1
|
Längle D, Wojtowicz-Piotrowski S, Priegann T, Keller N, Wesseler F, Reckzeh ES, Steffens K, Grathwol C, Lemke J, Flasshoff M, Näther C, Jonson AC, Link A, Koch O, Di Guglielmo GM, Schade D. Expanding the Chemical Space of Transforming Growth Factor-β (TGFβ) Receptor Type II Degraders with 3,4-Disubstituted Indole Derivatives. ACS Pharmacol Transl Sci 2024; 7:1069-1085. [PMID: 38633593 PMCID: PMC11020067 DOI: 10.1021/acsptsci.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The TGFβ type II receptor (TβRII) is a central player in all TGFβ signaling downstream events, has been linked to cancer progression, and thus, has emerged as an auspicious anti-TGFβ strategy. Especially its targeted degradation presents an excellent goal for effective TGFβ pathway inhibition. Here, cellular structure-activity relationship (SAR) data from the TβRII degrader chemotype 1 was successfully transformed into predictive ligand-based pharmacophore models that allowed scaffold hopping. Two distinct 3,4-disubstituted indoles were identified from virtual screening: tetrahydro-4-oxo-indole 2 and indole-3-acetate 3. Design, synthesis, and screening of focused amide libraries confirmed 2r and 3n as potent TGFβ inhibitors. They were validated to fully recapitulate the ability of 1 to selectively degrade TβRII, without affecting TβRI. Consequently, 2r and 3n efficiently blocked endothelial-to-mesenchymal transition and cell migration in different cancer cell lines while not perturbing the microtubule network. Hence, 2 and 3 present novel TβRII degrader chemotypes that will (1) aid target deconvolution efforts and (2) accelerate proof-of-concept studies for small-molecule-driven TβRII degradation in vivo.
Collapse
Affiliation(s)
- Daniel Längle
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Stephanie Wojtowicz-Piotrowski
- Department
of Physiology and Pharmacology, Schulich
School of Medicine and Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Till Priegann
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Niklas Keller
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Fabian Wesseler
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Elena S. Reckzeh
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Karsten Steffens
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Christoph Grathwol
- Institute
of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 17, 17489 Greifswald, Germany
| | - Jana Lemke
- Institute
of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 17, 17489 Greifswald, Germany
| | - Maren Flasshoff
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Christian Näther
- Institute
of Inorganic Chemistry, Christian-Albrechts-University
of Kiel, Max-Eyth-Straße
2, 24118 Kiel, Germany
| | - Anna C. Jonson
- Early Chemical
Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca Gothenburg, Mölndal SE-43183, Sweden
| | - Andreas Link
- Institute
of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 17, 17489 Greifswald, Germany
| | - Oliver Koch
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
- Institute
of Pharmaceutical and Medicinal Chemistry and German Center of Infection
Research, Münster 48149, Germany
| | - Gianni M. Di Guglielmo
- Department
of Physiology and Pharmacology, Schulich
School of Medicine and Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Dennis Schade
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner
Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany
| |
Collapse
|
2
|
Cortes Vazquez J, Alharbi WS, Davis J, Moore A, Nesterov VN, Cundari TR, Wang H, Luo W. Three Component Cascade Reaction of Cyclohexanones, Aryl Amines, and Benzoylmethylene Malonates: Cooperative Enamine-Brønsted Acid Approach to Tetrahydroindoles. ACS OMEGA 2022; 7:45341-45346. [PMID: 36530259 PMCID: PMC9753174 DOI: 10.1021/acsomega.2c05909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
A three-component cascade reaction comprising cyclic ketones, arylamines, and benzoylmethylene malonates has been developed to access 4,5,6,7-tetrahydro-1H-indoles. The reaction was achieved through cooperative enamine-Brønsted catalysis in high yields with wide substrate scopes. Mechanistic studies identified the role of the Brønsted acid catalyst and revealed the formation of an imine intermediate, which was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Jose Cortes Vazquez
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Waad S. Alharbi
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Jacqkis Davis
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Alexia Moore
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Vladimir N. Nesterov
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Thomas R. Cundari
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Hong Wang
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Weiwei Luo
- School
of Chemistry and Chemical Engineering, Changsha
University of Science and Technology, Changsha 410114, China
| |
Collapse
|
3
|
Synthesis of 3-substituted tetrahydroindol-4-one. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Wang G, He M, Liu W, Fan M, Li Y, Peng Z. Design, synthesis and biological evaluation of novel 2-phenyl-4,5,6,7-tetrahydro-1H-indole derivatives as potential anticancer agents and tubulin polymerization inhibitors. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Roshdy E, Mustafa M, Shaltout AER, Radwan MO, Ibrahim MAA, Soliman ME, Fujita M, Otsuka M, Ali TFS. Selective SIRT2 inhibitors as promising anticancer therapeutics: An update from 2016 to 2020. Eur J Med Chem 2021; 224:113709. [PMID: 34303869 DOI: 10.1016/j.ejmech.2021.113709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Sirtuin 2 (SIRT2) is a member of the human sirtuins, which regulates various biological processes and is deemed as a novel biomarker for different cancers. Depending on the tumor type, SIRT2 knockout leads to a controversial role in tumorigenesis, however, pharmacological inhibition of SIRT2 results exclusively in growth inhibition of various cancer cells. In this respect, selective SIRT2 inhibitors hold therapeutic promise in a wide range of tumors. The literature has a batch of successful stories of SIRT2 modulators discovery. This review presents our perspective on the up-to-date selective SIRT2 inhibitors and their antiproliferative activity.
Collapse
Affiliation(s)
- Eslam Roshdy
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Muhamad Mustafa
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt.
| | | | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan; Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mahmoud E Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Taha F S Ali
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan.
| |
Collapse
|
6
|
Andreev IA, Ratmanova NK, Augustin AU, Ivanova OA, Levina II, Khrustalev VN, Werz DB, Trushkov IV. Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1-Methylimidazolium Thiocyanate. Angew Chem Int Ed Engl 2021; 60:7927-7934. [PMID: 33433034 PMCID: PMC8048580 DOI: 10.1002/anie.202016593] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 02/06/2023]
Abstract
We propose a new concept of the triple role of protic ionic liquids with nucleophilic anions: a) a regenerable solvent, b) a Brønsted acid inducing diverse transformations via general acid catalysis, and c) a source of a nucleophile. The efficiency of this strategy was demonstrated using thiocyanate-based protic ionic liquids for the ring-opening of donor-acceptor cyclopropanes. A wide variety of activated cyclopropanes were found to react with 1-methylimidazolium thiocyanate under mild metal-free conditions via unusual nitrogen attack of the ambident thiocyanate ion on the electrophilic center of the three-membered ring affording pyrrolidine-2-thiones bearing donor and acceptor substituents at the C(5) and C(3) atoms, respectively, in a single time-efficient step. The ability of 1-methylimidazolium thiocyanate to serve as a triplex reagent was exemplarily illustrated by (4+2)-annulation with 1-acyl-2-(2-hydroxyphenyl)cyclopropane, epoxide ring-opening and other organic transformations.
Collapse
Affiliation(s)
- Ivan A. Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologySamory Mashela 1117997MoscowRussian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
| | - Nina K. Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologySamory Mashela 1117997MoscowRussian Federation
| | - André U. Augustin
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Olga A. Ivanova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
- Department of ChemistryLomonosov Moscow State UniversityLeninskie Gory 1–3119991MoscowRussian Federation
| | - Irina I. Levina
- Institute of Biochemical PhysicsRussian Academy of SciencesKosygina 4119334MoscowRussian Federation
| | - Victor N. Khrustalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
- Faculty of ScienceRUDN UniversityMiklukho-Maklaya 6117198MoscowRussian Federation
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Igor V. Trushkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologySamory Mashela 1117997MoscowRussian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
| |
Collapse
|
7
|
Pelipko VV, Baichurin RI, Kondrashov EV, Makarenko SV. Optimization of the Synthesis of Benzo[b]furan-3-carboxylates Based on Alkyl 3-Bromo-3-nitroacrylates. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Andreev IA, Ratmanova NK, Augustin AU, Ivanova OA, Levina II, Khrustalev VN, Werz DB, Trushkov IV. Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1‐Methylimidazolium Thiocyanate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ivan A. Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Samory Mashela 1 117997 Moscow Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russian Federation
| | - Nina K. Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Samory Mashela 1 117997 Moscow Russian Federation
| | - André U. Augustin
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Olga A. Ivanova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russian Federation
- Department of Chemistry Lomonosov Moscow State University Leninskie Gory 1–3 119991 Moscow Russian Federation
| | - Irina I. Levina
- Institute of Biochemical Physics Russian Academy of Sciences Kosygina 4 119334 Moscow Russian Federation
| | - Victor N. Khrustalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russian Federation
- Faculty of Science RUDN University Miklukho-Maklaya 6 117198 Moscow Russian Federation
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Igor V. Trushkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Samory Mashela 1 117997 Moscow Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russian Federation
| |
Collapse
|
9
|
Dhananjaya G, Rao AD, Hossain KA, Anna VR, Pal M. In silico studies and β-cyclodextrin mediated neutral synthesis of 4-oxo-4,5,6,7-tetrahydroindoles of potential biological interest. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|