1
|
He G, Zheng Y, Chang S, Wang L, Yang X, Hao H, Li J, Zhang X, Tian F, Liang X, Xu H, Wang P, Chen X, Cao Z, Fang S, Gao Z, Liu H. Discovery of Novel Pyrimidine-Based Derivatives as Nav1.2 Inhibitors with Efficacy in Mouse Models of Epilepsy. J Med Chem 2024. [PMID: 39037114 DOI: 10.1021/acs.jmedchem.4c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Dysfunction of voltage-gated sodium channel Nav1.2 causes various epileptic disorders, and inhibition of the channel has emerged as an attractive therapeutic strategy. However, currently available Nav1.2 inhibitors exhibit low potency and limited structural diversity. In this study, a novel series of pyrimidine-based derivatives with Nav1.2 inhibitory activity were designed, synthesized, and evaluated. Compounds 14 and 35 exhibited potent activity against Nav1.2, boasting IC50 values of 120 and 65 nM, respectively. Compound 14 displayed favorable pharmacokinetics (F = 43%) following intraperitoneal injection and excellent brain penetration potency (B/P = 3.6). Compounds 14 and 35 exhibited robust antiepileptic activities in the maximal electroshock test, with ED50 values of 3.2 and 11.1 mg/kg, respectively. Compound 35 also demonstrated potent antiepileptic activity in a 6 Hz (32 mA) model, with an ED50 value of 18.5 mg/kg. Overall, compounds 14 and 35 are promising leads for the development of new small-molecule therapeutics for epilepsy.
Collapse
Affiliation(s)
- Guoxue He
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunzhen Chang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xiaohao Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haishuang Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiyuan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xian Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xueqin Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zeyu Cao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sui Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
2
|
Wu Z, Wei F, Wan B, Zhang Y. Pd-Catalyzed ipso, meta-Dimethylation of ortho-Substituted Iodoarenes via a Base-Controlled C-H Activation Cascade with Dimethyl Carbonate as the Methyl Source. J Am Chem Soc 2021; 143:4524-4530. [PMID: 33750128 DOI: 10.1021/jacs.0c13057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A methyl group can have a profound impact on the pharmacological properties of organic molecules. Hence, developing methylation methods and methylating reagents is essential in medicinal chemistry. We report a palladium-catalyzed dimethylation reaction of ortho-substituted iodoarenes using dimethyl carbonate as a methyl source. In the presence of K2CO3 as a base, iodoarenes are dimethylated at the ipso- and meta-positions of the iodo group, which represents a novel strategy for meta-C-H methylation. With KOAc as the base, subsequent oxidative C(sp3)-H/C(sp3)-H coupling occurs; in this case, the overall transformation achieves triple C-H activation to form three new C-C bonds. These reactions allow expedient access to 2,6-dimethylated phenols, 2,3-dihydrobenzofurans, and indanes, which are ubiquitous structural motifs and essential synthetic intermediates of biologically and pharmacologically active compounds.
Collapse
Affiliation(s)
- Zhuo Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Feng Wei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bin Wan
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
3
|
Dawidowski M, Król M, Szulczyk B, Chodkowski A, Podsadni P, Konopelski P, Ufnal M, Szuberski P, Wróbel MZ, Zhang Y, El Harchi A, Hancox JC, Jarkovska D, Mistrova E, Sviglerova J, Štengl M, Popowicz GM, Turło J. Structure-activity relationship and cardiac safety of 2-aryl-2-(pyridin-2-yl)acetamides as a new class of broad-spectrum anticonvulsants derived from Disopyramide. Bioorg Chem 2020; 98:103717. [PMID: 32171994 DOI: 10.1016/j.bioorg.2020.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/23/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
A series of 2-aryl-2-(pyridin-2-yl)acetamides were synthesized and screened for their anticonvulsant activity in animal models of epilepsy. The compounds were broadly active in the 'classical' maximal electroshock seizure (MES) and subcutaneous Metrazol (scMET) tests as well as in the 6 Hz and kindling models of pharmacoresistant seizures. Furthermore, the compounds showed good therapeutic indices between anticonvulsant activity and motor impairment. Structure-activity relationship (SAR) trends clearly showed the highest activity resides in unsubstituted phenyl derivatives or compounds having ortho- and meta- substituents on the phenyl ring. The 2-aryl-2-(pyridin-2-yl)acetamides were derived by redesign of the cardiotoxic sodium channel blocker Disopyramide (DISO). Our results show that the compounds preserve the capability of the parent compound to inhibit voltage gated sodium currents in patch-clamp experiments; however, in contrast to DISO, a representative compound from the series 1 displays high levels of cardiac safety in a panel of in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | - Marek Król
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Bartłomiej Szulczyk
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Andrzej Chodkowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Konopelski
- Department of Experimental Physiology and Pathophysiology, Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Piotr Szuberski
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Martyna Zofia Wróbel
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Aziza El Harchi
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Dagmar Jarkovska
- Department of Physiology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Eliska Mistrova
- Department of Physiology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Jitka Sviglerova
- Department of Physiology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Milan Štengl
- Department of Physiology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|