1
|
Su Y, Chen L, Yang J. Network pharmacology and in vitro experiments reveal sophoridine-induced apoptosis and G 1 phase arrest via ROS-dependent PI3K/Akt/FoxO3a pathway activation in human bladder cancer cells. Chem Biol Drug Des 2024; 103:e14476. [PMID: 38346772 DOI: 10.1111/cbdd.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 02/15/2024]
Abstract
Bladder cancer (BLCA), a common primary malignancy, exhibits resistance to conventional chemotherapeutic agents. Sophoridine (SR) is a quinoline alkaloid derived from the traditional Chinese herb Sophora alopecuroides L., which belongs to the legume family Sophoraceae. SR is reported to exert growth-inhibitory effects against several cancers. However, the mechanisms underlying the growth-inhibitory effects of SR on BLCA have not been elucidated. This study performed molecular and cellular experiments to verify the growth-inhibitory effects of SR on BLCA and the underlying mechanisms. SR inhibited cell proliferation and promoted apoptosis and G1-phase arrest through the PI3K/AKT/FoxO3a signaling pathway. More interestingly, the effects of SR can be attributed to the accumulation of reactive oxygen species (ROS) in vivo. ROS may be the upstream factor of this pathway. Additionally, SR inhibited the migration and invasion of BLCA cells in a concentration-dependent or time-dependent manner. This is the first study to demonstrate the ROS-dependent PI3K/AKT/FoxO3a pathway-mediated anticancer effect of SR and the anticancer mechanism of SR in BLCA. The correlation between SR-induced ROS-dependent cell proliferation inhibition, apoptosis, cell cycle arrest, and PI3K/AKT/FoxO3a suggests that SR is a promising novel therapeutic for BLCA.
Collapse
Affiliation(s)
- Yao Su
- College of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Urology Surgery, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Jin Yang
- Department of Urology Surgery, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Dai L, Tan C, Wang H, Wang L, Zhang T, Zhi S, Yang Z, Zhao X, Li D. Exploring Derivatives of Quinolizidine Alkaloid Sophoridine in the Design and Biological Mechanistic Evaluation of Histone Deacetylase Inhibitors against Triple-Negative Breast Cancer. ChemMedChem 2024; 19:e202300467. [PMID: 38031642 DOI: 10.1002/cmdc.202300467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
As a critical epigenetic modulator of gene expression, histone deacetylases (HDACs) have been involved in the pathogenesis and therapeutic investigation of cancer. Quinolizidine alkaloid sophoridine is known to have anticancer efficacy but with limited indication. By incorporating the pharmacophore of the HDAC inhibitor into the ring-opened sophoridine core, a new series of sophoridine hydroxamic acid derivatives were synthesized. After structure-activity studies, a selected compound was found to exert significant cytotoxicity in triple-negative breast cancer CAL-51 cells (IC50 1.17 μM), and demonstrated low nanomolar inhibitory potency toward HDAC1/3/6. Cellular functional assays indicated that this compound was able to induce apoptosis and cause accumulation of cells in the S phase of the cell cycle. Western blot analysis revealed it to decrease the expression of DNMT1, DNMT3a and DNMT3b by down-regulating phosphor-ERK1/2. Furthermore, treatment with this compound proved to block the PI3K/AKT/mTOR signaling in the PI3KCA and PTEN-mutant CAL-51 cells. Collectively, this work provides a novel lead compound for the development of potential therapeutics against triple-negative breast cancers, possibly mesenchymal-like subtype.
Collapse
Affiliation(s)
- Linlin Dai
- Tianjin Institute of Medical & Pharmaceutical Sciences, 79 Duolun Road, Tianjin, 300020, China
| | - Cheng Tan
- Tianjin Institute of Medical & Pharmaceutical Sciences, 79 Duolun Road, Tianjin, 300020, China
| | - Hui Wang
- Tianjin Institute of Medical & Pharmaceutical Sciences, 79 Duolun Road, Tianjin, 300020, China
| | - Luyao Wang
- Tianjin Institute of Medical & Pharmaceutical Sciences, 79 Duolun Road, Tianjin, 300020, China
| | - Ting Zhang
- Tianjin Institute of Medical & Pharmaceutical Sciences, 79 Duolun Road, Tianjin, 300020, China
| | - Shuang Zhi
- Tianjin Institute of Medical & Pharmaceutical Sciences, 79 Duolun Road, Tianjin, 300020, China
| | - Zibo Yang
- Tianjin Institute of Medical & Pharmaceutical Sciences, 79 Duolun Road, Tianjin, 300020, China
| | - Xiumei Zhao
- Tianjin Institute of Medical & Pharmaceutical Sciences, 79 Duolun Road, Tianjin, 300020, China
| | - Dongdong Li
- Tianjin Institute of Medical & Pharmaceutical Sciences, 79 Duolun Road, Tianjin, 300020, China
| |
Collapse
|
3
|
Chen Y, Wang X, Ye D, Yang Z, Shen Q, Liu X, Chen C, Chen X. Research progress of sophoridine's pharmacological activities and its molecular mechanism: an updated review. Front Pharmacol 2023; 14:1126636. [PMID: 37397472 PMCID: PMC10311568 DOI: 10.3389/fphar.2023.1126636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Sophoridine, the major active constituent of Sophora alopecuroides and its roots, is a bioactive alkaloid with a wide range of pharmacological effects, including antitumor, anti-inflammatory, antiviral, antibacterial, analgesic, cardioprotective, and immunoprotective activities. Sophora flavescens Aiton is a traditional Chinese medicine that is bitter and cold. Additionally, it also exhibits the effects of clearing heat, eliminating dampness, and expelling insects. Aims of the study: To summarize the pharmacological research and associated mechanisms of sophoridine, we compiled this review by combining a huge body of relevant literature. Materials and methods: The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, PhD and MS dissertations. Results: Its antitumor activity is particularly remarkable, as it can inhibit cancer cell proliferation, invasion, and metastasis while inducing cell cycle arrest and apoptosis. Additionally, sophoridine also holds therapeutic potential for myocardial ischemia, osteoporosis, arrhythmias, and neurological disorders, primarily through the suppression of related inflammatory factors and cell apoptosis. However, sophoridine has also exhibited adverse effects such as hepatotoxicity and neurotoxicity. The antidisease effect and mechanism of sophoridine are diverse, so it has high research value. Conclusion: As an important traditional Chinese medicine alkaloid, modern pharmacological studies have demonstrated that sophoridine has prominent bioactivities, especially on anti-tumor anti-inflammation activities, and cardiovascular system protection. These activities provide prospects for novel drug development for cancer and some chronic diseases. Nevertheless, the understanding of the multitarget network pharmacology, long-term in vivo toxicity, and clinical efficacy of sophoridine require further detailed research.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiang Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongmei Ye
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Zhousheng Yang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Qingrong Shen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoxia Liu
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Chunxia Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| |
Collapse
|
4
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response. Pharmacol Res 2023; 189:106695. [PMID: 36780958 DOI: 10.1016/j.phrs.2023.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Autophagy is defined as a "self-digestion" signal, and it is a cell death mechanism its primary function is degrading toxic agents and aged organelles to ensure homeostasis in cells. The basic leve ls of autophagy are found in cells, and when its levels exceed to standard threshold, cell death induction is observed. Autophagy dysregulation in cancer has been well-documented, and regulation of this pathway by epigenetic factors, especially microRNAs (miRNAs), is interesting and noteworthy. miRNAs are considered short endogenous RNAs that do not encode functional proteins, and they are essential regulators of cell death pathways such as apoptosis, necroptosis, and autophagy. Accumulating data has revealed miRNA dysregulation (upregulation or downregulation) during tumor progression, and their therapeutic manipulation provides new insight into cancer therapy. miRNA/autophagy axis in human cancers has been investigated an exciting point is the dual function of both autophagy and miRNAs as oncogenic and onco-suppressor factors. The stimulation of pro-survival autophagy by miRNAs can increase the survival rate of tumor cells and mediates cancer metastasis via EMT inductionFurthermore, pro-death autophagy induction by miRNAs has a negative impact on the viability of tumor cells and decreases their survival rate. The miRNA/autophagy axis functions beyond regulating the growth and invasion of tumor cells, and they can also affect drug resistance and radio-resistance. These subjects are covered in the current review regarding the new updates provided by recent experiments.
Collapse
|
6
|
Li L, Yu J, Cheng S, Peng Z, Ben-David Y, Luo H. Transcription factor Fli-1 as a new target for antitumor drug development. Int J Biol Macromol 2022; 209:1155-1168. [PMID: 35447268 DOI: 10.1016/j.ijbiomac.2022.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
The transcription factor Friend leukemia virus integration 1 (Fli-1) belonging to the E26 Transformation-Specific (ETS) transcription factor family is not only expressed in normal cells such as hematopoietic stem cells and vascular endothelial cells, but also abnormally expressed in various malignant tumors including Ewing sarcoma, Merkel cell sarcoma, small cell lung carcinoma, benign or malignant hemangioma, squamous cell carcinoma, adenocarcinoma, bladder cancer, leukemia, and lymphoma. Fli-1 binds to the promoter or enhancer of the target genes and participates in a variety of physiological and pathological processes of tumor cells, including cell growth, proliferation, differentiation, and apoptosis. The expression of Fli-1 gene is related to the specific biological functions and characteristics of the tissue in which it is located. In tumor research, Fli-1 gene is used as a specific marker for the occurrence, metastasis, efficacy, and prognosis of tumors, thus, a potential new target for tumor diagnosis and treatment. These studies indicated that Fli-1 may be a specific candidate for antitumor drug development. Recent studies identified small molecules regulating Fli-1 thanks to our screened strategy of natural products and their derivatives. Therefore, in this review, the advanced research on Fli-1 as a target for antitumor drug development is analyzed in different cancers. The inhibitors and agonists of Fli-1 that regulate its expression are introduced and their clinical applications in the treatment of cancer, thus providing new therapeutic strategies.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; College of Pharmacy, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Zhilin Peng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China.
| |
Collapse
|
7
|
Lactotransferrin Downregulation Serves as a Potential Predictor for the Therapeutic Effectiveness of mTOR Inhibitors in the Metastatic Clear Cell Renal Cell Carcinoma without PTEN Mutation. Biomedicines 2021; 9:biomedicines9121896. [PMID: 34944711 PMCID: PMC8698394 DOI: 10.3390/biomedicines9121896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Approximately 30% of clear cell renal cell carcinoma (ccRCC) patients develop metastatic spread at the first diagnosis. Therefore, identifying a useful biomarker to predict ccRCC metastasis or therapeutic effectiveness in ccRCC patients is urgently needed. Previously, we demonstrated that lactotransferrin (LTF) downregulation enhanced the metastatic potential of ccRCC. Here, we show that LTF expression conversely associates with the mTORC1 activity as simulated by gene set enrichment analysis (GSEA). Moreover, Western blot analyses revealed that the LTF knockdown promoted, but the inclusion of recombinant human LTF protein suppressed, the phosphorylation of Akt/mTOR proteins in the detected ccRCC cells. Kaplan–Meier analyses demonstrated that the signature of combining an upregulated mTORC1 activity with a downregulated LTF expression referred to a worse overall and progression-free survival probabilities and associated with distant cancer metastasis in TCGA ccRCC patients. Furthermore, we found that the LTF-suppressed Akt/mTOR activation triggered an increased formation of autophagy in the highly metastatic ccRCC cells. The addition of autophagy inhibitor 3-methyadenine restored the LTF-suppressed cellular migration ability of highly metastatic ccRCC cells. Receiver operating characteristic (ROC) analyses showed that the expression of the LTF and MTORC1 gene set, not the autophagy gene set, could be the useful biomarkers to predict 5-year overall survival rate and cancer progression in ccRCC patients. Significantly, the signature of combining mTORC1 upregulation and LTF downregulation was shown as an independent prognostic factor in a multivariate analysis under the progression-free survival condition using the TCGA ccRCC database. Finally, the treatment with mTOR inhibitor rapamycin predominantly reduced the formation of autophagy and ultimately mitigated the cellular migration ability of ccRCC cells with LTF knockdown. Our findings suggest that LTF downregulation is a biomarker for guiding the use of mTOR inhibitors to combat metastatic ccRCC in the clinic.
Collapse
|