1
|
Patel VC, Patel AJ, Patel DS, Dholakia AB, Ansari SA, Agrawal M. Unveiling the antibacterial efficacy of thiazolo [3,2-a] pyrimidine: Synthesis, molecular docking, and molecular dynamic simulation. J Biochem Mol Toxicol 2024; 38:e23822. [PMID: 39215758 DOI: 10.1002/jbt.23822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Two series of C-Mannich base derivatives were synthesized and evaluated through the reaction of formaldehyde, two thiazolo-pyrimidine compounds, and various 2°-amines. The chemical structures and inherent properties of the synthesized compounds were authenticated using a variety of spectroscopic techniques. The aseptic bactericidal potential of the compounds was assessed alongside five common bacterial microbes, with Ampicillin employed as the reference drug. Compounds 9b and 9d demonstrated comparable antibacterial activity to ampicillin against Bacillus subtilis and Bacillus megaterium, respectively, at 100 μg/mL. Furthermore, compounds 9f and 10f exhibited noteworthy action against Staphylococcus aureus (MIC: 250 μg/mL). Compounds 10b and 10f displayed excellent efficacy versus Escherichia coli, boasting (MIC: 50 μg/mL). Molecular docking studies elucidated the necessary connections and energies of molecular entities with the E. coli DNA gyrase B enzyme, a pivotal target in bacterial DNA replication. Further thermodynamic stability of the ligand-receptor complex of 10b and 10f were further validated though 200 ns molecular dynamics simulation. The findings highlight the potential of these synthesized derivatives as effective antibacterial agents and provide valuable insights into their mechanism of action.
Collapse
Affiliation(s)
- Vishant C Patel
- Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, India
| | - Ankit J Patel
- Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, India
| | - Darshan S Patel
- Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, India
| | - Amit B Dholakia
- Department of Chemistry, Birsa Munda Tribal University, Rajpipda, India
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, India
| |
Collapse
|
2
|
Mutahir S, Khan MA, Mushtaq M, Deng H, Naglah AM, Almehizia AA, Al-Omar MA, Alrayes FI, Kalmouch A, El-Mowafi SA, Refat MS. Investigations of Electronic, Structural, and In Silico Anticancer Potential of Persuasive Phytoestrogenic Isoflavene-Based Mannich Bases. Molecules 2023; 28:5911. [PMID: 37570881 PMCID: PMC10421429 DOI: 10.3390/molecules28155911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Isoflavenes have received the greatest research attention among the many groups of phytoestrogens. In this study, various isoflavene-based Mannich bases were selected for their theoretical studies. The purpose of this research was to discover the binding potential of all the designated Mannich bases acting as inhibitors against cancerous proteins EGFR, cMet, hTrkA, and HER2 (PDB codes: 5GTY, 3RHK, 6PL2, and 7JXH, respectively). For their virtual screening, DFT calculations and molecular docking studies were undertaken using in silico software. Docking studies predicted that ligands 5 and 15 exhibited the highest docking score by forming hydrogen bonds within the active pocket of protein 6PL2, ligands 1 and 15 both with protein 3RHK, and 7JXH, 12, and 17 with protein 5GTY. Rendering to the trends in polarizability and dipole moment, the energy gap values (0.2175 eV, 0.2106 eV) for the firm conformers of Mannich bases (1 and 4) replicate the increase in bioactivity and chemical reactivity. The energy gap values (0.2214 eV and 0.2172 eV) of benzoxazine-substituted isoflavene-based Mannich bases (9 and 10) reflect the increase in chemical potential due to the most stable conformational arrangements. The energy gap values (0.2188 eV and 0.2181 eV) of isoflavenes with tertiary amine-based Mannich bases (14 and 17) reflect the increase in chemical reactivity and bioactivity due to the most stable conformational arrangements. ADME was also employed to explore the pharmacokinetic properties of targeted moieties. This study revealed that these ligands have a strong potential to be used as drugs for cancer treatment.
Collapse
Affiliation(s)
- Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Muhammad Asim Khan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Maryam Mushtaq
- Department of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Haishan Deng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faris Ibrahim Alrayes
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Atef Kalmouch
- Peptide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Shaima A. El-Mowafi
- Peptide Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Moamen S. Refat
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
3
|
Csuvik O, Szatmári I. Synthesis of Bioactive Aminomethylated 8-Hydroxyquinolines via the Modified Mannich Reaction. Int J Mol Sci 2023; 24:ijms24097915. [PMID: 37175622 PMCID: PMC10177806 DOI: 10.3390/ijms24097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.
Collapse
Affiliation(s)
- Oszkár Csuvik
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Yaccoubi F, El-Naggar M, Abdelrazek FM, Gomha SM, Farghaly MS, Abolibda TZ, Ali LA, Abdelmonsef AH. Pyrido-pyrimido-thiadiazinones: green synthesis, molecular docking studies and biological investigation as obesity inhibitors. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2159210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ferid Yaccoubi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Organique Structurale LR99ES14, Campus Universitaire, 2092 Tunis, Tunisia
- Department of Chemistry, Faculty of Science and Humanity Studies at Al Quwayiyah, Shaqra University, Al-Quwayiyah 19245, Saudi Arabia
| | - Mohamed El-Naggar
- Depatement of Chemistry, Pure and Applied Chemistry Group, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE
- National Institute of Oceanography and Fisheries, kayet Bay, Alexandria, Egypt
| | - Fathy M. Abdelrazek
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Mohamed S. Farghaly
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Science & Technology Center of Excellence, Ministry of Military Production, Cairo, Egypt
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Lobna A. Ali
- Cell Biology and Histochemistry, Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | | |
Collapse
|
5
|
Mannich bases of alizarin: synthesis and evaluation of antioxidant capacity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Synthesis of 4-Hydroxyquinolines as Potential Cytotoxic Agents. Int J Mol Sci 2022; 23:ijms23179688. [PMID: 36077085 PMCID: PMC9456289 DOI: 10.3390/ijms23179688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The synthesis of alkyl 2-(4-hydroxyquinolin-2-yl) acetates and 1-phenyl-4-(phenylamino)pyridine-2,6(1H,3H)-dione was optimised. Starting from 4-hydroxyquinolines (4HQs), aminomethylation was carried out via the modified Mannich reaction (mMr) applying formaldehyde and piperidine, but a second paraformaldehyde molecule was incorporated into the Mannich product. The reaction also afforded the formation of bisquinoline derivatives. A new 1H-azeto [1,2-a]quinoline derivative was synthesised in two different ways; namely starting from the aminomethylated product or from the ester-hydrolysed 4HQ. When the aldehyde component was replaced with aromatic aldehydes, Knoevenagel condensation took place affording the formation of the corresponding benzylidene derivatives, with the concomitant generation of bisquinolines. The reactivity of salicylaldehyde and hydroxynaphthaldehydes was tested; under these conditions, partially saturated lactones were formed through spontaneous ring closure. The activity of the derivatives was assessed using doxorubicin-sensitive and -resistant colon adenocarcinoma cell lines and normal human fibroblasts. Some derivatives possessed selective toxicity towards resistant cancer cells compared to doxorubicin-sensitive cancer cells and normal fibroblasts. Cytotoxic activity of the benzylidene derivatives and the corresponding Hammett–Brown substituent were correlated.
Collapse
|