1
|
Pappalardo M, Sipala FM, Nicolosi MC, Guccione S, Ronsisvalle S. Recent Applications of In Silico Approaches for Studying Receptor Mutations Associated with Human Pathologies. Molecules 2024; 29:5349. [PMID: 39598735 PMCID: PMC11596970 DOI: 10.3390/molecules29225349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, the advent of computational techniques to predict the potential activity of a drug interacting with a receptor or to predict the structure of unidentified proteins with aberrant characteristics has significantly impacted the field of drug design. We provide a comprehensive review of the current state of in silico approaches and software for investigating the effects of receptor mutations associated with human diseases, focusing on both frequent and rare mutations. The reported techniques include virtual screening, homology modeling, threading, docking, and molecular dynamics. This review clearly shows that it is common for successful studies to integrate different techniques in drug design, with docking and molecular dynamics being the most frequently used techniques. This trend reflects the current emphasis on developing novel therapies for diseases resulting from receptor mutations with the recently discovered AlphaFold algorithm as the driving force.
Collapse
Affiliation(s)
- Matteo Pappalardo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| | - Federica Maria Sipala
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Milena Cristina Nicolosi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Guccione
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.P.); (F.M.S.); (M.C.N.); (S.R.)
| |
Collapse
|
2
|
Leth JM, Newcombe EA, Grønnemose AL, Jørgensen JT, Qvist K, Clausen AS, Knudsen LBS, Kjaer A, Kragelund BB, Jørgensen TJD, Ploug M. Targeted imaging of uPAR expression in vivo with cyclic AE105 variants. Sci Rep 2023; 13:17248. [PMID: 37821532 PMCID: PMC10567728 DOI: 10.1038/s41598-023-43934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
A comprehensive literature reports on the correlation between elevated levels of urokinase-type plasminogen activator receptor (uPAR) and the severity of diseases with chronic inflammation including solid cancers. Molecular imaging is widely used as a non-invasive method to locate disease dissemination via full body scans and to stratify patients for targeted treatment. To date, the only imaging probe targeting uPAR that has reached clinical phase-II testing relies on a high-affinity 9-mer peptide (AE105), and several studies by positron emission tomography (PET) scanning or near-infra red (NIR) fluorescence imaging have validated its utility and specificity in vivo. While our previous studies focused on applying various reporter groups, the current study aims to improve uPAR-targeting properties of AE105. We successfully stabilized the small uPAR-targeting core of AE105 by constraining its conformational landscape by disulfide-mediated cyclization. Importantly, this modification mitigated the penalty on uPAR-affinity typically observed after conjugation to macrocyclic chelators. Cyclization did not impair tumor targeting efficiency of AE105 in vivo as assessed by PET imaging and a trend towards increased tracer uptake was observed. In future studies, we predict that this knowledge will aid development of new fluorescent AE105 derivatives with a view to optical imaging of uPAR to assist precision guided cancer surgery.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, 2200, Copenhagen N, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Estella Anne Newcombe
- Structural Biology and NMR Laboratory, Copenhagen N, Denmark
- REPIN, Copenhagen N, Denmark
- The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, 2200, Copenhagen N, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Katrine Qvist
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Anne Skovsbo Clausen
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Line Bruhn Schneider Knudsen
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Birthe Brandt Kragelund
- Structural Biology and NMR Laboratory, Copenhagen N, Denmark
- REPIN, Copenhagen N, Denmark
- The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | | | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, 2200, Copenhagen N, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
3
|
Zhou Y, Song M, Xie D, Yan S, Yu S, Xie S, Cai M, Li H, Shang L, Jiang L, Yuan C, Huang M, Li J, Xu P. Structural Dynamics-Driven Discovery of Anticancer and Antimetastatic Effects of Diltiazem and Glibenclamide Targeting Urokinase Receptor. J Med Chem 2023; 66:5415-5426. [PMID: 36854648 DOI: 10.1021/acs.jmedchem.2c01663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Diltiazem and glibenclamide are commonly used hypotensive and antidiabetic drugs. This study reports the discovery of the potential antitumor and antimetastatic effects of these two drugs using a structural dynamics-driven virtual screening targeting urokinase receptor (uPAR). Owing to uPAR's high flexibility, currently resolved crystal structures of uPAR, all in ligand-bound states, provide limited representations of its physiological conformation. To improve the accuracy of screening, we performed a long-timescale molecular dynamics simulation and obtained the representative conformations of apo-uPAR as the targets for our screening. Experimentally, we demonstrated that diltiazem and glibenclamide bound uPAR with KD values in the micromolar range. In addition, both compounds effectively suppressed tumor growth and metastasis in a uPAR-dependent manner in vitro and in vivo. This work not only provides two potent uPAR inhibitors but also reports a proof-of-concept study on the potential off-label antitumor and antimetastatic uses of diltiazem and glibenclamide.
Collapse
Affiliation(s)
- Yang Zhou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Meiru Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,Henan Academy of Sciences, Zhengzhou, Henan 450046, P. R. China
| | - Daoqing Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Shufeng Yan
- Sanming University, Sanming, Fujian 365004, P. R. China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Song Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Meiqin Cai
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Le Shang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350109, P. R. China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
4
|
Zhu R, Liu TW, Liu F. Exogenous Urokinase Inhibits Proteasomal Degradation of Its Cognate Urokinase Plasminogen Activator Receptor. Front Pharmacol 2022; 13:754271. [PMID: 36034808 PMCID: PMC9411529 DOI: 10.3389/fphar.2022.754271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Acute pulmonary embolism (APE) is a debilitating condition with high incidence and mortality rates. APE is widely treated with the serine protease urokinase or urokinase-type plasminogen activator (uPA) that functions by resolving blood clots via catalyzing the conversion of plasminogen to plasmin. Treatment with recombinant uPA has been shown to increase endogenous expression of uPA and its cognate receptor, uPAR; however, the mechanisms for this induction are not known. Using an in vitro hypoxia/reoxygenation model in bronchial epithelial BEAS-2B cells, we show that induction of hypoxia/reoxygenation induces apoptosis and increases secretion of tumor necrosis factor–alpha, brain natriuretic peptide, and fractalkine, which are attenuated when treated with exogenous uPA. Induction of hypoxia/reoxygenation resulted in decreased expression of uPAR on cell surface without any significant changes in its messenger RNA expression, highlighting post-transcriptional regulatory mechanisms. Determination of uPAR protein half-life using cycloheximide showed treatment with uPA significantly increased its half-life (209.6 ± 0.2 min from 48.2 ± 2.3 min). Hypoxia/reoxygenation promoted the degradation of uPAR. Inhibition of proteasome-mediated degradation using MG-132 and lactacystin revealed that uPAR was actively degraded when hypoxia/reoxygenation was induced and that it was reversed when treated with exogenous uPA. Determination of the proteolytic activity of 20S proteasome showed a global increase in ubiquitin–proteasome activation without an increase in proteasome content in cells subjected to hypoxia/reoxygenation. Our results cumulatively reveal that uPAR is actively degraded following hypoxia/reoxygenation, and the degradation was significantly weakened by exogenous uPA treatment. Given the importance of the uPA/uPAR axis in a multitude of pathophysiological contexts, these findings provide important yet undefined mechanistic insights.
Collapse
Affiliation(s)
- Ran Zhu
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Ting-Wei Liu
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fan Liu
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Fan Liu,
| |
Collapse
|
5
|
Zhu R, Qi WY, Liu TW, Liu F. MicroRNA 449a can Attenuate Protective Effect of Urokinase Against Pulmonary Embolism. Front Pharmacol 2022; 13:713848. [PMID: 35571119 PMCID: PMC9095938 DOI: 10.3389/fphar.2022.713848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Acute pulmonary embolism (APE) is a disabling diseases with high incidence rate and mortality rate. Although with high specificity, D-Dimer lacks specificity to assess APE, hence additional diagnostic and prognostic biomarkers are necessary. APE is widely treated with serine protease urokinase or urokinase-type plasminogen activator (uPA), which act as a catalyst for conversion of plasminogen to plasmin to resolve blood clots. However, it is unknown the role of differential expression of microRNAs (miRNAs) in protective effect of uPA against APE. Hence, we performed miRNA profiling in a hypoxia/reoxygenation (H/R) model of bronchial epithelial BEAS-2B cells in vitro and a APE mice model in vivo. Our analysis revealed that miR-34a-5p, miR-324-5p, miR-331-3p are upregulated with H/R or APE induction, whereas miR-429, miR-491-5p, and miR-449a are downregulated. The differential expression of the miRNAs was attenuated to levels comparable to control by treatment with uPA both in vitro and in vivo. In situ target prediction and analysis of potential functions of the target genes showed that the enrichment of biological processes and pathways were related to cell growth, proliferation, and inflammation. Ectopic overexpression of miR-449a using a mimic completely attenuated the protective effect of uPA in the H/R model in vitro. These results provide a group of miRNAs that could be used as markers, and the modulation of these miRNAs might have potential therapeutic benefits in patients with APE, which need to be validated in additional studies in humans.
Collapse
Affiliation(s)
- Ran Zhu
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Wei-yi Qi
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Ting-wei Liu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fan Liu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Fan Liu,
| |
Collapse
|
6
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
7
|
Andrade L, Albuquerque A, Santos-Costa A, Vasconcelos D, Savino W, Sartori GR, Martins Da Silva JH. Investigation of Unprecedented Sites and Proposition of New Ligands for Programmed Cell Death Protein I through Molecular Dynamics with Probes and Virtual Screening. J Chem Inf Model 2022; 62:1236-1248. [PMID: 35202544 DOI: 10.1021/acs.jcim.1c01122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy has attracted increasing attention over the last few years. Programmed cell death protein 1 (PD-1) promotes self-tolerance and inhibits immune responses by modulating the T-cell function. The interaction between PD-1 and programmed cell death ligand-1 (PD-L1) leads to immune exhaustion, protecting cancer cells from destruction. Here, we computationally designed a novel ligand named 1508 that binds to an unprecedented PD-1 cavity identified by MixMD and defined by amino acid residues Lys78 to Val97. We showed through a set of MD simulations totaling 12.5 μs that ligand 1508 establishes frequent cation-π and hydrogen bonding interactions with amino acid residues Lys78 and Arg86, respectively, and stabilizes the PD-1 C'D loop in a conformation that does not favor PD-1-PD-L1 complex formation. This study highlights the power of MixMD in exposing new cavities prone to protein-protein complex inhibition and establishes the basis for the design of new molecules that target the PD-1 C'D cavity as an alternative for exploring the modulation of the PD-1-PD-L1 complex in cancer therapy.
Collapse
Affiliation(s)
- Luca Andrade
- Programa de Pós-graduação em Biotecnologia de Recursos Naturais, Universidade Federal do Ceará, 60020-181 Fortaleza, Brazil.,Grupo para Modelagem, Simulação e Evolução, in Silico, de Biomoléculas, Fiocruz-Ceará, 61760-000 Eusébio, Brazil
| | - Aline Albuquerque
- Programa de Pós-graduação em Biotecnologia de Recursos Naturais, Universidade Federal do Ceará, 60020-181 Fortaleza, Brazil.,Grupo para Modelagem, Simulação e Evolução, in Silico, de Biomoléculas, Fiocruz-Ceará, 61760-000 Eusébio, Brazil
| | - Andrielly Santos-Costa
- Programa de Pós-graduação em Biotecnologia de Recursos Naturais, Universidade Federal do Ceará, 60020-181 Fortaleza, Brazil.,Grupo para Modelagem, Simulação e Evolução, in Silico, de Biomoléculas, Fiocruz-Ceará, 61760-000 Eusébio, Brazil
| | - Disraeli Vasconcelos
- Programa de Pós-graduação em Biotecnologia de Recursos Naturais, Universidade Federal do Ceará, 60020-181 Fortaleza, Brazil.,Grupo para Modelagem, Simulação e Evolução, in Silico, de Biomoléculas, Fiocruz-Ceará, 61760-000 Eusébio, Brazil
| | - Wilson Savino
- Laboratório de Pesquisas Sobre o Timo, IOC, 21040-900 Rio de Janeiro, Brazil
| | - Geraldo Rodrigues Sartori
- Grupo para Modelagem, Simulação e Evolução, in Silico, de Biomoléculas, Fiocruz-Ceará, 61760-000 Eusébio, Brazil
| | | |
Collapse
|
8
|
Therapeutic Strategies Targeting Urokinase and Its Receptor in Cancer. Cancers (Basel) 2022; 14:cancers14030498. [PMID: 35158766 PMCID: PMC8833673 DOI: 10.3390/cancers14030498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies have ascertained that uPA and uPAR do participate in tumor progression and metastasis and are involved in cell adhesion, migration, invasion and survival, as well as angiogenesis. Increased levels of uPA and uPAR in tumor tissues, stroma and biological fluids correlate with adverse clinic-pathologic features and poor patient outcomes. After binding to uPAR, uPA activates plasminogen to plasmin, a broad-spectrum matrix- and fibrin-degrading enzyme able to facilitate tumor cell invasion and dissemination to distant sites. Moreover, uPAR activated by uPA regulates most cancer cell activities by interacting with a broad range of cell membrane receptors. These findings make uPA and uPAR not only promising diagnostic and prognostic markers but also attractive targets for developing anticancer therapies. In this review, we debate the uPA/uPAR structure-function relationship as well as give an update on the molecules that interfere with or inhibit uPA/uPAR functions. Additionally, the possible clinical development of these compounds is discussed.
Collapse
|
9
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22084111. [PMID: 33923400 PMCID: PMC8073738 DOI: 10.3390/ijms22084111] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Proteolysis is a key event in several biological processes; proteolysis must be tightly controlled because its improper activation leads to dramatic consequences. Deregulation of proteolytic activity characterizes many pathological conditions, including cancer. The plasminogen activation (PA) system plays a key role in cancer; it includes the serine-protease urokinase-type plasminogen activator (uPA). uPA binds to a specific cellular receptor (uPAR), which concentrates proteolytic activity at the cell surface, thus supporting cell migration. However, a large body of evidence clearly showed uPAR involvement in the biology of cancer cell independently of the proteolytic activity of its ligand. In this review we will first describe this multifunctional molecule and then we will discuss how uPAR can sustain most of cancer hallmarks, which represent the biological capabilities acquired during the multistep cancer development. Finally, we will illustrate the main data available in the literature on uPAR as a cancer biomarker and a molecular target in anti-cancer therapy.
Collapse
|