1
|
Fan L, Jiang Z, Xiong Y, Xu Z, Yang X, Gu D, Ainiwaer M, Li L, Liu J, Chen F. Recent Advances in the HPPH-Based Third-Generation Photodynamic Agents in Biomedical Applications. Int J Mol Sci 2023; 24:17404. [PMID: 38139233 PMCID: PMC10743769 DOI: 10.3390/ijms242417404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Photodynamic therapy has emerged as a recognized anti-tumor treatment involving three fundamental elements: photosensitizers, light, and reactive oxygen species. Enhancing the effectiveness of photosensitizers remains the primary avenue for improving the biological therapeutic outcomes of PDT. Through three generations of development, HPPH is a 2-(1-hexyloxyethyl)-2-devinyl derivative of pyropheophorbide-α, representing a second-generation photosensitizer already undergoing clinical trials for various tumors. The evolution toward third-generation photosensitizers based on HPPH involves structural modifications for multimodal applications and the combination of multifunctional compounds, leading to improved imaging localization and superior anti-tumor effects. While research into third-generation HPPH is beneficial for advancing PDT treatment, equal attention should also be directed toward the other two essential elements and personalized diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Lixiao Fan
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zheng Jiang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yu Xiong
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zepeng Xu
- West China Clinical Medical College, Sichuan University, Chengdu 610064, China;
| | - Xin Yang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Deying Gu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Mailudan Ainiwaer
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Leyu Li
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jun Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Fei Chen
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Wang Y, Staudinger JN, Mindt TL, Gasser G. Theranostics with photodynamic therapy for personalized medicine: to see and to treat. Theranostics 2023; 13:5501-5544. [PMID: 37908729 PMCID: PMC10614685 DOI: 10.7150/thno.87363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/26/2023] [Indexed: 11/02/2023] Open
Abstract
Photodynamic Therapy (PDT) is an approved treatment modality, which is presently receiving great attention due to its limited invasiveness, high selectivity and limited susceptibility to drug resistance. Another related research area currently expanding rapidly is the development of novel theranostic agents based on the combination of PDT with different imaging technologies, which allows for both therapy and diagnosis. This combination can help to address issues of suboptimal biodistribution and selectivity through regional imaging, while therapeutic agents enable an effective and personalized therapy. In this review, we describe compounds, whose structures combine PDT photosensitizers with different imaging probes - including examples for near-infrared optical imaging, magnetic resonance imaging (MRI) and nuclear imaging (PET or SPECT), generating novel theranostic drug candidates. We have intentionally focused our attention on novel compounds, which have already been investigated preclinically in vivo in order to demonstrate the potential of such theranostic agents for clinical applications.
Collapse
Affiliation(s)
- Youchao Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Johannes Nikodemus Staudinger
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Thomas L. Mindt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Währingerstraße 42, and Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
3
|
Pandurang TP, Cacaccio J, Durrani FA, Dukh M, Alsaleh AZ, Sajjad M, D'Souza F, Kumar D, Pandey RK. A Remarkable Difference in Pharmacokinetics of Fluorinated Versus Iodinated Photosensitizers Derived from Chlorophyll-a and a Direct Correlation between the Tumor Uptake and Anti-Cancer Activity. Molecules 2023; 28:molecules28093782. [PMID: 37175191 PMCID: PMC10180080 DOI: 10.3390/molecules28093782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
To investigate and compare the pharmacokinetic profile and anti-cancer activity of fluorinated and iodinated photosensitizers (PSs), the 3-(1'-(o-fluorobenzyloxy)ethyl pyropheophorbide and the corresponding meta-(m-) and para (p-) fluorinated analogs (methyl esters and carboxylic acids) were synthesized. Replacing iodine with fluorine in PSs did not make any significant difference in fluorescence and singlet oxygen (a key cytotoxic agent) production. The nature of the delivery vehicle and tumor types showed a significant difference in uptake and long-term cure by photodynamic therapy (PDT), especially in the iodinated PS. An unexpected difference in the pharmacokinetic profiles of fluorinated vs. iodinated PSs was observed. At the same imaging parameters, the fluorinated PSs showed maximal tumor uptake at 2 h post injection of the PS, whereas the iodinated PS gave the highest uptake at 24 h post injection. Among all isomers, the m-fluoro PS showed the best in vivo anti-cancer activity in mice bearing U87 (brain) or bladder (UMUC3) tumors. A direct correlation between the tumor uptake and PDT efficacy was observed. The higher tumor uptake of m-fluoro PS at two hours post injection provides a solid rationale for developing the corresponding 18F-agent (half-life 110 min only) for positron imaging tomography (PET) of those cancers (e.g., bladder, prostate, kidney, pancreas, and brain) where 18F-FDG-PET shows limitations.
Collapse
Affiliation(s)
- Taur Prakash Pandurang
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph Cacaccio
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Farukh A Durrani
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14221, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Ravindra K Pandey
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
4
|
Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev 2022; 51:6177-6209. [PMID: 35792133 DOI: 10.1039/d2cs00275b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA. .,InnovoTEX, Inc. 3800 N. Lamar Blvd, Austin, Texas 78756, USA.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China.,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
5
|
Cheruku RR, Turowski SG, Durrani FA, Tabaczynski WA, Cacaccio J, Missert JR, Curtin L, Sexton S, Alberico R, Hendler CM, Spernyak JA, Grossman Z, Pandey RK. Tumor-Avid 3-(1'-Hexyloxy)ethyl-3-devinylpyrpyropheophorbide-a (HPPH)-3Gd(III)tetraxetan (DOTA) Conjugate Defines Primary Tumors and Metastases. J Med Chem 2022; 65:9267-9280. [PMID: 35763292 DOI: 10.1021/acs.jmedchem.2c00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-(1'-Hexyloxyethyl)-3-devinylpyropheophorbide-a (HPPH or Photochlor), a tumor-avid chlorophyll a derivative currently undergoing human clinical trials, was conjugated with mono-, di-, and tri-Gd(III)tetraxetan (DOTA) moieties. The T1/T2 relaxivity and in vitro PDT efficacy of these conjugates were determined. The tumor specificity of the most promising conjugate was also investigated at various time points in mice and rats bearing colon tumors, as well as rabbits bearing widespread metastases from VX2 systemic arterial disseminated metastases. All the conjugates showed significant T1 and T2 relaxivities. However, the conjugate containing 3-Gd(III)-aminoethylamido-DOTA at position 17 of HPPH demonstrated great potential for tumor imaging by both MR and fluorescence while maintaining its PDT efficacy. At an MR imaging dose (10 μmol/kg), HPPH-3Gd(III)DOTA did not cause any significant organ toxicity in mice, indicating its potential as a cancer imaging (MR and fluorescence) agent with an option to treat cancer by photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Ravindra R Cheruku
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Steven G Turowski
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Farukh A Durrani
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Walter A Tabaczynski
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Joseph Cacaccio
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Joseph R Missert
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Leslie Curtin
- Department of Laboratory Animal Resources (DLAR), Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Sandra Sexton
- Department of Laboratory Animal Resources (DLAR), Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Ronald Alberico
- Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Craig M Hendler
- Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Joseph A Spernyak
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Zachary Grossman
- Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Ravindra K Pandey
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| |
Collapse
|
6
|
Cacaccio JC, Durrani FA, Missert JR, Pandey RK. Photodynamic Therapy in Combination with Doxorubicin Is Superior to Monotherapy for the Treatment of Lung Cancer. Biomedicines 2022; 10:857. [PMID: 35453607 PMCID: PMC9024488 DOI: 10.3390/biomedicines10040857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously shown that a radioactive (123I)-analog of methyl 3-(1'-(iodobexyloxy) ethyl-3-devinylpyropheophorbide-a (PET-ONCO), derived from chlorophyll-a can be used for positron emission tomography (PET) imaging of a variety of tumors, including those where 18F-FDG shows limitations. In this study, the photodynamic therapy (PDT) efficacy of the corresponding non-radioactive photosensitizer (PS) was investigated in a variety of tumor types (NSCLC, SCC, adenocarcinoma) derived from lung cancer patients in mice tumor models. The in vitro and in vivo efficacy was also investigated in combination with doxorubicin, and a significantly enhanced long-term tumor response was observed. The toxicity and toxicokinetic profile of the iodinated PS was also evaluated in male and female Sprague-Dawley rats and Beagle dog at variable doses (single intravenous injections) to assess reversibility or latency of any effects over a 28-day dose free period. The no-observed-adverse-effect (NOAEL) of the PS was considered to be 6.5 mg/kg for male and female rats, and for dogs, 3.45 mg/kg, the highest dose levels evaluated, respectively. The corresponding plasma Cmax and AYClast for male and female rats were 214,000 and 229,000 ng/mL and 3,680,000 and 3,810,000 h * ng/mL, respectively. For male and female dogs, the corresponding plasma Cmax and AYClast were 76,000 and 92,400 ng/mL and 976,000 and 1,200,000 h * ng/mL, respectively.
Collapse
Affiliation(s)
- Joseph C. Cacaccio
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.C.C.); (F.A.D.)
| | - Farukh A. Durrani
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.C.C.); (F.A.D.)
| | | | - Ravindra K. Pandey
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.C.C.); (F.A.D.)
| |
Collapse
|
7
|
Hashimoto Y, Suzuki H, Kondo T, Abe R, Tamiaki H. Visible-light-induced hydrogen evolution from water on hybrid photocatalysts consisting of synthetic chlorophyll-a derivatives with a carboxy group in the 20-substituent adsorbed on semiconductors. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jin GQ, Lai H, Yang ZS, Ning Y, Duan L, Zhang J, Chen T, Gao S, Zhang JL. Gadolinium(III) Porphyrinoid Phototheranostics. Chem Asian J 2022; 17:e202200181. [PMID: 35343080 DOI: 10.1002/asia.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Molecular phototheranostics as the emerging field of modern precision medicine recently has attracts increasing research attentions owing to non-invasiveness, high precision, and controllable nature of light. In this work, we reported alluring gadolinium (Gd3+) porphyrinoids phototheranostic agents for magnetic resonance imaging (MRI) and photodynamic therapy (PDT). The synthesized Gd-1-4-Glu featured with meso-glycosylation and β-lactonization to endow good biocompatibility and improved photophysical properties. In particular, β-lactonization of glycosylated Gd3+ porphyrinoids substantially red-shifted its absorption band to near-infrared (NIR) region and boosted generation of reactive oxygen species including 1O2, and some radical species that engaged both type II and type I PDT pathways. In addition, the number and regioisomerism of β-oxazolone moieties was observed to play an essential role in improving longitude relaxivity (r1) of Gd-1-4-Glu up to 4.6 mM-1s-1 for the first time by affecting environmental water exchange. Taking Gd-4-Glu as a promising complex, we further achieved real-time T1-weighted MRI and PDT on HeLa tumour mice in vivo, revealing the appealing potential of Gd3+ porphyrinoids in phototheranostics.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Peking University, College of Chemistry and Molecular Engineering, Beijing, 10087, Beijing, CHINA
| | - Haoqiang Lai
- Jinan University, Department of Chemistry, CHINA
| | - Zi-Shu Yang
- Peking University, College of Chemistry and Molecular Engineering, CHINA
| | - Yingying Ning
- Peking University, College of Chemistry and Molecular Engineering, CHINA
| | - Linqi Duan
- Jinan University, Department of Chemistry, CHINA
| | - Jing Zhang
- University of the Chinese Academy of Sciences, , CHINA
| | | | - Song Gao
- Peking University, College of Chemistry and Molecular Engineering, CHINA
| | - Jun-Long Zhang
- Peking University, College of Chemistry and Molecular Engineering, Chengfu Road 202, 100871, Beijing, CHINA
| |
Collapse
|
9
|
Saenz C, Ethirajan M, Tracy EC, Bowman MJ, Cacaccio J, Ohulchanskyy T, Baumann H, Pandey RK. Charged groups on pyropheophorbide-based photosensitizers dictate uptake by tumor cells and photodynamic therapy efficacy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 227:112375. [PMID: 34968800 PMCID: PMC8816894 DOI: 10.1016/j.jphotobiol.2021.112375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
This study investigated the impact of anionic and cationic substituents of the pyropheophorbide-based photosensitizers (PS) on uptake and retention by tumor epithelial cells and photodynamic therapy (PDT). A series of PSs were generated that bear carboxylic acid functionalities, alkyl amines with variable length of carbon units or as a quaternary ammonium salt introduced at position 172 of 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH). The nature of the functionalities in the macrocycle made a significant difference in overall lipophilicity (log D values at pH 7.4), and in binding to and retention by human and murine tumor cells. Depending on the presence of functional groups, the PSs showed a change in cellular uptake from diffusion to endocytosis and in the preference for subcellular localization to mitochondria/ER or lysosomes. Two and more carboxylic groups drastically reduced uptake by all cell types. In contrast, PSs with amine and quaternary amine salt showed higher cellular binding, uptake and in vitro PDT efficacy than HPPH. The enhanced cellular uptake of the cationic PSs was accompanied by a loss of tumor cell specificity and contributed to severe systemic toxicity in tumor-bearing mice intravenously injected with the PS and subjected to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Courtney Saenz
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Manivannan Ethirajan
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Erin C Tracy
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Mary-Jo Bowman
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Joseph Cacaccio
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Tymish Ohulchanskyy
- Institute of Lasers, Photonics and Biophotonics, State University of New York, Buffalo, NY 14221, United States of America
| | - Heinz Baumann
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America,Corresponding authors. ,
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America,Corresponding authors. ,
| |
Collapse
|
10
|
Ishikawa H, Demise A, Kitagawa Y, Shinozaki Y, Kinoshita Y, Tamiaki H. Difluoroboron complexes of peripheral β-diketonates in cyclopheophorbides: Their syntheses and optical properties. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Abozeid SM, Chowdhury MSI, Asik D, Spernyak JA, Morrow JR. Liposomal Fe(III) Macrocyclic Complexes with Hydroxypropyl Pendants as MRI Probes. ACS APPLIED BIO MATERIALS 2021; 4:7951-7960. [PMID: 35006776 PMCID: PMC9124523 DOI: 10.1021/acsabm.1c00879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paramagnetic liposomes containing Fe(III) complexes were prepared by incorporation of mononuclear (Fe(L1) or Fe(L3)) or dinuclear (Fe2(L2)) coordination complexes of 1,4,7-triazacyclononane macrocycles containing 2-hydroxypropyl pendant groups. Two different types of paramagnetic liposomes were prepared. The first type, LipoA, has the mononuclear Fe(L1) complex loaded into the internal aqueous core. The second type, LipoB, has the amphiphilic Fe(L3) complex inserted into the liposomal bilayer and the internal aqueous core loaded with either Fe(L1) (LipoB1) or Fe2(L2) (LipoB2). LipoA enhances both T1 and T2 water proton relaxation rates. Treatment of LipoA with osmotic gradients to produce a nonspherical liposome produces a liposome with a chemical exchange saturation transfer effect as shown by an asymmetry analysis but only at high osmolarity. LipoB1, which contains an amphiphilic complex in the liposomal bilayer, produced a broadened Z-spectrum upon treatment of the liposome with osmotic gradients. The r1 relaxivity of LipoB1 and LipoB2 were higher than the r1 relaxivity of LipoA on a per Fe basis, suggesting an important contribution from the amphiphilic Fe(III) center. The r1 relaxivities of paramagnetic liposomes are relatively constant over a range of magnetic field strengths (1.4-9.4 T), with the ratio of r2/r1 substantially increasing at high field strengths. MRI studies of LipoB1 in mice showed prolonged contrast enhancement in blood compared to the clinically employed Gd(DOTA), which was injected at a 2-fold higher dose per metal than the Fe(III)-loaded liposomes.
Collapse
Affiliation(s)
- Samira M. Abozeid
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516 Mansoura, Egypt
| | - Md Saiful I. Chowdhury
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
| | - Didar Asik
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
| |
Collapse
|