1
|
Pérez-Ramos P, Gabasa Y, Cornielle E, Rodríguez-Solla H, Soto SM, Soengas RG. In the search for new gold metalloantibiotics: In vitro evaluation of Au(III) (C^S)-cyclometallated complexes. J Inorg Biochem 2025; 262:112735. [PMID: 39278055 DOI: 10.1016/j.jinorgbio.2024.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
A series of (C^S)-cyclometallated Au(III) cationic complexes of general formula [Au(dppta)(dtc)]+, [Au(dppta)(azmtd)]+ and [Au(dppta)(azc)Cl]+ (dppta = N,N-diisopropyl-P,P-diphenylphosphinothioic amide-κ2C,S; dtc = dithiocarbamate-κ2S,S'; azc = azolium-2-dithiocarboxylate-κ1S; azmdt = azol(in)ium-2-(methoxy)methanedithiol-κ2S,S') were synthetized and tested against a panel of bacterial strains belonging to different Gram-positive and Gram-negative species of the ESKAPE group of pathogens. Among the tested compounds, complex 4c had the higher Therapeutic Index (TI) against multidrug resistant strains of S. aureus, S. epidermidis and A. baumannii, showing a more favourable cytotoxicity profile than the reference gold metalloantibiotic Auranofin. © 2024 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.
Collapse
Affiliation(s)
- Paula Pérez-Ramos
- Department of Organic and Inorganic Chemistry, University of Oviedo, Instituto Universitario de Química Organometálica Enrique Moles, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Enmanuel Cornielle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Humberto Rodríguez-Solla
- Department of Organic and Inorganic Chemistry, University of Oviedo, Instituto Universitario de Química Organometálica Enrique Moles, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Sara M Soto
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Raquel G Soengas
- Department of Organic and Inorganic Chemistry, University of Oviedo, Instituto Universitario de Química Organometálica Enrique Moles, C/ Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
2
|
Johnson SS, Liu D, Ewald JT, Robles-Planells C, Pulliam C, Christensen KA, Bayanbold K, Wels BR, Solst SR, O’Dorisio MS, Menda Y, Spitz DR, Fath MA. Auranofin inhibition of thioredoxin reductase sensitizes lung neuroendocrine tumor cells (NETs) and small cell lung cancer (SCLC) cells to sorafenib as well as inhibiting SCLC xenograft growth. Cancer Biol Ther 2024; 25:2382524. [PMID: 39054566 PMCID: PMC11275529 DOI: 10.1080/15384047.2024.2382524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Thioredoxin Reductase (TrxR) functions to recycle thioredoxin (Trx) during hydroperoxide metabolism mediated by peroxiredoxins and is currently being targeted using the FDA-approved anti-rheumatic drug, auranofin (AF), to selectively sensitize cancer cells to therapy. AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the H727 atypical lung carcinoid cell line. AF treatment also significantly sensitized DMS273 and H727 cell lines in vitro to sorafenib, an FDA-approved multi-kinase inhibitor that depleted intracellular glutathione (GSH). The pharmacokinetic, pharmacodynamic, and safety profile of AF was examined in nude mice with DMS273 xenografts administered AF intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1-5 d. Plasma levels of AF were 10-20 μM (determined by mass spectrometry of gold), and the optimal inhibition of TrxR activity was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. This AF treatment extended for 14 d, inhibited TrxR (>75%), and resulted in a significant prolongation of median overall survival from 19 to 23 d (p = .04, N = 30 controls, 28 AF). In this experiment, there were no observed changes in animal bodyweight, complete blood counts (CBCs), bone marrow toxicity, blood urea nitrogen, or creatinine. These results support the hypothesis that AF effectively inhibits TrxR both in vitro and in vivo in SCLC, sensitizes NETs and SCLC to sorafenib, and could be repurposed as an adjuvant therapy with targeted agents that induce disruptions in thiol metabolism.
Collapse
Affiliation(s)
- Spenser S. Johnson
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Dijie Liu
- Department Pediatrics, University of Iowa Hospitals and Clinics, IA, USA
| | - Jordan T. Ewald
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | | | - Casey Pulliam
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Keegan A. Christensen
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Khaliunaa Bayanbold
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Brian R. Wels
- State Hygienic Laboratory, University of Iowa, IA, USA
| | - Shane R. Solst
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - M. Sue O’Dorisio
- Department Pediatrics, University of Iowa Hospitals and Clinics, IA, USA
| | - Yusuf Menda
- Department of Radiology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, IA, USA
| | - Douglas R. Spitz
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Melissa A. Fath
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| |
Collapse
|
3
|
Vitali V, Massai L, Messori L. Strategies for the design of analogs of auranofin endowed with anticancer potential. Expert Opin Drug Discov 2024; 19:855-867. [PMID: 38803122 DOI: 10.1080/17460441.2024.2355329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug. AREAS COVERED This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed. EXPERT OPINION The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.
Collapse
Affiliation(s)
- Valentina Vitali
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Lara Massai
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Ferrando R, Mitchell SG, Atrián-Blasco E, Cerrada E. Antibacterial properties of phosphine gold(I) complexes with 5-fluorouracil. Dalton Trans 2023. [PMID: 37448318 DOI: 10.1039/d3dt01159c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
New gold(I) complexes with coordination to 5-fluorouracil (5-FU), an anticancer drug with antibacterial properties, have been synthesised and characterised, and are the first reported examples of 5-FU-Au compounds. These new complexes show high solution stability, even in the presence of a cysteine derivative, and so were evaluated as antibacterial compounds against model Gram-positive and Gram-negative bacteria. All the complexes show excellent antibacterial activity against Gram-positive B. subtilis, most of them improving the activity of 5-FU alone. Furthermore, these new complexes are also active against Gram-negative E. coli, where [Au(5-FU)(PTA)], the complex with the smallest phosphane, is the most bactericidal, 32 times more active than 5-FU on its own.
Collapse
Affiliation(s)
- Ricardo Ferrando
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Scott G Mitchell
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Atrián-Blasco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
| |
Collapse
|
5
|
Aragoni MC, Podda E, Caria V, Carta SA, Cherchi MF, Lippolis V, Murgia S, Orrù G, Pippia G, Scano A, Slawin AMZ, Woollins JD, Pintus A, Arca M. [Au III(N^N)Br 2](PF 6): A Class of Antibacterial and Antibiofilm Complexes (N^N = 2,2'-Bipyridine and 1,10-Phenanthroline Derivatives). Inorg Chem 2023; 62:2924-2933. [PMID: 36728360 PMCID: PMC9930124 DOI: 10.1021/acs.inorgchem.2c04410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of new complexes of general formula [AuIII(N^N)Br2](PF6) (N^N = 2,2'-bipyridine and 1,10-phenanthroline derivatives) were prepared and characterized by spectroscopic, electrochemical, and diffractometric techniques and tested against Gram-positive and Gram-negative bacterial strains (Staphylococcus aureus, Streptococcus intermedius, Pseudomonas aeruginosa, and Escherichia coli), showing promising antibacterial and antibiofilm properties.
Collapse
Affiliation(s)
- M. Carla Aragoni
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Enrico Podda
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy,Centro
Servizi di Ateneo per la Ricerca (CeSAR), Università degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Veronica Caria
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Silvia A. Carta
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - M. Francesca Cherchi
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Vito Lippolis
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Simone Murgia
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Germano Orrù
- Dipartimento
di Scienze Chirurgiche, University of Cagliari, Cagliari09042, Italy
| | - Gabriele Pippia
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy
| | - Alessandra Scano
- Dipartimento
di Scienze Chirurgiche, University of Cagliari, Cagliari09042, Italy
| | - Alexandra M. Z. Slawin
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, Fife, St. AndrewsKY16 9ST, U.K.
| | - J. Derek Woollins
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, Fife, St. AndrewsKY16 9ST, U.K.,Department
of Chemistry, Khalifa University, Abu Dhabi127788, United Arab Emirates
| | - Anna Pintus
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy,
| | - Massimiliano Arca
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S. S. 554 bivio per Sestu, Monserrato Cagliari09042, Italy,
| |
Collapse
|
6
|
Chen X, Sun S, Huang S, Yang H, Ye Q, Lv L, Liang Y, Shan J, Xu J, Liu W, Ma T. Gold(I) selenium N-heterocyclic carbene complexes as potent antibacterial agents against multidrug-resistant gram-negative bacteria via inhibiting thioredoxin reductase. Redox Biol 2023; 60:102621. [PMID: 36758467 PMCID: PMC9939723 DOI: 10.1016/j.redox.2023.102621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria have become a global threat to human life and health, and novel antibiotics are urgently needed. The thioredoxin (Trx) system can be used as an antibacterial target to combat MDR bacteria. Here, we found that two active gold(I) selenium N-heterocyclic carbene complexes H7 and H8 show more promising antibacterial effects against MDR bacteria than auranofin. Both H7 and H8 irreversibly inhibit the bacterial TrxR activity via targeting the redox-active motif, abolishing the capacity of TrxR to quench reactive oxygen species (ROS) and finally leading to oxidative stress. The increased cellular superoxide radical levels impact a variety of functions necessary for bacterial survival, such as cellular redox balance, cell membrane integrity, amino acid metabolism, and lipid peroxidation. In vivo data present much better antibacterial activity of H7 and H8 than auranofin, promoting the wound healing and prolonging the survival time of Carbapenem-resistant Acinetobacter baumannii (CRAB) induced peritonitis. Most notably in this study, we revealed the influence of gold(I) complexes on both the Trx system and the cellular metabolic states to better understand their killing mechanism and to support further antibacterial drug design.
Collapse
Affiliation(s)
- Xiuli Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Sheng Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Han Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qing Ye
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Lv
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanshan Liang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| | - Wukun Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Wolfram A, Fuentes-Soriano P, Herold-Mende C, Romero-Nieto C. Boron- and phosphorus-containing molecular/nano platforms: exploiting pathological redox imbalance to fight cancer. NANOSCALE 2022; 14:17500-17513. [PMID: 36326151 DOI: 10.1039/d2nr03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer is currently the second leading cause of death globally. Despite multidisciplinary efforts, therapies to fight various types of cancer still remain inefficient. Reducing high recurrence rates and mortality is thus a major challenge to tackle. In this context, redox imbalance is an undervalued characteristic of cancer. However, it may be targeted by boron- and phosphorus-containing materials to selectively or systemically fight cancer. In particular, boron and phosphorus derivatives are attractive building blocks for rational drug discovery due to their unique and wide regioselective chemistry, high degree of tuneability and chemical stability. Thus, they can be meticulously employed to access tunable molecular platforms to selectively exploit the redox imbalance of cancer cells towards necrosis/apoptosis. This field of research holds a remarkable potential; nevertheless, it is still in its infancy. In this mini-review, we underline recent advances in the development of boron- or phosphorus-derivatives as molecular/nano platforms for rational anticancer drug design. Our goal is to provide comprehensive information on different methodologies that bear an outstanding potential to further develop this very promising field of research.
Collapse
Affiliation(s)
- Anna Wolfram
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Pablo Fuentes-Soriano
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Carlos Romero-Nieto
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Gascón E, Otal I, Maisanaba S, Llana-Ruiz-Cabello M, Valero E, Repetto G, Jones PG, Oriol L, Jiménez J. Gold(I) metallocyclophosphazenes with antibacterial potency and antitumor efficacy. Synergistic antibacterial action of a heterometallic gold and silver-cyclophosphazene. Dalton Trans 2022; 51:13657-13674. [PMID: 36040292 DOI: 10.1039/d2dt01963a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most important uses of phosphazenes today involves its biomedical applications. They can also be employed as scaffolds for the design and construction of a variety of ligands in order to coordinate them to metallic drugs. The coordination chemistry of the (amino)cyclotriphosphazene ligand, [N3P3(NHCy)6], towards gold(I) complexes has been studied. Neutral complexes, [N3P3(NHCy)6{AuX}n] (X = Cl or C6F5; n = 1 or 2) (1-4), cationic complexes, [N3P3(NHCy)6{Au(PR3)}n](NO3)n (PR3 = PPh3, PPh2Me, TPA; n = 1, 2 or 3) (6-12) [TPA = 1,3,5-triaza-7-phosphaadamantane] and a heterometallic compound [N3P3(NHCy)6{Au(PPh3)}2{Ag(PPh3)}](NO3)3 (13) have been obtained and characterized by various methods including single-crystal X-ray diffraction for 7, which confirms the coordination of gold atoms to the nitrogens of the phosphazene ring. Compounds 1, 4, 6-13 were screened for in vitro cytotoxic activity against two tumor human cell lines, MCF7 (breast adenocarcinoma) and HepG2 (hepatocellular carcinoma), and for antimicrobial activity against five bacterial species including Gram-positive, Gram-negative, and Mycobacteria. Both the median inhibitory concentration (IC50) and minimum inhibitory concentration (MIC) values are among the lowest found for any gold or silver derivatives against the cell lines and particularly against the Gram-positive (S. aureus) strain and the mycobacteria used in this work. Structure-activity relationships are discussed in order to determine the influence of ancillary ligands and the number and type of metal atoms (silver or gold). Compounds 4 and 8 showed not only maximal potency on human cells but also some tumour selectivity. Remarkably, compound 13, with both gold and silver atoms, showed outstanding activity against both Gram-positive and Gram-negative strains (nanomolar range), thus having a cooperative effect between gold and silver, with MIC values which are similar or lower than those of gentamicine, ciprofloxacin and rifampicine. The broad spectrum antimicrobial efficacy of all these metallophosphazenes and particularly of heterometallic compound 13 could be very useful to obtain materials for surfaces with antimicrobial properties that are increasingly in demand.
Collapse
Affiliation(s)
- Elena Gascón
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Sara Maisanaba
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - María Llana-Ruiz-Cabello
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área Nutrición y Bromatología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Peter G Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106, Braunschweig, Germany
| | - Luis Oriol
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón-Facultad de Ciencias, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Josefina Jiménez
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
9
|
Aires RL, Santos IA, Fontes JV, Bergamini FRG, Jardim ACG, Abbehausen C. Triphenylphosphine gold(I) derivatives promote antiviral effects against the Chikungunya virus. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6650674. [PMID: 35894863 DOI: 10.1093/mtomcs/mfac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022]
Abstract
Herein a systematic series of four [AuLL']n+ n = 0, +1 complexes, where L = 1,3-bis(mesityl)imidazole-2-ylidene (IMes), or triphenylphosphine (PPh3), and L' = chloride, or 4-dimethylaminopyridine (DMAP), had their in vitro antiviral activity assessed against Chikungunya virus (CHIKV). The PPh3 derivatives inhibited viral replication by 99%, whereas the IMes derivatives about 50%. The lipophilicity of the PPh3 derivatives is higher than the IMes-bearing compounds, which can be related to their more prominent antiviral activities. The dissociation of DMAP is faster than chloride in solution for both IMes and PPh3 derivatives; however, it does not significantly affect their in vitro activities, showing a higher dependence on the nature of L rather than L' towards their antiviral effects. All complexes bind to N-acetyl-L-cysteine, with the Ph3P-bearing complexes coordinating at a faster rate to this amino acid. The binding constants to bovine serum albumin (BSA) are in the order of 104, slightly higher for the DMAP complexes in both PPh3 and IMes derivatives. Mechanistic investigations of the PPh3 complexes showed a ubiquitous protective effect of the compounds in the pre-treatment, early stages, and post-entry assays. The most significant inhibition was observed in post-entry activity, in which the complexes blocked viral replication in 99%, followed by up to 95% inhibition of the early stages of infection. Pre-treatment assays showed a 92% and 80% replication decrease for the chloride and DMAP derivatives, respectively. dsRNA binding assays showed a significant interaction of the compounds with dsRNA, an essential biomolecule to viral replication.
Collapse
Affiliation(s)
- Rochanna L Aires
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas-SP, 13083-871, Brazil
| | - Igor A Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas-SP, 13083-871, Brazil
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia, MG 38408-100, Brazil.,Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ana Carolina G Jardim
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil.,Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas-SP, 13083-871, Brazil
| |
Collapse
|
10
|
Sulfonamide-Derived Dithiocarbamate Gold(I) Complexes Induce the Apoptosis of Colon Cancer Cells by the Activation of Caspase 3 and Redox Imbalance. Biomedicines 2022; 10:biomedicines10061437. [PMID: 35740458 PMCID: PMC9221018 DOI: 10.3390/biomedicines10061437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
Two new families of dithiocarbamate gold(I) complexes derived from benzenesulfonamide with phosphine or carbene as ancillary ligands have been synthesized and characterized. In the screening of their in vitro activity on human colon carcinoma cells (Caco-2), we found that the more lipophilic complexes—those with the phosphine PPh3—exhibited the highest anticancer activity whilst also displaying significant cancer cell selectivity. [Au(S2CNHSO2C6H5)(PPh3)] (1) and [Au(S2CNHSO2-p-Me-C6H4)(IMePropargyl)] (8) produce cell death, probably by intrinsic apoptosis (mitochondrial membrane potential modification) and caspase 3 activation, causing cell cycle arrest in the G1 phase with p53 activation. Besides this, both complexes might act as multi-target anticancer drugs, as they inhibit the activity of the enzymes thioredoxin reductase (TrxR) and carbonic anhydrase (CA IX) with the alteration of the redox balance, and show a pro-oxidant effect.
Collapse
|
11
|
Scattolin T, Lippmann P, Beliš M, Van Hecke K, Ottb I, Nolan SP. A simple synthetic entryway into (N‐heterocyclic carbene)gold‐steroidyl complexes and their anticancer activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Braunschweig Germany
| | - Marek Beliš
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| | - Ingo Ottb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Braunschweig Germany
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Ghent Belgium
| |
Collapse
|
12
|
Chakraborty P, Oosterhuis D, Bonsignore R, Casini A, Olinga P, Scheffers D. An Organogold Compound as Potential Antimicrobial Agent against Drug-Resistant Bacteria: Initial Mechanistic Insights. ChemMedChem 2021; 16:3060-3070. [PMID: 34181818 PMCID: PMC8518660 DOI: 10.1002/cmdc.202100342] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/07/2023]
Abstract
The rise of antimicrobial resistance has necessitated novel strategies to efficiently combat pathogenic bacteria. Metal-based compounds have been proven as a possible alternative to classical organic drugs. Here, we have assessed the antibacterial activity of seven gold complexes of different families. One compound, a cyclometalated Au(III) C^N complex, showed activity against Gram-positive bacteria, including multi-drug resistant clinical strains. The mechanism of action of this compound was studied in Bacillus subtilis. Overall, the studies point towards a complex mode of antibacterial action, which does not include induction of oxidative stress or cell membrane damage. A number of genes related to metal transport and homeostasis were upregulated upon short treatment of the cells with gold compound. Toxicity tests conducted on precision-cut mouse tissue slices ex vivo revealed that the organogold compound is poorly toxic to mouse liver and kidney tissues, and may thus, be treated as an antibacterial drug candidate.
Collapse
Affiliation(s)
- Parichita Chakraborty
- Department of Molecular MicrobiologyGroningen Institute for Biomolecular Sciences and BiotechnologyUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyGroningen Research Institute of PharmacyUniversity of Groningen9713AVGroningenThe Netherlands
| | - Riccardo Bonsignore
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyGroningen Research Institute of PharmacyUniversity of Groningen9713AVGroningenThe Netherlands
| | - Dirk‐Jan Scheffers
- Department of Molecular MicrobiologyGroningen Institute for Biomolecular Sciences and BiotechnologyUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
13
|
Gründlinger P, Mardare CC, Wagner T, Monkowius U. A trigonal coordination of Au(I) phosphane complexes stabilized by O-H ⋯ X (X = Cl -, Br -, I -) interactions. MONATSHEFTE FUR CHEMIE 2021; 152:1201-1207. [PMID: 34720196 PMCID: PMC8550744 DOI: 10.1007/s00706-021-02843-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 11/01/2022]
Abstract
In this work, we show that intramolecular hydrogen bonding can be used to stabilize tri-coordinated phosphane-gold(I) complexes. Two molecular structures of 2-(diphenylphosphino)benzoic acid (L) coordinated to a gold(I) atom were determined by single-crystal X-ray diffraction. The linear L-Au-Br shows a standard linear coordination and dimerizes via hydrogen bonds of the carboxylic acid. Upon addition of two additional phosphane ligands the complex [L3Au]X is formed which is stabilized by three intramolecular -C(O)O-H … X hydrogen bonds as proven by the X-ray structure of the respective chlorido-complex. X-ray powder diffractograms suggest the same structure also for X- = Br- and I-. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00706-021-02843-2.
Collapse
Affiliation(s)
- Petra Gründlinger
- Institute of Experimental Physics–Surface Science Division, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Cezarina Cela Mardare
- Institute of Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
- Faculty of Medicine/Dental Medicine, Department of Physics and Chemistry of Materials, Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Thorsten Wagner
- Institute of Experimental Physics–Surface Science Division, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
14
|
Sousa SA, Feliciano JR, Pita T, Soeiro CF, Mendes BL, Alves LG, Leitão JH. Bacterial Nosocomial Infections: Multidrug Resistance as a Trigger for the Development of Novel Antimicrobials. Antibiotics (Basel) 2021; 10:antibiotics10080942. [PMID: 34438992 PMCID: PMC8389044 DOI: 10.3390/antibiotics10080942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Nosocomial bacterial infections are associated with high morbidity and mortality, posing a huge burden to healthcare systems worldwide. The ongoing COVID-19 pandemic, with the raised hospitalization of patients and the increased use of antimicrobial agents, boosted the emergence of difficult-to-treat multidrug-resistant (MDR) bacteria in hospital settings. Therefore, current available antibiotic treatments often have limited or no efficacy against nosocomial bacterial infections, and novel therapeutic approaches need to be considered. In this review, we analyze current antibacterial alternatives under investigation, focusing on metal-based complexes, antimicrobial peptides, and antisense antimicrobial therapeutics. The association of new compounds with older, commercially available antibiotics and the repurposing of existing drugs are also revised in this work.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - Joana R. Feliciano
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago Pita
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Catarina F. Soeiro
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
| | - Beatriz L. Mendes
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Luis G. Alves
- Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, 1049-003 Lisboa, Portugal;
| | - Jorge H. Leitão
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
15
|
Kim JH, Ofori S, Parkin S, Vekaria H, Sullivan PG, Awuah SG. Anticancer gold(iii)-bisphosphine complex alters the mitochondrial electron transport chain to induce in vivo tumor inhibition. Chem Sci 2021; 12:7467-7479. [PMID: 34163837 PMCID: PMC8171344 DOI: 10.1039/d1sc01418h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023] Open
Abstract
Expanding the chemical diversity of metal complexes provides a robust platform to generate functional bioactive reagents. To access an excellent repository of metal-based compounds for probe/drug discovery, we capitalized on the rich chemistry of gold to create organometallic gold(iii) compounds by ligand tuning. We obtained novel organogold(iii) compounds bearing a 1,2-bis(diphenylphosphino)benzene ligand, providing structural diversity with optimal physiological stability. Biological evaluation of the lead compound AuPhos-89 demonstrates mitochondrial complex I-mediated alteration of the mitochondrial electron transport chain (ETC) to drive respiration and diminish cellular energy in the form of adenosine triphosphate (ATP). Mechanism-of-action efforts, RNA-Seq, quantitative proteomics, and NCI-60 screening reveal a highly potent anticancer agent that modulates mitochondrial ETC. AuPhos-89 inhibits the tumor growth of metastatic triple negative breast cancer and represents a new strategy to study the modulation of mitochondrial respiration for the treatment of aggressive cancer and other disease states where mitochondria play a pivotal role in the pathobiology.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky USA
- Department of Neuroscience, University of Kentucky USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky USA
- Department of Neuroscience, University of Kentucky USA
- Lexington Veterans' Affairs Healthcare System USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Lexington Kentucky 40536 USA
| |
Collapse
|
16
|
Safir Filho M, Scattolin T, Dao P, Tzouras NV, Benhida R, Saab M, Van Hecke K, Lippmann P, Martin AR, Ott I, Nolan SP. Straightforward synthetic route to gold(i)-thiolato glycoconjugate complexes bearing NHC ligands (NHC = N-heterocyclic carbene) and their promising anticancer activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj02117f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple and eco-friendly route to gold–NHC complexes bearing different thiosugars is reported.
Collapse
Affiliation(s)
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| | - Pascal Dao
- Institut de Chimie de Nice
- Université Côte d’Azur
- CNRS
- UMR7272
- Nice
| | - Nikolaos V. Tzouras
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| | - Rachid Benhida
- Institut de Chimie de Nice
- Université Côte d’Azur
- CNRS
- UMR7272
- Nice
| | - Marina Saab
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- Beethovenstr. 55
- Braunschweig
- Germany
| | | | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- Beethovenstr. 55
- Braunschweig
- Germany
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Krijgslaan 281 (S-3)
- Ghent
- Belgium
| |
Collapse
|