1
|
Lin X, Liu M, Yi Q, Zhou Y, Su J, Qing B, Lu Y, Pu C, Lan W, Zou L, Wang J. Design, synthesis, and evaluation of a carboxylesterase detection probe with therapeutic effects. Talanta 2024; 274:126060. [PMID: 38604044 DOI: 10.1016/j.talanta.2024.126060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
In this study, a lysosomal targeting fluorescent probe recognition on CEs was designed and synthesized. The obtained probe BF2-cur-Mor demonstrated excellent selectivity, sensitivity, pH-independence, and enzyme affinity towards CEs within 5 min. BF2-cur-Mor could enable recognition of intracellular CEs and elucidate that the CEs content of different cancer cells follows the rule of HepG2 > HCT-116 > A549 > HeLa, and the CEs expression level of hepatoma cancer cells far exceeds that of normal hepatic cells, being in good agreement with the previous reports. The ability of BF2-cur-Mor to monitor CEs in vivo was confirmed by zebrafish experiment. BF2-cur-Mor exhibits some pharmacological activity in that it can induce apoptosis in hepatocellular carcinoma cells but is weaker in normal hepatocyte cells, being expected to be a potential "diagnostic and therapeutic integration" tool for the clinical diagnosis of CEs-related diseases.
Collapse
Affiliation(s)
- Xia Lin
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China; Guangxi Health Science College, Nanning, 530023, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Min Liu
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Qingyuan Yi
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Ying Zhou
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Jinchan Su
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Binyang Qing
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yaqi Lu
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China
| | - Chunxiao Pu
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Lianjia Zou
- Guangxi Health Science College, Nanning, 530023, China.
| | - Jianyi Wang
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning, 530004, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Lin X, Yi Q, Qing B, Lan W, Jiang F, Lai Z, Huang J, Liu Q, Jiang J, Wang M, Zou L, Huang X, Wang J. Two Fluorescent Probes for Recognition of Acetylcholinesterase: Design, Synthesis, and Comparative Evaluation. Molecules 2024; 29:1961. [PMID: 38731452 PMCID: PMC11085145 DOI: 10.3390/molecules29091961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, two "on-off" probes (BF2-cur-Ben and BF2-cur-But) recognizing acetylcholinesterase (AChE) were designed and synthesized. The obtained probes can achieve recognition of AChE with good selectivity and pH-independence with a linear range of 0.5~7 U/mL and 0.5~25 U/mL respectively. BF2-cur-Ben has a lower limit of detection (LOD) (0.031 U/mL), higher enzyme affinity (Km = 16 ± 1.6 μM), and higher inhibitor sensitivity. A responsive mechanism of the probes for AChE was proposed based on HPLC and mass spectra (MS) experiments, as well as calculations. In molecular simulation, BF2-cur-Ben forms more hydrogen bonds (seven, while BF2-cur-But has only four) and thus has a more stable enzyme affinity, which is mirrored by the results of the comparison of Km values. These two probes could enable recognition of intracellular AChE and probe BF2-cur-Ben has superior cell membrane penetration due to its higher log p value. These probes can monitor the overexpression of AChE during apoptosis of lung cancer cells. The ability of BF2-cur-Ben to monitor AChE in vivo was confirmed by a zebrafish experiment.
Collapse
Affiliation(s)
- Xia Lin
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning 530004, China; (X.L.); (Q.Y.); (W.L.)
- Faculty of Pharmacy, Guangxi Health Science College, Nanning 530023, China;
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingyuan Yi
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning 530004, China; (X.L.); (Q.Y.); (W.L.)
| | - Binyang Qing
- College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Q.); (M.W.)
| | - Weisen Lan
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning 530004, China; (X.L.); (Q.Y.); (W.L.)
| | - Fangcheng Jiang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; (F.J.); (Z.L.)
| | - Zefeng Lai
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; (F.J.); (Z.L.)
| | - Jijun Huang
- Guangxi Zhuang Autonomous Region Drug Administration, Nanning 530029, China; (J.H.); (Q.L.); (J.J.)
| | - Qing Liu
- Guangxi Zhuang Autonomous Region Drug Administration, Nanning 530029, China; (J.H.); (Q.L.); (J.J.)
| | - Jimin Jiang
- Guangxi Zhuang Autonomous Region Drug Administration, Nanning 530029, China; (J.H.); (Q.L.); (J.J.)
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.Q.); (M.W.)
| | - Lianjia Zou
- Faculty of Pharmacy, Guangxi Health Science College, Nanning 530023, China;
| | - Xinbi Huang
- Faculty of Pharmacy, Guangxi Health Science College, Nanning 530023, China;
| | - Jianyi Wang
- Guangxi Key Laboratory of Special Biomedicine, Medical College, Guangxi University, Nanning 530004, China; (X.L.); (Q.Y.); (W.L.)
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Kuźmińska J, Kobyłka P, Wierzchowski M, Łażewski D, Popenda Ł, Szubska P, Jankowska W, Jurga S, Gośliński T, Muszalska-Kolos I, Murias M, Kucińska M, Sobczak A, Jelińska A. Novel fluorocurcuminoid-BF2 complexes and their unlocked counterparts as potential bladder anticancer agents – synthesis, physicochemical characterization, and in vitro anticancer activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Lazewski D, Kucinska M, Potapskiy E, Kuzminska J, Popenda L, Tezyk A, Goslinski T, Wierzchowski M, Murias M. Enhanced Cytotoxic Activity of PEGylated Curcumin Derivatives: Synthesis, Structure-Activity Evaluation, and Biological Activity. Int J Mol Sci 2023; 24:ijms24021467. [PMID: 36674983 PMCID: PMC9867315 DOI: 10.3390/ijms24021467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/25/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Curcumin has been modified in various ways to broaden its application in medicine and address its limitations. In this study, we present a series of curcumin-based derivatives obtained by replacing the hydroxy groups in the feruloyl moiety with polyethylene glycol (PEG) chains and the addition of the BF2 moiety to the carbonyl groups. Tested compounds were screened for their cytotoxic activity toward two bladder cancer cell lines, 5637 and SCaBER, and a noncancerous cell line derived from lung fibroblasts (MRC-5). Cell viability was analyzed under normoxic and hypoxic conditions (1% oxygen). Structure-activity relationships (SARs) are discussed, and curcumin derivatives equipped within feruloyl moieties with 3-methoxy and 4-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy} substituents (5) were selected for further analysis. Compound 5 did not affect the viability of MRC-5 cells and exerted a stronger cytotoxic effect under hypoxic conditions. However, the flow cytometry studies showed that PEGylation did not improve cellular uptake. Another observation was that the lack of serum proteins limits the intracellular uptake of curcumin derivative 5. The preliminary mechanism of action studies indicated that compound 5 under hypoxic conditions induced G2/M arrest in a dose-dependent manner and increased the expression of stress-related proteins such as p21/CIP1, phosphorylated HSP27, ADAMTS-1, and phosphorylated JNK. In summary, the results of the studies indicated that PEGylated curcumin is a more potent compound against bladder cancer cell lines than the parent compound, and derivative 5 is worthy of further investigation to clarify its mechanism of anticancer action under hypoxic conditions.
Collapse
Affiliation(s)
- Dawid Lazewski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland
| | - Edward Potapskiy
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Joanna Kuzminska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Lukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3 Street, 61-614 Poznan, Poland
| | - Artur Tezyk
- Department of Forensic Medicine, Poznan University of Medical Sciences, Rokietnicka 10 Street, 60-806 Poznan, Poland
| | - Tomasz Goslinski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10 Street, 61-614 Poznan, Poland
| |
Collapse
|
5
|
Borosky GL, Laali KK. A DFT Computational and Synthetic Study of New Curcuminoidpropargyl Adducts with Pseudo‐Cofacial Aryl Rings. ChemistrySelect 2022. [DOI: 10.1002/slct.202203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gabriela L. Borosky
- INFIQC CONICET and Departamento de Química Teórica y Computacional Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Ciudad Universitaria Córdoba 5000 Argentina
| | - Kenneth K. Laali
- Department of Chemistry University of North Florida, 1 UNF Drive Jacksonville Florida 32224 USA
| |
Collapse
|
6
|
Synthetic approaches for BF2-containing adducts of outstanding biological potential. A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
8
|
Laali KK, Zwarycz AT, Beck N, Borosky GL, Nukaya M, Kennedy GD. Curcumin Conjugates of Non-steroidal Anti-Inflammatory Drugs: Synthesis, Structures, Anti-proliferative Assays, Computational Docking, and Inflammatory Response. ChemistryOpen 2020; 9:822-834. [PMID: 32802728 PMCID: PMC7425154 DOI: 10.1002/open.202000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
In an effort to combine the anti-proliferative effect of CUR-BF2 and CUR compounds with anti-inflammatory benefits of non-steroidal anti-inflammatory drugs (NSAIDs), a library of the bis- and mono-NSAID/CUR-BF2 and NSAID/CUR conjugates were synthesized by coupling flufenamic acid, flurbiprofen, naproxen, indomethacin, and ibuprofen to diversely substituted hydroxy-benzaldehydes via an ester linkage, and by subsequent reaction with acetylacetone-BF2 to form the bis- and the mono-NSAID/CUR-BF2 adducts. Since conversion to NSAID/CUR by the previously developed decomplexation protocol showed limited success, a set of NSAID/CUR conjugates were independently prepared by directly coupling the NSAIDs with parent curcumin. The bis-NSAID/CUR-BF2 and bis-NSAID-CUR hybrids exhibited low cytotoxicity in NCI-60 assay, and in independent cell viability assay on colorectal cancer (CRC) cells (HCT116, HT29, DLD-1, RKO, SW837, CaCo2) and in normal CR cells (CCD841CoN). By contrast, the mono-naproxin and mono-flurbiprofen CUR-BF2 adducts exhibited remarkable anti-proliferative and apoptopic activity in NCI-60 assay most notably against HCT-116 (colon), OVCAR-3 (ovarian), and ACHN (renal) cells. Computational molecular docking calculations showed favorable binding energies to HER2, VEGFR2, BRAF, and Bcl-2 as well as to COX-1 and COX-2, which in several cases exceeded known inhibitors. The main interactions between the ligands and the proteins were hydrophobic, although several hydrogen bonds were also observed. A sub-set of six compounds that had exhibited little or no cytotoxicity were tested for their anti-inflammatory response with THP-1 human macrophages in comparison to parent NSAIDs or parent curcumin.
Collapse
Affiliation(s)
- Kenneth K. Laali
- Department of ChemistryUniversity of North Florida1 UNF DriveJacksonville, FL32224USA
| | - Angela T. Zwarycz
- Department of ChemistryUniversity of North Florida1 UNF DriveJacksonville, FL32224USA
| | - Nicholas Beck
- Department of ChemistryUniversity of North Florida1 UNF DriveJacksonville, FL32224USA
| | - Gabriela L. Borosky
- INFIQC, CONICET and Departamento de Química Teórica y ComputacionalFacultad de Ciencias QuímicasUniversidad Nacional de CórdobaCiudad UniversitariaCórdoba5000Argentina
| | - Manabu Nukaya
- Department of SurgeryUniversity of Alabama-Birmingham School of MedicineBirminghamAL 35294-0016USA
| | - Gregory D. Kennedy
- Department of SurgeryUniversity of Alabama-Birmingham School of MedicineBirminghamAL 35294-0016USA
| |
Collapse
|