1
|
Chehri S, Henriksen OM, Marner L, Christensen M, Muhic A, Poulsen HS, Law I. A prospective clinical study of the influence of oral protein intake on [ 18F]FET-PET uptake and test-retest repeatability in glioma. EJNMMI Res 2024; 14:58. [PMID: 38922458 PMCID: PMC11208353 DOI: 10.1186/s13550-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography ([18F]FET PET) scanning is used in routine clinical management and evaluation of gliomas with a recommended 4 h prior fasting. Knowledge of test-retest variation of [18F]FET PET imaging uptake metrics and the impact of accidental protein intake can be critical for interpretation. The aim of this study was to investigate the repeatability of [18F]FET-PET metrics and to assess the impact of protein-intake prior to [18F]FET PET scanning of gliomas. RESULTS Test-retest variability in the non-protein group was good with absolute (and relative) upper and lower limits of agreement of + 0.15 and - 0.13 (+ 9.7% and - 9.0%) for mean tumour-to-background ratio (TBRmean), + 0.43 and - 0.28 (+ 19.6% and - 11.8%) for maximal tumour-to-background ratio (TBRmax), and + 2.14 cm3 and - 1.53 ml (+ 219.8% and - 57.3%) for biological tumour volume (BTV). Variation was lower for uptake ratios than for BTV. Protein intake was associated with a 27% increase in the total sum of plasma concentration of the L-type amino acid transporter 1 (LAT1) relevant amino acids and with decreased standardized uptake value (SUV) in both healthy appearing background brain tissue (mean SUV - 25%) and in tumour (maximal SUV - 14%). Oral intake of 24 g of protein 1 h prior to injection of tracer tended to increase variability, but the effects on derived tumour metrics TBRmean and TBRmax were only borderline significant, and changes generally within the variability observed in the group with no protein intake. CONCLUSION The test-retest repeatability was found to be good, and better for TBRmax and TBRmean than BTV, with the methodological limitation that tumour growth may have influenced results. Oral intake of 24 g of protein one hour before a [18F]FET PET scan decreases uptake of [18F]FET in both tumour and in healthy appearing brain, with no clinically significant difference on the most commonly used tumour metrics.
Collapse
Affiliation(s)
- Sarah Chehri
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Radiation Biology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mette Christensen
- Department of Clinical Genetics, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Aida Muhic
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Stegmayr C, Willuweit A, Lohmann P, Langen KJ. O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results. Curr Radiopharm 2020; 12:201-210. [PMID: 30636621 DOI: 10.2174/1874471012666190111111046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
In recent years, PET using radiolabelled amino acids has gained considerable interest as an additional tool besides MRI to improve the diagnosis of cerebral gliomas and brain metastases. A very successful tracer in this field is O-(2-[18F]fluoroethyl)-L-tyrosine (FET) which in recent years has replaced short-lived tracers such as [11C]-methyl-L-methionine in many neuro-oncological centers in Western Europe. FET can be produced with high efficiency and distributed in a satellite concept like 2- [18F]fluoro-2-deoxy-D-glucose. Many clinical studies have demonstrated that FET PET provides important diagnostic information regarding the delineation of cerebral gliomas for therapy planning, an improved differentiation of tumor recurrence from treatment-related changes and sensitive treatment monitoring. In parallel, a considerable number of experimental studies have investigated the uptake mechanisms of FET on the cellular level and the behavior of the tracer in various benign lesions in order to clarify the specificity of FET uptake for tumor tissue. Further studies have explored the effects of treatment related tissue alterations on tracer uptake such as surgery, radiation and drug therapy. Finally, the role of blood-brain barrier integrity for FET uptake which presents an important aspect for PET tracers targeting neoplastic lesions in the brain has been investigated in several studies. Based on a literature research regarding experimental FET studies and corresponding clinical applications this article summarizes the knowledge on the uptake behavior of FET, which has been collected in more than 30 experimental studies during the last two decades and discusses the role of these results in the clinical context.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany.,Department of Nuclear Medicine, University of Aachen, Aachen, Germany.,Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Juelich, Germany
| |
Collapse
|
3
|
Buchmann N, Kläsner B, Gempt J, Bauer JS, Pyka T, Delbridge C, Meyer B, Krause BJ, Ringel F. (18)F-Fluoroethyl-l-Thyrosine Positron Emission Tomography to Delineate Tumor Residuals After Glioblastoma Resection: A Comparison with Standard Postoperative Magnetic Resonance Imaging. World Neurosurg 2016; 89:420-6. [PMID: 26893043 DOI: 10.1016/j.wneu.2016.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Complete resection of contrast-enhancing tumor is an important prognostic factor in glioblastoma therapy. The current clinical standard for control of resection is magnetic resonance imaging (MRI). (18)F-Fluoroethyl-l-thyrosine (FET) is a positron emission tomography (PET) radiopharmaceutical applicable for widespread use because of its long half-life radionuclide. We assessed the sensitivity of postoperative MRI versus FET-PET to detect residual tumor and the impact of the time interval between resection and FET-PET. METHODS MRI and FET-PET were performed preoperatively and postoperatively in 62 patients undergoing 63 operations. FET-PET was performed in 43 cases within 72 hours after resection and in 20 cases >72 hours after resection. Detection and measurement of volume of residual tumors were compared. Correlations between residual tumor detection and timing of PET after resection and recurrence were examined. RESULTS Complete resection was confirmed by both imaging modalities in 44% of cases, and residual tumor was detected consistently in 37% of cases. FET-PET detected residual tumor in 14% of cases in which MRI showed no residual tumor. MRI showed residual tumors in 5% of cases that were not identified by PET. Average PET-based residual tumor volume was higher than MRI-based volume (3.99 cm(3) vs. 1.59 cm(3)). Detection of and difference in volume of residual tumor were not correlated with timing of PET after resection or recurrence status. CONCLUSIONS Postoperative FET-PET revealed residual tumor with higher sensitivity than MRI and showed larger tumor volumes. In this series, performing PET >72 hours after resection did not influence the results of PET. We recommend FET-PET as a helpful adjunct in addition to MRI for postoperative assessment of residual tumor.
Collapse
Affiliation(s)
- Niels Buchmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, München, Germany.
| | - Benjamin Kläsner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, München, Germany; Department of Nuclear Medicine, Klinikum Konstanz, Konstanz, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Jan Stefan Bauer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Thomas Pyka
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Claire Delbridge
- Division of Neuropathology, Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, München, Germany; Department of Nuclear Medicine, Universitätsklinikum Rostock, Rostock, Germany
| | - Florian Ringel
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, München, Germany
| |
Collapse
|
4
|
Abstract
Brain tumors are one of the most challenging disorders encountered, and early and accurate diagnosis is essential for the management and treatment of these tumors. In this article, diagnostic modalities including single-photon emission computed tomography, positron emission tomography, magnetic resonance imaging, and optical imaging are reviewed. We mainly focus on the newly emerging, specific imaging probes, and their potential use in animal models and clinical settings.
Collapse
Affiliation(s)
- Huile Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
5
|
Diagnostic accuracy of F-18-fluoroethyltyrosine PET and PET/CT in patients with brain tumor. Clin Transl Imaging 2013. [DOI: 10.1007/s40336-013-0017-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
|
7
|
Dunet V, Rossier C, Buck A, Stupp R, Prior JO. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 2012; 53:207-14. [PMID: 22302961 DOI: 10.2967/jnumed.111.096859] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED For the past decade, PET with (18)F-fluoro-ethyl-tyrosine ((18)F-FET) has been used in the evaluation of patients with primary brain tumors (PBTs), but so far series have reported only a limited number of patients. The purpose of this systematic review and metaanalysis was to assess the diagnostic performance of (18)F-FET PET in patients with suspicion of PBT. METHODS We examined studies published in the literature using MEDLINE and EMBASE databases. Inclusion criteria were use of (18)F-FET PET for initial assessment of patients with a newly diagnosed brain lesion; patients who had no radiotherapy, surgery, or chemotherapy before (18)F-FET PET; and use of histology as a gold standard. Metaanalysis was performed on a per-patient basis. We secondarily performed receiver-operating-characteristic analysis of pooled patients to determine tumor-to-background ratio (TBR) of (18)F-FET uptake and best diagnostic value. RESULTS Thirteen studies totaling 462 patients were included. For the diagnosis of PBT, (18)F-FET PET demonstrated a pooled sensitivity of 0.82 (95% confidence interval [CI], 0.74-0.88), specificity of 0.76 (95% CI, 0.44-0.92), area under the curve of 0.84 (95% CI, 0.80-0.87), positive likelihood ratio of 3.4 (95% CI, 1.2-9.5), and negative likelihood ratio of 0.24 (95% CI, 0.14-0.39). Receiver-operating-characteristic analysis indicated that a mean TBR threshold of at least 1.6 and a maximum TBR of at least 2.1 had the best diagnostic value for differentiating PBTs from nontumoral lesions. CONCLUSION (18)F-FET PET demonstrated excellent performance for diagnosing PBTs. Strict standardization of PET acquisition protocols and prospective, multicenter studies investigating the added value over current MRI are now needed to establish (18)F-FET PET as a highly relevant tool for patient management.
Collapse
Affiliation(s)
- Vincent Dunet
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Mueller D, Klette I, Kalb F, Baum RP. Synthesis of O-(2-[18F]fluoroethyl)-l-tyrosine based on a cartridge purification method. Nucl Med Biol 2011; 38:653-8. [DOI: 10.1016/j.nucmedbio.2011.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/23/2011] [Accepted: 01/23/2011] [Indexed: 11/26/2022]
|
9
|
Abstract
For most cancers, PET is essentially a diagnostic tool. For brain tumors, PET has got its main contribution at the level of the therapeutic management. Indeed, specific reasons render the therapeutic management of brain tumors, especially gliomas, a real challenge. Although some gliomas may appear well-delineated on conventional neuroimaging such as CT and MRI, they are by nature infiltrating neoplasms and the interface between tumor and normal brain tissue may not be accurately defined. Moreover, gliomas may present as ill-defined lesions for which various MRI sequences combination does not provide a unique contour for tumor delineation. Also, gliomas are often histologically heterogeneous with anaplastic areas evolving within a low-grade tumor, and contrast-enhancement on CT or MRI does not represent a good marker for anaplastic tissue detection. Finally, assessment of tumor residue, recurrence, or progression, may be altered by different signals related to inflammation or adjuvant therapies, and contrast enhancement on CT and MRI is not an appropriate marker at the postoperative or posttherapeutic stage. These limitations of conventional neuroimaging in detecting tumor tissue, delineating tumor extent and evidencing anaplastic changes, lead to potential inaccuracy in lesion targeting at different steps of the management (diagnostic, surgical, postoperative, and posttherapeutic stages). Molecular information provided by PET has proved helpful to supplement morphological imaging data in this context. F-18 FDG and amino-acid tracers such as C-11 methionine (C-11 MET) provide complementary metabolic data that are independent from the anatomical MR information. These tracers help in the definition of glioma extension, detection of anaplastic areas, and postoperative follow-up. Additionally, PET data have a prognostic value independently of histology. To take advantage of PET data in glioma treatment, PET might be integrated in the planning of image-guided biopsy, resection, and radiosurgery.
Collapse
Affiliation(s)
- Serge Goldman
- PET-Biomedical Cyclotron Unit, ERASME Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
10
|
Rothlisberger M. First impact factor for Contrast Media & Molecular Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2008; 3:135. [DOI: 10.1002/cmmi.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Bauwens M, Lahoutte T, Kersemans K, Caveliers V, Bossuyt A, Mertens J. D- and L-[123I]-2-I-phenylalanine show a long tumour retention compared with D- and L-[123I]-2-I-tyrosine in R1M rhabdomyosarcoma tumour-bearing Wag/Rij rats. CONTRAST MEDIA & MOLECULAR IMAGING 2007; 2:172-7. [PMID: 17683118 DOI: 10.1002/cmmi.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was the comparison of the tumour uptake and the long-term retention of [(123)I]-2-I-L-phenylalanine and [(123)I]-2-I-D-phenylalanine with those of [(123)I]-2-I-L-tyrosine and [(123)I]-2-I-D-tyrosine in R1M rhabdomyosarcoma tumour-bearing rats. The biodistribution of the radioactivity as a function of time in R1M tumour-bearing rats was measured by planar gamma camera imaging (dynamic and static). If dissection was applied, the activity in the tumours and tissues of interest was measured by gamma counting. [(123)I]-2-iodo-L-phenylalanine, [(123)I]-2-iodo-D-phenylalaine, [(123)I]-2-I-L-tyrosine showed a considerable tumour uptake reaching a maximum between 10 and 30 min. At 30 min p.i. the differential uptake ratio values of this uptake were, respectively, 2.1, 2.3, 2.5 and 1.7. The activity in the tumour was shown to be related to a tumour cell uptake and not to an increased blood pool activity. All the tracers showed a clearance from the blood to the bladder without renal retention. At longer times both L- and D- [(123)I]-2-I-tyrosine were cleared for a large part from the tumours and the body. [(123)I]-2-I-L-Phe and [(123)I]-2-I-D-Phe showed a considerable and equal retention in the tumours: as compared with 0.5 h, 91% at 24 h and 80% at 48 h. This was related to the longer retention of activity in the blood pool noticed for these compounds (81% at 24 h and 65% at 48 h). The tumour-to-background ratio increased with 25% at those longer times. At short times all the tracers were taken up to a considerable extent in the tumours. In the R1M-bearing Wag/Rij rat model only [(123)I]-2-I-L-phenylalanine and [(123)I]-2-I-D-phenylalanine showed an especially high retention at long times without any significant difference between the enantiomers.
Collapse
|