1
|
Padayachee T, Lamb DC, Nelson DR, Syed K. Structure-Function Analysis of the Essential Mycobacterium tuberculosis P450 Drug Target, CYP121A1. Int J Mol Sci 2024; 25:4886. [PMID: 38732102 PMCID: PMC11084333 DOI: 10.3390/ijms25094886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Cytochrome P450 CYP121A1 is a well-known drug target against Mycobacterium tuberculosis, the human pathogen that causes the deadly disease tuberculosis (TB). CYP121A1 is a unique P450 enzyme because it uses classical and non-classical P450 catalytic processes and has distinct structural features among P450s. However, a detailed investigation of CYP121A1 protein structures in terms of active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 53 CYP121A1 crystal structures were investigated in this study. Critical amino acids required for CYP121A1's overall activity were identified and highlighted this enzyme's rigid architecture and substrate selectivity. The CYP121A1-fluconazole crystal structure revealed a novel azole drug-P450 binding mode in which azole heme coordination was facilitated by a water molecule. Fragment-based inhibitor approaches revealed that CYP121A1 can be inhibited by molecules that block the substrate channel or by directly interacting with the P450 heme. This study serves as a reference for the precise understanding of CYP121A1 interactions with different ligands and the structure-function analysis of P450 enzymes in general. Our findings provide critical information for the synthesis of more specific CYP121A1 inhibitors and their development as novel anti-TB drugs.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Empangeni 3886, South Africa;
| | - David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, Empangeni 3886, South Africa;
| |
Collapse
|
2
|
Campomizzi CS, Uttamrao PP, Stallone JJ, Rathinavelan T, Estrada DF. Asparagine-85 Stabilizes a Structural Active Site Water Network in CYP121A1 of Mycobacterium tuberculosis. Biochemistry 2024; 63:711-722. [PMID: 38380587 DOI: 10.1021/acs.biochem.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The cytochrome P450 enzyme CYP121A1 endogenously catalyzes the formation of a carbon-carbon bond between the two phenol groups of dicyclotyrosine (cYY) in Mycobacterium tuberculosis (Mtb). One of 20 CYP enzymes in Mtb, CYP121A1 continues to garner significant interest as a potential drug target. The accompanying reports the use of 19F NMR spectroscopy, reconstituted activity assays, and molecular dynamics simulations to investigate the significance of hydrogen bonding interactions that were theorized to stabilize a static active site water network. The active site residue Asn-85, whose hydrogen bonds with the diketopiperazine ring of cYY contributes to a contiguous active site water network in the absence of cYY, was mutated to a serine (N85S) and to a glutamine (N85Q). These conservative changes in the hydrogen bond donor side chain result in inactivation of the enzyme. Moreover, the N85S mutation induces reverse type-I binding as measured by absorbance difference spectra. NMR spectra monitoring the ligand-adaptive FG-loop and the active site Trp-182 side chain confirm that disruption of the active site water network also significantly alters the structure of the active site. These data were consistent with dynamics simulations of N85S and N85Q that demonstrate that a compromised water network is responsible for remodeling of the active site B-helix and a repositioning of cYY toward the heme. These findings implicate a slowly exchanging water network as a critical factor in CYP121A1 function and a likely contributor to the unusual rigidity of the structure.
Collapse
Affiliation(s)
- Christopher S Campomizzi
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York 14203, United States
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Jack J Stallone
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York 14203, United States
| | - Thenmalarchelvi Rathinavelan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
3
|
Widodo WS, Billerbeck S. Natural and engineered cyclodipeptides: Biosynthesis, chemical diversity, and engineering strategies for diversification and high-yield bioproduction. ENGINEERING MICROBIOLOGY 2023; 3:100067. [PMID: 39628525 PMCID: PMC11610984 DOI: 10.1016/j.engmic.2022.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 12/06/2024]
Abstract
Cyclodipeptides are diverse chemical scaffolds that show a broad range of bioactivities relevant for medicine, agriculture, chemical catalysis, and material sciences. Cyclodipeptides can be synthesized enzymatically through two unrelated enzyme families, non-ribosomal peptide synthetases (NRPS) and cyclodipeptide synthases (CDPSs). The chemical diversity of cyclodipeptides is derived from the two amino acid side chains and the modification of those side-chains by cyclodipeptide tailoring enzymes. While a large spectrum of chemical diversity is already known today, additional chemical space - and as such potential new bioactivities - could be accessed by exploring yet undiscovered NRPS and CDPS gene clusters as well as via engineering. Further, to exploit cyclodipeptides for applications, the low yield of natural biosynthesis needs to be overcome. In this review we summarize current knowledge on NRPS and CDPS-based cyclodipeptide biosynthesis, engineering approaches to further diversity the natural chemical diversity as well as strategies for high-yield production of cyclodipeptides, including a discussion of how advancements in synthetic biology and metabolic engineering can accelerate the translational potential of cyclodipeptides.
Collapse
Affiliation(s)
- Wahyu Setia Widodo
- Department of Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Jasani M, Patel L. Design and synthesis of novel substituted pyrazole as small molecule inhibitor of Cytochrome P450 CYP121A1. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Alshabani LA, Kumar A, Willcocks SJ, Srithiran G, Bhakta S, Estrada DF, Simons C. Synthesis, biological evaluation and computational studies of pyrazole derivatives as Mycobacterium tuberculosis CYP121A1 inhibitors. RSC Med Chem 2022; 13:1350-1360. [PMID: 36426236 PMCID: PMC9667784 DOI: 10.1039/d2md00155a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 07/25/2023] Open
Abstract
A series of imidazole and triazole diarylpyrazole derivatives were prepared using an efficient 5-step synthetic scheme and evaluated for binding affinity with Mycobacterium tuberculosis (Mtb) CYP121A1 and antimycobacterial activity against Mtb H37Rv. Antimycobacterial susceptibility was measured using the spot-culture growth inhibition assay (SPOTi): the imidazoles displayed minimum inhibitory concentration (MIC90) in the range of 3.95-12.03 μg mL-1 (10.07-33.19 μM) with 11f the most active, while the triazoles displayed MIC90 in the range of 4.35-25.63 μg mL-1 (11.88-70.53 μM) with 12b the most active. Assessment of binding affinity using UV-vis spectroscopy showed that for the imidazole series, the propyloxy (11f) and isopropyloxy (11h) derivatives of the 4-chloroaryl pyrazoles displayed Mtb CYP121A1 type II binding affinity with K d 11.73 and 17.72 μM respectively compared with the natural substrate cYY (K d 12.28 μM), while in the triazole series, only the methoxy substitution with the 4-chloroaryl pyrazole (12b) showed good type II Mtb CYP121A1 binding affinity (K d 5.13 μM). Protein-detected 1D 19F-NMR spectroscopy as an orthogonal strategy was used to evaluate ligand binding independent of perturbations at the haem. For imidazole and triazole compounds, perturbations were more intense than cYY indicating tighter binding and confirming that ligand coordination occurs in the substrate-binding pocket despite very modest changes in UV-vis absorbance, consistent with computational studies and the demonstrated potential anti-tuberculosis properties of these compounds.
Collapse
Affiliation(s)
- Lama A Alshabani
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo Buffalo New York-14203 USA
| | - Sam J Willcocks
- Department of Infection Biology, The London School of Hygiene and Tropical Medicine London WC1E 7HT UK
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX UK
| | - Gayathri Srithiran
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London London WC1E 7HX UK
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo Buffalo New York-14203 USA
| | - Claire Simons
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| |
Collapse
|
6
|
Stalinskaya AL, Martynenko NV, Alkhimova LE, Dilbaryan DS, Vasilchenko AS, Dengis NA, Vlasenko VS, Kulakov IV. Synthesis and bacteriostatic properties of epoxybenzooxocino[4,3-b]pyridine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Bajrai LH, Khateb AM, Alawi MM, Felemban HR, Sindi AA, Dwivedi VD, Azhar EI. Glycosylated Flavonoid Compounds as Potent CYP121 Inhibitors of Mycobacterium tuberculosis. Biomolecules 2022; 12:1356. [PMID: 36291570 PMCID: PMC9599785 DOI: 10.3390/biom12101356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 07/30/2023] Open
Abstract
Due to the concerning rise in the number of multiple- and prolonged-drug-resistant (MDR and XDR) Mycobacterium tuberculosis (Mtb) strains, unprecedented demand has been created to design and develop novel therapeutic drugs with higher efficacy and safety. In this study, with a focused view on implementing an in silico drug design pipeline, a diverse set of glycosylated flavonoids were screened against the Mtb cytochrome-P450 enzyme 121 (CYP121), which is established as an approved drug target for the treatment of Mtb infection. A total of 148 glycosylated flavonoids were screened using structure-based virtual screening against the crystallized ligand, i.e., the L44 inhibitor, binding pocket in the Mtb CYP121 protein. Following this, only the top six compounds with the highest binding scores (kcal/mol) were considered for further intermolecular interaction and dynamic stability using 100 ns classical molecular dynamics simulation. These results suggested a considerable number of hydrogen and hydrophobic interactions and thermodynamic stability in comparison to the reference complex, i.e., the CYP121-L44 inhibitor. Furthermore, binding free energy via the MMGBSA method conducted on the last 10 ns interval of MD simulation trajectories revealed the substantial affinity of glycosylated compounds with Mtb CYP121 protein against reference complex. Notably, both the docked poses and residual energy decomposition via the MMGBSA method demonstrated the essential role of active residues in the interactions with glycosylated compounds by comparison with the reference complex. Collectively, this study demonstrates the viability of these screened glycosylated flavonoids as potential inhibitors of Mtb CYP121 for further experimental validation to develop a therapy for the treatment of drug-resistant Mtb strains.
Collapse
Affiliation(s)
- Leena Hussein Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Aiah M. Khateb
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| | - Maha M. Alawi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Infection Control & Environmental Health Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashim R. Felemban
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Anees A. Sindi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Bioinformatics Research Division, Quanta Calculus Pvt. Ltd., Greater Noida 201310, India
- Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|