibits the synthesis of prostaglandins by blocking both cyclooxygenase (COX) isoforms, COX-1 the "house-keeping" enzyme and COX-2 the induced isoform from pathological stimuli. Unselective inhibition of both COX isoforms results in many side effects, but off-target effects have also been reported. The steric modifications of the drugs could afford the desired COX-2 selectivity. Furthermore, NSAIDs have shown promising cytotoxic properties. The structural modification of fenoprofen using bulky dicarba-closo-dodecaborane(12) (carborane) clusters and the biological evaluation of the carborane analogues for COX inhibition and antitumor potential showed that the carborane analogues exhibit stronger antitumor potential compared to their respective aryl-based compounds.
Collapse
Affiliation(s)
- Liridona Useini
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Marija Mojić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Sanja Mijatović
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| |
Collapse
|
5
|
Yergaliyeva E, Bazhykova K, Abeuova S, Vazhev V, Langer P. In silico drug-likeness, biological activity and toxicity prediction of new 3,5-bis(hydroxymethyl)tetrahydro-4H-pyran-4-one derivatives. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2022. [DOI: 10.15328/cb1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This paper presents the results of predicting drug-likeness, biological activity, and toxicity for 8 new derivatives of 3,5-bis(hydroxymethyl)tetrahydro-4H-pyran-4-one using bioinformatic methods. The physicochemical and pharmacokinetic parameters of the studied compounds were determined, in silico screening for biological activity and prediction of their toxicity were carried out. Physicochemical and pharmacokinetic parameters were evaluated using the Molinspiration Cheminformatics service. It was found that compounds 1–11 corresponded to Lipinski’s rule for drug-like compounds. As predicted in Molinspiration, compound 4 exhibits significant biological activity as a possible enzyme inhibitor and G-protein coupled receptor ligand. Compound 6 is active as an ion channel modulator. Virtual PASS screening identified compounds with potential antidiabetic activity (1–3, 5–8) and activity in the treatment of phobic disorders and dementias (1–5, 7, 8, 11). Compound 1 can potentially act as a substrate for CYP2H, and inhibitors of enzymes of the peptidase group are 1, 3, 4, 6, 7, 11. As a result of QSAR prediction based on LD50 values calculated in ProTox-II, compound 10 belongs to class 6; compounds 1–3, 5 and 8 belong to the 5th class of toxicity; compounds 6 and 9 belong to the 4th class. Compound 4 belongs to class 3. Compounds 1–9 do not exhibit the toxicities shown in the ProTox-II models. Compounds 10 and 11 may be carcinogenic.
Collapse
|
6
|
Sun F, Tan S, Cao H, Xu J, Bregadze VI, Tu D, Lu C, Yan H. Palladium‐Catalyzed Hydroboration of Alkynes with Carboranes: Facile Construction of a Library of Boron Cluster‐Based AIE‐Active Luminogens. Angew Chem Int Ed Engl 2022; 61:e202207125. [DOI: 10.1002/anie.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hou‐Ji Cao
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Vladimir I. Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences Moscow 119991 Russia
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
7
|
Paskaš S, Murganić B, Kuhnert R, Hey-Hawkins E, Mijatović S, Maksimović-Ivanić D. Carborane-Based Analog of Rev-5901 Attenuates Growth of Colon Carcinoma In Vivo. Molecules 2022; 27:molecules27144503. [PMID: 35889376 PMCID: PMC9321230 DOI: 10.3390/molecules27144503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lipoxygenases convert polyunsaturated fatty acids into biologically active metabolites such as inflammatory mediators—prostaglandins and leukotrienes. The inhibition of lipoxygenases is increasingly employed in the treatment of cancer. We evaluated the anticancer potential of two novel 5-lipoxygenase inhibitors, named CarbZDNaph and CarbZDChin, which are analogues of the commercially available inhibitor Rev-5901. The in vitro segment of this study was conducted on a mouse colorectal carcinoma cell line—CT26CL25. For an in vivo model, we induced tumors in BALB/c mice by the implantation of CT26CL25 cells, and we treated the animals with potential inhibitors. A 48 h treatment resulted in diminished cell viability. Calculated IC50 values (half-maximal inhibitory concentrations) were 25 μM, 15 μM and 30 μM for CarbZDNaph, CarbZDChin and Rev-5901, respectively. The detailed analysis of mechanism revealed an induction of caspase-dependent apoptosis and autophagy. In the presence of chloroquine, an autophagy inhibitor, we observed an increased mortality of cells, implying a cytoprotective role of autophagy. Our in vivo experiment reports tumor growth attenuation in animals treated with CarbZDChin. Compounds CarbZDNaph and Rev-5901 lacked an in vivo efficacy. The results presented in this study display a strong effect of compound CarbZDChin on malignant cell growth. Having in mind the important role of inflammation in cancer development, these results have a significant impact and are worthy of further evaluation.
Collapse
Affiliation(s)
- Svetlana Paskaš
- Department of Immunology, Institute for Biological Research “SinišaStanković”, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (B.M.); (S.M.)
| | - Blagoje Murganić
- Department of Immunology, Institute for Biological Research “SinišaStanković”, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (B.M.); (S.M.)
| | - Robert Kuhnert
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany; (R.K.); (E.H.-H.)
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany; (R.K.); (E.H.-H.)
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “SinišaStanković”, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (B.M.); (S.M.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “SinišaStanković”, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (B.M.); (S.M.)
- Correspondence: ; Tel.: +381-11-2078452
| |
Collapse
|
8
|
Sun F, Tan S, Cao HJ, Xu J, Bregadze V, Tu D, Lu C, Yan H. Palladium‐Catalyzed Hydroboration of Alkynes with Carboranes: Facile Construction of a Library of Boron Cluster‐Based AIE‐Active Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fangxiang Sun
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Shuaimin Tan
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hou-Ji Cao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jingkai Xu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Vladimir Bregadze
- Russian Academy of Science A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) RUSSIAN FEDERATION
| | - Deshuang Tu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Changsheng Lu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hong Yan
- Nanjing University School of Chemistry and Chemical Engineering 22 Hankou Rd. 210093 Nanjing CHINA
| |
Collapse
|
9
|
Gazvoda M, Dhanjee HH, Rodriguez J, Brown JS, Farquhar CE, Truex NL, Loas A, Buchwald SL, Pentelute BL. Palladium-Mediated Incorporation of Carboranes into Small Molecules, Peptides, and Proteins. J Am Chem Soc 2022; 144:7852-7860. [PMID: 35438502 PMCID: PMC9881053 DOI: 10.1021/jacs.2c01932] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carboranes represent a class of compounds with increasing therapeutic potential. However, few general approaches to readily embed carboranes into small molecules, peptides, and proteins are available. We report a strategy based on palladium-mediated C-X (X = C, S, and N) bond formation for the installation of carborane-containing moieties onto small molecules and peptides. We demonstrate the ability of Pd-based reagents with appropriate ligands to overcome the high hydrophobicity of the carborane group and enable chemoselective conjugation of cysteine residues at room temperature in aqueous buffer. Accordingly, carboranes can be efficiently installed on proteins by employing a combination of a bis-sulfonated biarylphosphine-ligated Pd reagent in an aqueous histidine buffer. This method is successfully employed on nanobodies, a fully synthetic affibody, and the antibody therapeutics trastuzumab and cetuximab. The conjugates of the affibody ZHER2 and the trastuzumab antibody retained binding to their target antigens. Conjugated proteins maintain their activity in cell-based functional assays in HER2-positive BT-474 cell lines. This approach enables the rapid incorporation of carborane moieties into small molecules, peptides, and proteins for further exploration in boron neutron capture therapy, which requires the targeted delivery of boron-dense groups.
Collapse
Affiliation(s)
| | | | - Jacob Rodriguez
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph S. Brown
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charlotte E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicholas L. Truex
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States,Center for Environmental Health Sciences, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
10
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
11
|
Kuhnert R, Kuhnert L, Sárosi M, George S, Draca D, Paskas S, Hofmann B, Steinhilber D, Honscha W, Mijatović S, Maksimović‐Ivanić D, Hey‐Hawkins E. Borcalein: a Carborane-Based Analogue of Baicalein with 12-Lipoxygenase-Independent Toxicity. ChemMedChem 2022; 17:e202100588. [PMID: 34694057 PMCID: PMC9298951 DOI: 10.1002/cmdc.202100588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Indexed: 11/11/2022]
Abstract
12-Lipoxygenase is crucial for tumour angiogenesis. 5,6,7-Trihydroxy-2-phenyl-4H-1-benzopyran-4-one (baicalein) is a suitable inhibitor for this enzyme but is rapidly metabolised in vivo. Thus, an improvement of the metabolic stability is necessary to enhance the therapeutic efficiency. An emerging approach to enhance metabolic stability of carbon-based pharmaceuticals is the use of metabolically stable, non-toxic boron clusters, such as dicarba-closo-dodecaborane(12)s (carboranes) as phenyl mimetics. Therefore, the unsubstituted phenyl ring of baicalein was replaced by meta-carborane, resulting in borcalein, the carborane analogue of baicalein. This substitution resulted in a decreased inhibitory activity toward 12-lipoxygenase, but led to increased toxicity in melanoma (A375, B16, B16F10) and colon cancer cell lines (SW480, HCT116, CT26CL25) with decreased tumour selectivity in comparison to baicalein. Surprisingly, borcalein displays a different mechanism of cytotoxicity with increased intracellular production of reactive oxygen species (ROS), reactive nitrogen species (RNS) and nitric oxide (NO).
Collapse
Affiliation(s)
- Robert Kuhnert
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Lydia Kuhnert
- Institute of Pharmacology, Pharmacy and ToxicologyFaculty of Veterinary MedicineLeipzig UniversityAn den Tierkliniken 1504103LeipzigGermany
| | - Menyhárt‐B. Sárosi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Sven George
- Institute of Pharmaceutical ChemistryUniversity of FrankfurtMax-von-Laue-Straße 960438FrankfurtGermany
| | - Dijana Draca
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Svetlana Paskas
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Bettina Hofmann
- Institute of Pharmaceutical ChemistryUniversity of FrankfurtMax-von-Laue-Straße 960438FrankfurtGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryUniversity of FrankfurtMax-von-Laue-Straße 960438FrankfurtGermany
| | - Walther Honscha
- Institute of Pharmacology, Pharmacy and ToxicologyFaculty of Veterinary MedicineLeipzig UniversityAn den Tierkliniken 1504103LeipzigGermany
| | - Sanja Mijatović
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Danijela Maksimović‐Ivanić
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
12
|
Murphy N, McCarthy E, Dwyer R, Farràs P. Boron clusters as breast cancer therapeutics. J Inorg Biochem 2021; 218:111412. [PMID: 33773323 DOI: 10.1016/j.jinorgbio.2021.111412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Since the foundation of small molecule-based therapeutics over 100 years ago, their design has been dominated by organic based components. This has also been apparent in anti-cancer therapeutics in a broad range of strategies; from the older DNA chelating drugs, to the more recent molecular-targeted therapies. The main challenges facing current treatments; multidrug resistance and low therapeutic index, can potentially be alleviated by the incorporation of boron clusters. While retaining the versatility of their organic counterparts, these compounds offer a unique set of molecular interactions, which are a useful tool in targeted therapies and can improve many organic formulations with their incorporation. This review will discuss the potential of boron clusters in medicine while focusing on their activity in the breast cancer setting.
Collapse
Affiliation(s)
- Neville Murphy
- School of Chemistry, Ryan Institute, National University of Ireland, Galway H91CF50, Ireland; CÚRAM, the SFI Research Centre for Medical Devices, National University of Ireland, Galway H91W2TY, Ireland
| | - Elan McCarthy
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - Róisín Dwyer
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland; CÚRAM, the SFI Research Centre for Medical Devices, National University of Ireland, Galway H91W2TY, Ireland
| | - Pau Farràs
- School of Chemistry, Ryan Institute, National University of Ireland, Galway H91CF50, Ireland; CÚRAM, the SFI Research Centre for Medical Devices, National University of Ireland, Galway H91W2TY, Ireland.
| |
Collapse
|
13
|
Hsu MH, Hsieh CY, Kapoor M, Chang JH, Chu HL, Cheng TM, Hsu KC, Lin TE, Tsai FY, Horng JC. Leucettamine B analogs and their carborane derivative as potential anti-cancer agents: Design, synthesis, and biological evaluation. Bioorg Chem 2020; 98:103729. [DOI: 10.1016/j.bioorg.2020.103729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
|
14
|
Stockmann P, Gozzi M, Kuhnert R, Sárosi MB, Hey-Hawkins E. New keys for old locks: carborane-containing drugs as platforms for mechanism-based therapies. Chem Soc Rev 2019; 48:3497-3512. [PMID: 31214680 DOI: 10.1039/c9cs00197b] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Icosahedral carboranes in medicine are still an emerging class of compounds with potential beneficial applications in drug design. These highly hydrophobic clusters are potential "new keys for old locks" which open up an exciting field of research for well-known, but challenging important therapeutic substrates, as demonstrated by the numerous examples discussed in this review.
Collapse
Affiliation(s)
- Philipp Stockmann
- Universität Leipzig, Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
15
|
Goswami LN, Olds TJ, Monk TG, Johnson QL, Dilger JP, Shanawaz MA, Jalisatgi SS, Hawthorne MF, Kracke GR. Isomeric Carborane Neuromuscular Blocking Agents. ChemMedChem 2019; 14:1108-1114. [DOI: 10.1002/cmdc.201800817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/06/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Lalit N. Goswami
- International Institute of Nano and Molecular MedicineUniversity of Missouri Columbia MO 65212 USA
| | - Tyson J. Olds
- Department of Anesthesiology and Perioperative MedicineUniversity of Missouri School of Medicine, Dalton Cardiovascular Research Center (GRK) Columbia MO 65212 USA
| | - Terri G. Monk
- Department of Anesthesiology and Perioperative MedicineUniversity of Missouri School of Medicine, Dalton Cardiovascular Research Center (GRK) Columbia MO 65212 USA
| | - Quinn L. Johnson
- Department of Anesthesiology and Perioperative MedicineUniversity of Missouri School of Medicine, Dalton Cardiovascular Research Center (GRK) Columbia MO 65212 USA
| | - James P. Dilger
- Stony Brook UniversityDepartment of Anesthesiology Stony Brook NY 11794 USA
| | | | - Satish S. Jalisatgi
- International Institute of Nano and Molecular MedicineUniversity of Missouri Columbia MO 65212 USA
| | - M. Frederick Hawthorne
- International Institute of Nano and Molecular MedicineUniversity of Missouri Columbia MO 65212 USA
| | - George R. Kracke
- Department of Anesthesiology and Perioperative MedicineUniversity of Missouri School of Medicine, Dalton Cardiovascular Research Center (GRK) Columbia MO 65212 USA
| |
Collapse
|