1
|
Ortega-Balleza JL, Vázquez-Jiménez LK, Ortiz-Pérez E, Avalos-Navarro G, Paz-González AD, Lara-Ramírez EE, Rivera G. Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors. Molecules 2024; 29:3944. [PMID: 39203022 PMCID: PMC11356879 DOI: 10.3390/molecules29163944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Currently, antimicrobial resistance (AMR) is a serious health problem in the world, mainly because of the rapid spread of multidrug-resistant (MDR) bacteria. These include bacteria that produce β-lactamases, which confer resistance to β-lactams, the antibiotics with the most prescriptions in the world. Carbapenems are particularly noteworthy because they are considered the ultimate therapeutic option for MDR bacteria. However, this group of antibiotics can also be hydrolyzed by β-lactamases, including metallo-β-lactamases (MBLs), which have one or two zinc ions (Zn2+) on the active site and are resistant to common inhibitors of serine β-lactamases, such as clavulanic acid, sulbactam, tazobactam, and avibactam. Therefore, the design of inhibitors against MBLs has been directed toward various compounds, with groups such as nitrogen, thiols, and metal-binding carboxylates, or compounds such as bicyclic boronates that mimic hydrolysis intermediates. Other compounds, such as dipicolinic acid and aspergillomarasmin A, have also been shown to inhibit MBLs by chelating Zn2+. In fact, recent inhibitors are based on Zn2+ chelation, which is an important factor in the mechanism of action of most MBL inhibitors. Therefore, in this review, we analyzed the current strategies for the design and mechanism of action of metal-ion-binding inhibitors that combat MDR bacteria.
Collapse
Affiliation(s)
- Jessica L. Ortega-Balleza
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Lenci K. Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Guadalupe Avalos-Navarro
- Departamento de Ciencias Médicas y de la Vida, Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico;
| | - Alma D. Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Edgar E. Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| |
Collapse
|
2
|
Wang L, Liang Y, Luo P, Huang M, Wan Y. Novel partially reversible NDM-1 inhibitors based on the naturally occurring houttuynin. Bioorg Chem 2024; 147:107328. [PMID: 38583248 DOI: 10.1016/j.bioorg.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Discovering novel NDM-1 inhibitors is an urgent task for treatment of 'superbug' infectious diseases. In this study, we found that naturally occurring houttuynin and its sulfonate derivatives might be effective NDM-1 inhibitors with novel mechanism, i.e. the attribute of partially covalent inhibition of sulfonate derivatives of houttuynin against NDM-1. Primary structure-activity relationship study showed that both the long aliphatic side chain and the warhead of aldehyde group are vital for the efficiency against NDM-1. The homologs with longer chains (SNH-2 to SNH-5) displayed stronger inhibitory activities with IC50 range of 1.1-1.5 μM, while the shorter chain the weaker inhibition. Further synergistic experiments in cell level confirmed that all these 4 compounds (at 32 μg/mL) recovered the antibacterial activity of meropenem (MER) against E. coli BL21/pET15b-blaNDM-1.
Collapse
Affiliation(s)
- Lifang Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yaowen Liang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Pan Luo
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Manna Huang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China.
| | - Yiqian Wan
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| |
Collapse
|
3
|
Cheng Z, Aitha M, Thomas CA, Sturgill A, Fairweather M, Hu A, Bethel CR, Rivera DD, Dranchak P, Thomas PW, Li H, Feng Q, Tao K, Song M, Sun N, Wang S, Silwal SB, Page RC, Fast W, Bonomo RA, Weese M, Martinez W, Inglese J, Crowder MW. Machine Learning Models Identify Inhibitors of New Delhi Metallo-β-lactamase. J Chem Inf Model 2024; 64:3977-3991. [PMID: 38727192 PMCID: PMC11129921 DOI: 10.1021/acs.jcim.3c02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The worldwide spread of the metallo-β-lactamases (MBL), especially New Delhi metallo-β-lactamase-1 (NDM-1), is threatening the efficacy of β-lactams, which are the most potent and prescribed class of antibiotics in the clinic. Currently, FDA-approved MBL inhibitors are lacking in the clinic even though many strategies have been used in inhibitor development, including quantitative high-throughput screening (qHTS), fragment-based drug discovery (FBDD), and molecular docking. Herein, a machine learning-based prediction tool is described, which was generated using results from HTS of a large chemical library and previously published inhibition data. The prediction tool was then used for virtual screening of the NIH Genesis library, which was subsequently screened using qHTS. A novel MBL inhibitor was identified and shown to lower minimum inhibitory concentrations (MICs) of Meropenem for a panel of E. coli and K. pneumoniae clinical isolates expressing NDM-1. The mechanism of inhibition of this novel scaffold was probed utilizing equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry, UV-vis spectrophotometry, and molecular docking. The uncovered inhibitor, compound 72922413, was shown to be 9-hydroxy-3-[(5-hydroxy-1-oxa-9-azaspiro[5.5]undec-9-yl)carbonyl]-4H-pyrido[1,2-a]pyrimidin-4-one.
Collapse
Affiliation(s)
- Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Mahesh Aitha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Caitlyn A. Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Aidan Sturgill
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Mitch Fairweather
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Amy Hu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Dann D. Rivera
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Patricia Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Pei W. Thomas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Han Li
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Qi Feng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Kaicheng Tao
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Minshuai Song
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Na Sun
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Shuo Wang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Walt Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Departments of Medicine, Biochemistry, Molecular Biology and Microbiology, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH 44106, USA
| | - Maria Weese
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Waldyn Martinez
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
4
|
Jia Y, Schroeder B, Pfeifer Y, Fröhlich C, Deng L, Arkona C, Kuropka B, Sticht J, Ataka K, Bergemann S, Wolber G, Nitsche C, Mielke M, Leiros HKS, Werner G, Rademann J. Kinetics, Thermodynamics, and Structural Effects of Quinoline-2-Carboxylates, Zinc-Binding Inhibitors of New Delhi Metallo-β-lactamase-1 Re-sensitizing Multidrug-Resistant Bacteria for Carbapenems. J Med Chem 2023; 66:11761-11791. [PMID: 37585683 DOI: 10.1021/acs.jmedchem.3c00171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Carbapenem resistance mediated by metallo-β-lactamases (MBL) such as New Delhi metallo-β-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential β-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity. The most active compounds formed reversibly inactive ternary protein-inhibitor complexes with two zinc ions as proven by native protein mass spectrometry and bio-layer interferometry. Modification of the NDM-1 structure with remarkable entropic gain was shown by isothermal titration calorimetry and NMR spectroscopy of isotopically labeled protein. The best compounds were potent inhibitors of NDM-1 and other representative MBL with no or little inhibition of human zinc-binding enzymes. These inhibitors significantly reduced the minimum inhibitory concentrations (MIC) of meropenem for multidrug-resistant bacteria recombinantly expressing blaNDM-1 as well as for several multidrug-resistant clinical strains at concentrations non-toxic to human cells.
Collapse
Affiliation(s)
- Yuwen Jia
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Barbara Schroeder
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Yvonne Pfeifer
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, Wernigerode 38855, Germany
| | - Christopher Fröhlich
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Lihua Deng
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Christoph Arkona
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Benno Kuropka
- Core Facility BioSupraMol, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Jana Sticht
- Core Facility BioSupraMol, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Silke Bergemann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Martin Mielke
- Department of Infectious Diseases, Robert Koch Institute, Nordufer 20, Berlin 13353, Germany
| | - Hanna-Kirsti S Leiros
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Guido Werner
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, Wernigerode 38855, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| |
Collapse
|
5
|
Fragment-Based Lead Discovery Strategies in Antimicrobial Drug Discovery. Antibiotics (Basel) 2023; 12:antibiotics12020315. [PMID: 36830226 PMCID: PMC9951956 DOI: 10.3390/antibiotics12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fragment-based lead discovery (FBLD) is a powerful application for developing ligands as modulators of disease targets. This approach strategy involves identification of interactions between low-molecular weight compounds (100-300 Da) and their putative targets, often with low affinity (KD ~0.1-1 mM) interactions. The focus of this screening methodology is to optimize and streamline identification of fragments with higher ligand efficiency (LE) than typical high-throughput screening. The focus of this review is on the last half decade of fragment-based drug discovery strategies that have been used for antimicrobial drug discovery.
Collapse
|
6
|
Yu T, Ahmad Malik A, Anuwongcharoen N, Eiamphungporn W, Nantasenamat C, Piacham T. Towards combating antibiotic resistance by exploring the quantitative structure-activity relationship of NDM-1 inhibitors. EXCLI JOURNAL 2022; 21:1331-1351. [PMID: 36540675 PMCID: PMC9755517 DOI: 10.17179/excli2022-5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The emergence of New Delhi metallo-beta-lactamase-1 (NDM-1) has conferred enteric bacteria resistance to almost all beta-lactam antibiotics. Its capability of horizontal transfer through plasmids, amongst humans, animal reservoirs and the environment, has added up to the totality of antimicrobial resistance control, animal husbandry and food safety. Thus far, there have been no effective drugs for neutralizing NDM-1. This study explores the structure-activity relationship of NDM-1 inhibitors. IC50 values of NDM-1 inhibitors were compiled from both the ChEMBL database and literature. After curation, a final set of 686 inhibitors were used for machine learning model building using the random forest algorithm against 12 sets of molecular fingerprints. Benchmark results indicated that the KlekotaRothCount fingerprint provided the best overall performance with an accuracy of 0.978 and 0.778 for the training and testing set, respectively. Model interpretation revealed that nitrogen-containing features (KRFPC 4080, KRFPC 3882, KRFPC 677, KRFPC 3608, KRFPC 3750, KRFPC 4287 and KRFPC 3943), sulfur-containing substructures (KRFPC 2855 and KRFPC 4843), aromatic features (KRFPC 1566, KRFPC 1564, KRFPC 1642, KRFPC 3608, KRFPC 4287 and KRFPC 3943), carbonyl features (KRFPC 1193 and KRFPC 3025), aliphatic features (KRFPC 2975, KRFPC 297, KRFPC 3224 and KRFPC 669) are features contributing to NDM-1 inhibitory activity. It is anticipated that findings from this study would help facilitate the drug discovery of NDM-1 inhibitors by providing guidelines for further lead optimization.
Collapse
Affiliation(s)
- Tianshi Yu
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Aijaz Ahmad Malik
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | - Theeraphon Piacham
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
7
|
Li X, Zhao J, Zhang B, Duan X, Jiao J, Wu W, Zhou Y, Wang H. Drug development concerning metallo-β-lactamases in gram-negative bacteria. Front Microbiol 2022; 13:959107. [PMID: 36187949 PMCID: PMC9520474 DOI: 10.3389/fmicb.2022.959107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
β-Lactams have been a clinical focus since their emergence and indeed act as a powerful tool to combat severe bacterial infections, but their effectiveness is threatened by drug resistance in bacteria, primarily by the production of serine- and metallo-β-lactamases. Although once of less clinical relevance, metallo-β-lactamases are now increasingly threatening. The rapid dissemination of resistance mediated by metallo-β-lactamases poses an increasing challenge to public health worldwide and comprises most existing antibacterial chemotherapies. Regrettably, there have been no clinically available inhibitors of metallo-β-lactamases until now. To cope with this unique challenge, researchers are exploring multidimensional strategies to combat metallo-β-lactamases. Several studies have been conducted to develop new drug candidates or calibrate already available drugs against metallo-β-lactamases. To provide an overview of this field and inspire more researchers to explore it further, we outline some promising candidates targeting metallo-β-lactamase producers, with a focus on Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Promising candidates in this review are composed of new antibacterial drugs, non-antibacterial drugs, antimicrobial peptides, natural products, and zinc chelators, as well as their combinations with existing antibiotics. This review may provide ideas and insight for others to explore candidate metallo-β-lactamases as well as promote the improvement of existing data to obtain further convincing evidence.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jing Zhao
- Pharmaceutical Department, Shandong Provincial Taishan Hospital, Taian, China
| | - Bin Zhang
- Department of Ophthalmology, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Xuexia Duan
- Physical Examination Center, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jin Jiao
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Weiwei Wu
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Yuxia Zhou
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
- *Correspondence: Yuxia Zhou
| | - Hefeng Wang
- Department of Pediatric Surgery, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
- Hefeng Wang
| |
Collapse
|
8
|
Dihydroxyphenyl-substituted thiosemicarbazone: A potent scaffold for the development of metallo-β-lactamases inhibitors and antimicrobial. Bioorg Chem 2022; 127:105928. [PMID: 35717802 DOI: 10.1016/j.bioorg.2022.105928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
The superbug infection mediated by metallo-β-lactamases (MβLs) has grown into anemergent health threat, and development of MβL inhibitors is an ideal strategy to combat the infection. In this work, twenty-five thiosemicarbazones 1a-e, 2a-e, 3a-e, 4a-d, 5a-d and 6a-b were synthesized and assayed against MβLs ImiS, NDM-1 and L1. The gained molecules specifically inhibited NDM-1 and ImiS, exhibiting an IC50 value in the range of 0.37-21.35 and 0.45-8.76 µM, and 2a was found to be the best inhibitor, with an IC50 of 0.37 and 0.45 µM, respectively, using meropenem (MER) as substrate. Enzyme kinetics and dialysis tests revealed and confirmed by ITC that 2a is a time-and dose-dependent inhibitor of ImiS and NDM-1, it competitively and reversibly inhibited ImiS with a Ki value of 0.29 µM, but irreversibly inhibited NDM-1. Structure-activity relationship disclosed that the substitute dihydroxylbenzene significantly enhanced inhibitory activity of thiosemicarbazones on ImiS and NDM-1. Most importantly, 1a-e, 2a-e and 3a-b alone more strongly sterilized E. coli-ImiS and E. coli-NDM-1 than the MER, displaying a MIC value in the range of 8-128 μg/mL, and 2a was found to be the best reagent with a MIC of 8 and 32 μg/mL. Also, 2a alone strongly sterilized the clinical isolates EC01, EC06-EC08, EC24 and K. pneumonia-KPC-NDM, showing a MIC value in the range of 16-128 μg/mL, and exhibited synergistic inhibition with MER on these bacteria tested, resulting in 8-32-fold reduction in MIC of MER. SEM images shown that the bacteria E. coli-ImiS, E. coli-NDM-1, EC24, K. pneumonia-KPC and K. pneumonia-KPC-NDM treated with 2a (64 μg/mL) suffered from distortion, emerging adhesion between individual cells and crumpled membranes. Mice tests shown that monotherapy of 2a evidently limited growth of EC24 cells, and in combination with MER, it significantly reduced the bacterial load in liver and spleen. Docking studies suggest that the 2,4-dihydroxylbenzene of 2a acts as zinc-binding group with the Zn(II) and the residual amino acids in CphA active center, tightly anchoring the inhibitor at active site. This work offered a promising scaffold for the development of MβLs inhibitors, specifically the antimicrobial for clinically drug-resistant isolates.
Collapse
|
9
|
Aromatic Schiff bases confer inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem 2022; 126:105910. [PMID: 35653899 DOI: 10.1016/j.bioorg.2022.105910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022]
Abstract
The irregular use of antibiotics has created a natural selection pressure for bacteria to adapt resistance. Bacterial resistance caused by metallo-β-lactamases (MβLs) has been the most prevalent in terms of posing a threat to human health. The New Delhi metallo-β-lactamase-1 (NDM-1) has been shown to be capable of hydrolyzing almost all β-lactams. In this work, eight aromatic Schiff bases 1-8 were prepared and identified by enzyme kinetic assays to be the potent inhibitors of NDM-1 (except 4). These molecules exhibited a more than 95 % inhibition, and an IC50 value in the range of 0.13-19 μM on the target enzyme, and 3 was found to be the most effective inhibitor (IC50 = 130 nM). Analysis of structure-activity relationship revealed that the o-hydroxy phenyl improved the inhibitory activity of Schiff bases on NDM-1. The inhibition mode assays including isothermal titration calorimetry (ITC) disclosed that both compounds 3 and 5 exhibited a reversibly mixed inhibition on NDM-1, with a Ki value of 1.9 and 10.8 μM, respectively. Antibacterial activity tests indicated that a dose of 64 μg·mL-1 Schiff bases resulted in 2-128-fold reduction in MICs of cefazolin on E. coli producing NDM-1 (except 4). Cytotoxicity assays showed that both Schiff bases 3 and 5 have low cytotoxicity on the mouse fibroblast (L929) cells at a concentration of up to 400 μM. Docking studies suggested that the hydroxyl group interacts with Gln123 and Glu152 of NDM-1, and the amino groups interact with the backbone amide groups of Glu152 and Asp223. This study provided a novel scaffold for the development of NDM-1 inhibitors.
Collapse
|
10
|
The development of New Delhi metallo-β-lactamase-1 inhibitors since 2018. Microbiol Res 2022; 261:127079. [DOI: 10.1016/j.micres.2022.127079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
11
|
Chigan JZ, Hu Z, Liu L, Xu YS, Ding HH, Yang KW. Quinolinyl sulfonamides and sulphonyl esters exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem 2022; 120:105654. [DOI: 10.1016/j.bioorg.2022.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
|
12
|
Ayipo YO, Osunniran WA, Babamale HF, Ayinde MO, Mordi MN. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metal-ligand coordination perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Emerione A, a novel fungal metabolite as an inhibitor of New Delhi metallo-β-lactamase-1, restores carbapenem susceptibility in carbapenem-resistant isolates. J Glob Antimicrob Resist 2022; 28:216-222. [PMID: 35017068 DOI: 10.1016/j.jgar.2021.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Bacterial strains that produce New Delhi metal-β-lactamase 1 (NDM-1) are worldwide threats. It is still a challenging task to find a potent NDM-1 inhibitor for clinical practice. METHODS Molecular docking and virtual screening of an in-house fungal natural product database for NDM-1 inhibitors were performed. Based on the screening results, the affinity and inhibition analysis of potential NDM-1 inhibitors was determined using purified NDM-1. The efficacy of compounds in combination with four β-lactam antibiotics (meropenem, imipenem, ceftriaxone and ampicillin) was evaluated. The morphological transforms of K. pneumoniae ATCC BAA2146 after treatment with the compounds were visualized by transmission electron microscopy. RESULTS In silico screening led to the identification of four fungal products as potential NDM-1 inhibitors. Emerione A (1), a methylated polyketide with bicyclo[4.2.0]octene and 3,6-dioxabicyclo[3.1.0]hexane, has significant activity in cells (Kd = 11.8 ± 0.6 μM; IC50 = 12.1 ± 0.9 μM) and potentiates the activity of meropenem against two kinds of NDM-1-producing Enterobacteriaceae. To the best of our knowledge, emerione A (1) is the second fungal metabolite reported to exhibit NMD-1 inhibitory activity. According to the structural novelty of our database, we also found a structural new compound, asperfunolone A (2), with potential NMD-1 inhibitory activity. CONCLUSION Considering the low toxicity characteristic of emerione A (1), it may be processed as a potential lead compound for anti-NDM-1 drug development.
Collapse
|
14
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
15
|
Panlilio H, Lam AK, Heydarian N, Haight T, Wouters CL, Moen EL, Rice CV. Dual-Function Potentiation by PEG-BPEI Restores Activity of Carbapenems and Penicillins against Carbapenem-Resistant Enterobacteriaceae. ACS Infect Dis 2021; 7:1657-1665. [PMID: 33945257 PMCID: PMC8689638 DOI: 10.1021/acsinfecdis.0c00863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rise of life-threatening carbapenem-resistant Enterobacteriaceae (CRE) infections has become a critical medical threat. Some of the most dangerous CRE bacteria can produce enzymes that degrade a wide range of antibiotics, including carbapenems and β-lactams. Infections by CRE have a high mortality rate, and survivors can have severe morbidity from treatment with toxic last-resort antibiotics. CRE have mobile genetic elements that transfer resistance genes to other species. These bacteria also circulate throughout the healthcare system. The mobility and spread of CRE need to be curtailed, but these goals are impeded by having few agents that target a limited range of pathogenic CRE species. Against CRE possessing the metallo-β-lactamase NDM-1, Klebsiella pneumoniae ATCC BAA-2146 and Escherichia coli ATCC BAA-2452, the potentiation of meropenem and imipenem is possible with low-molecular weight branched polyethylenimine (600 Da BPEI) and its poly(ethylene glycol) (PEG)ylated derivative (PEG-BPEI) that has a low in vivo toxicity. The mechanism of action is elucidated with fluorescence assays of drug influx and isothermal calorimetry data showing the chelation of essential Zn2+ ions. These results suggested that 600 Da BPEI and PEG-BPEI may also improve the uptake of antibiotics and β-lactamase inhibitors. Indeed, the CRE E. coli strain is rendered susceptible to the combination of piperacillin and tazobactam. These results expand the possible utility of 600 Da BPEI potentiators, where previously we have demonstrated the ability to improve antibiotic efficacy against antibiotic resistant clinical isolates of Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Anh K Lam
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Tristan Haight
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Erika L Moen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
16
|
Prosser KE, Kohlbrand AJ, Seo H, Kalaj M, Cohen SM. 19F-Tagged metal binding pharmacophores for NMR screening of metalloenzymes. Chem Commun (Camb) 2021; 57:4934-4937. [PMID: 33870988 PMCID: PMC8137660 DOI: 10.1039/d1cc01231b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates the screening of a collection of twelve 19F-tagged metal-binding pharmacophores (MBPs) against the Zn(ii)-dependent metalloenzyme human carbonic anhydrase II (hCAII) by 19F NMR. The isomorphous replacement of Zn(ii) by Co(ii) in hCAII produces enhanced sensitivity and reveals the potential of 19F NMR-based techniques for metalloenzyme ligand discovery.
Collapse
Affiliation(s)
- Kathleen E Prosser
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Alysia J Kohlbrand
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Hyeonglim Seo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Docking and antibacterial activity of novel nontoxic 5-arylidenepyrimidine-triones as inhibitors of NDM-1 and MetAP-1. Future Med Chem 2021; 13:1041-1055. [PMID: 33913733 DOI: 10.4155/fmc-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Antibiotic resistance, which occurs through the action of metallo-β-lactamases (NDM-1), is a serious problem in the treatment of infectious diseases. Therefore, the discovery of new NDM-1 inhibitors and promising antibacterial agents as inhibitors of alternative targets (MetAP-1) is important. Method & results: In this study, a virtual library of 5-arylidene barbituric acids was created and molecular docking was performed for identification of novel possible inhibitors of NDM-1 and MetAP-1. Antibacterial activity (agar well-diffusion assay) and cytotoxicity (alamarBlue assay) of perspective compounds were evaluated. Pharmacokinetic profiles and molecular properties were predicted. Conclusion: We have identified possible novel inhibitors of NDM-1 and MetAP-1 with bacteriostatic activity, most of which are not cytotoxic and have potential excellent drug-likeness properties.
Collapse
|
18
|
Romero E, Oueslati S, Benchekroun M, D'Hollander ACA, Ventre S, Vijayakumar K, Minard C, Exilie C, Tlili L, Retailleau P, Zavala A, Elisée E, Selwa E, Nguyen LA, Pruvost A, Naas T, Iorga BI, Dodd RH, Cariou K. Azetidinimines as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D). Eur J Med Chem 2021; 219:113418. [PMID: 33862516 DOI: 10.1016/j.ejmech.2021.113418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
The occurrence of resistances in Gram negative bacteria is steadily increasing to reach extremely worrying levels and one of the main causes of resistance is the massive spread of very efficient β-lactamases which render most β-lactam antibiotics useless. Herein, we report the development of a series of imino-analogues of β-lactams (namely azetidinimines) as efficient non-covalent inhibitors of β-lactamases. Despite the structural and mechanistic differences between serine-β-lactamases KPC-2 and OXA-48 and metallo-β-lactamase NDM-1, all three enzymes can be inhibited at a submicromolar level by compound 7dfm, which can also repotentiate imipenem against a resistant strain of Escherichia coli expressing NDM-1. We show that 7dfm can efficiently inhibit not only the three main clinically-relevant carbapenemases of Ambler classes A (KPC-2), B (NDM-1) and D (OXA-48) with Ki's below 0.3 μM, but also the cephalosporinase CMY-2 (class C, 86% inhibition at 10 μM). Our results pave the way for the development of a new structurally original family of non-covalent broad-spectrum inhibitors of β-lactamases.
Collapse
Affiliation(s)
- Eugénie Romero
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Saoussen Oueslati
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Mohamed Benchekroun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Agathe C A D'Hollander
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Sandrine Ventre
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Kamsana Vijayakumar
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Corinne Minard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Cynthia Exilie
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Linda Tlili
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Agustin Zavala
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France; U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Eddy Elisée
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Edithe Selwa
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Laetitia A Nguyen
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour La Santé, Gif-sur-Yvette, France
| | - Alain Pruvost
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour La Santé, Gif-sur-Yvette, France
| | - Thierry Naas
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; EERA Unit "Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-AP-HP-Université Paris-Saclay, Paris, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.
| | - Bogdan I Iorga
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France.
| | - Robert H Dodd
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Kevin Cariou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Mehaffey MR, Ahn YC, Rivera DD, Thomas PW, Cheng Z, Crowder MW, Pratt RF, Fast W, Brodbelt JS. Elusive structural changes of New Delhi metallo-β-lactamase revealed by ultraviolet photodissociation mass spectrometry. Chem Sci 2020; 11:8999-9010. [PMID: 34123154 PMCID: PMC8163344 DOI: 10.1039/d0sc02503h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We use mass spectrometry (MS), under denaturing and non-denaturing solution conditions, along with ultraviolet photodissociation (UVPD) to characterize structural variations in New Delhi metallo-β-lactamase (NDM) upon perturbation by ligands or mutation. Mapping changes in the abundances and distributions of fragment ions enables sensitive detection of structural alterations throughout the protein. Binding of three covalent inhibitors was characterized: a pentafluorphenyl ester, an O-aryloxycarbonyl hydroxamate, and ebselen. The first two inhibitors modify Lys211 and maintain dizinc binding, although the pentafluorophenyl ester is not selective (Lys214 and Lys216 are also modified). Ebselen reacts with the sole Cys (Cys208) and ejects Zn2 from the active site. For each inhibitor, native UVPD-MS enabled simultaneous detection of the closing of a substrate-binding beta-hairpin loop, identification of covalently-modified residue(s), reporting of the metalation state of the enzyme, and in the case of ebselen, observation of the induction of partial disorder in the C-terminus of the protein. Owing to the ability of native UVPD-MS to track structural changes and metalation state with high sensitivity, we further used this method to evaluate the impact of mutations found in NDM clinical variants. Changes introduced by NDM-4 (M154L) and NDM-6 (A233V) are revealed to propagate through separate networks of interactions to direct zinc ligands, and the combination of these two mutations in NDM-15 (M154L, A233V) results in additive as well as additional structural changes. Insight from UVPD-MS helps to elucidate how distant mutations impact zinc affinity in the evolution of this antibiotic resistance determinant. UVPD-MS is a powerful tool capable of simultaneous reporting of ligand binding, conformational changes and metalation state of NDM, revealing structural aspects of ligand recognition and clinical variants that have proven difficult to probe. We use mass spectrometry (MS) along with ultraviolet photodissociation (UVPD) to characterize structural variations in New Delhi metallo-β-lactamase (NDM) upon perturbation by ligands or mutation.![]()
Collapse
Affiliation(s)
- M Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Yeong-Chan Ahn
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin Austin TX 78712 USA
| | - Dann D Rivera
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin Austin TX 78712 USA
| | - Pei W Thomas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin Austin TX 78712 USA
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University Oxford OH 45056 USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University Oxford OH 45056 USA
| | - R F Pratt
- Department of Chemistry, Wesleyan University Middletown CT 06459 USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin Austin TX 78712 USA
| | | |
Collapse
|