1
|
Nosrati H, Salehiabar M, Charmi J, Yaray K, Ghaffarlou M, Balcioglu E, Ertas YN. Enhanced In Vivo Radiotherapy of Breast Cancer Using Gadolinium Oxide and Gold Hybrid Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:784-792. [PMID: 36693820 PMCID: PMC9945098 DOI: 10.1021/acsabm.2c00965] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
Radiation therapy has demonstrated promising effectiveness against several types of cancers. X-ray radiation therapy can be made further effective by utilizing nanoparticles of high-atomic-number (high-Z) materials that act as radiosensitizers. Here, in purpose of maximizing the radiation therapy within tumors, bovine serum albumin capped gadolinium oxide and gold nanoparticles (Gd2O3@BSA-Au NPs) are developed as a bimetallic radiosensitizer. In this study, we incorporate two high-Z-based nanoparticles, Au and Gd, in a single nanoplatform. The radiosensitizing ability of the nanoparticles was assessed with a series of in vitro tests, following evaluation in vivo in a breast cancer murine model. Enhanced tumor suppression is observed in the group that received radiation after administration of Gd2O3@BSA-Au NPs. As a result, cancer therapy efficacy is significantly improved by applying Gd2O3@BSA-Au NPs under X-ray irradiation, as evidenced by studies evaluating cell viability, proliferation, reactive oxygen species production, and in vivo anti-tumor effect.
Collapse
Affiliation(s)
- Hamed Nosrati
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri39039, Türkiye
| | - Marziyeh Salehiabar
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri39039, Türkiye
| | - Jalil Charmi
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri39039, Türkiye
| | - Kadir Yaray
- Department
of Radiation Oncology, Faculty of Medicine, Erciyes University, Kayseri39039, Türkiye
| | | | - Esra Balcioglu
- Department
of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri39039, Türkiye
| | - Yavuz Nuri Ertas
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri39039, Türkiye
- Department
of Biomedical Engineering, Erciyes University, Kayseri39039, Türkiye
- UNAM−National
Nanotechnology Research Center, Bilkent
University, Ankara06800, Türkiye
| |
Collapse
|
2
|
Paromova АА, Sinitsina АА, Boitsova ТB, Gorbunova VV, Vakhrushev АY, Isaeva EI. Synthesis of TiO2/Gd2O3 and TiO2/Gd2O3/Ag Nanomaterials. Application in Photocatalytic Degradation Reactions. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
3
|
Geng P, Yu N, Liu X, Zhu Q, Wen M, Ren Q, Qiu P, Zhang H, Li M, Chen Z. Sub 5 nm Gd 3+ -Hemoporfin Framework Nanodots for Augmented Sonodynamic Theranostics and Fast Renal Clearance. Adv Healthc Mater 2021; 10:e2100703. [PMID: 34363332 DOI: 10.1002/adhm.202100703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic nanomaterials have emerged as promising therapeutic agents to produce reactive oxygen species (ROS) under ultrasound (US) or light irradiation for tumor treatments. However, their relatively large sizes (ranging from tens to hundreds of nanometers) usually lead to low ROS utilization and body metabolism, thus enlarging their long-term toxicity and low therapeutic effect. To solve these shortcomings, herein the ultrasmall Gd3+ -hemoporfin framework nanodots (GdHF-NDs, ≈5 nm) is reported as efficient nano-sonosensitizers. Compared with GdHF aggregation (GdHF-A, ≈400 nm), the ultrasmall GdHF-NDs generate 2.3-fold toxic ROS amount under similar conditions, due to shorter diffusion path and larger relative specific surface area. When the GdHF-NDs dispersion is introvenously injected into tumor-bearing mouse, they are accumulated within tumors to provide high magnetic resonance imaging (MRI) contrast. Under US irradiation, the GdHF-NDs achieve a better sonodynamic therapeutic efficacy for tumors, compared with that from GdHF-A. More importantly, owing to ultrasmall size, most of GdHF-NDs can be rapidly cleared through the renal pathway. Therefore, GdHF-NDs can be used as a biosafety and high-performance sonodynamic agent for cancer theranostics.
Collapse
Affiliation(s)
- Peng Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Xiaohan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Qin Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification Branden Biomedical Park Qihe Advanced Science & High Technology Development Zone Qihe Shandong 251100 China
- Department of Interventional and Vascular Surgery Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| |
Collapse
|
4
|
Adimule V, Nandi SS, Yallur BC, Bhowmik D, Jagadeesha AH. Optical, Structural and Photoluminescence Properties of Gd x SrO: CdO Nanostructures Synthesized by Co Precipitation Method. J Fluoresc 2021; 31:487-499. [PMID: 33433819 DOI: 10.1007/s10895-021-02683-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
To investigate the effect of Gd x SrO: CdO (x = 0.1, 0.3, 0.4) nanostructures (NS), in the present work an attempt has been made to synthesize Gdx SrO:CdO NS by co precipitation method. Structural properties were investigated by XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), UV-Visible, XPS (X-ray photoelectron spectroscopy). XRD indicates having mixed phase of tetragonal crystal structure and SEM images indicate spherical shaped nanoparticles (NPs) of Gd x SrO:CdO with average size laying in between ~100 nm to ~130 nm. FTIR spectra of Gd x SrO: CdO NS show stretching and bending peaks of Gd-O-Gd, Cd-O-Cd and Sr-OH at ~1311 cm -1, ~1486 cm -1, ~ 3300 cm -1 and UV-visible optical absorptivity of Gd x SrO:CdO show absorption maxima shift from 330 nm to 324 nm (blue shift) and edges at 352.4 nm, 348 nm and 346.3 nm respectively for Gd concentration varying between 0.1, 0.3 and 0.4. binding energies of the Gd 3d 3/2, Sr 3d 3/2 and Cd 3d 3/2, O1s and C1s observed at 150.8 eV, 141.6 eV, 410.1 eV, 529.6 eV and 282.4 eV respectively which confirms the chemical composition of NS. Photoluminescence (PL) spectrum of Gd 0.4 Sr 0.5 O Cd 0.1O NS exhibit broad peaks from 338 nm to 397 nm centred around 369 nm with various Gd, O, Sr and Cd related native defects. Emission band observed at UV- Visible region for Gd 0.3 Sr 0.5 O Cd 0.2 O NS PL emission spectra has two emission peaks at 369 nm (UV region) and 550 nm (Visible region). The transitions can be ascertained with shielding of 4f shells of Gd+3 ions by 6 s, 5d shells by the interaction of the other Gd+3 ions.
Collapse
Affiliation(s)
- Vinayak Adimule
- Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi, Karnataka, 5800321, India.
| | - Santosh S Nandi
- Chemistry section, Department of Engineering Science and Humanities, KLE Dr. M. S. Sheshgiri College of Engineering and Technology, Udyambag, Belagavi, Karnataka, 590008, India
| | - B C Yallur
- Department of Chemistry, M S Ramaiah Institute of Technology, Bangalore, Karnataka, 560054, India
| | - Debdas Bhowmik
- High Energy Materials Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Sutarwadi, Pune, 411021, India.
| | | |
Collapse
|
5
|
Zhang K, Sun Y, Wu S, Zhou M, Zhang X, Zhou R, Zhang T, Gao Y, Chen T, Chen Y, Yao X, Watanabe Y, Tian M, Zhang H. Systematic imaging in medicine: a comprehensive review. Eur J Nucl Med Mol Imaging 2020; 48:1736-1758. [PMID: 33210241 DOI: 10.1007/s00259-020-05107-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
Abstract
Systematic imaging can be broadly defined as the systematic identification and characterization of biological processes at multiple scales and levels. In contrast to "classical" diagnostic imaging, systematic imaging emphasizes on detecting the overall abnormalities including molecular, functional, and structural alterations occurring during disease course in a systematic manner, rather than just one aspect in a partial manner. Concomitant efforts including improvement of imaging instruments, development of novel imaging agents, and advancement of artificial intelligence are warranted for achievement of systematic imaging. It is undeniable that scientists and radiologists will play a predominant role in directing this burgeoning field. This article introduces several recent developments in imaging modalities and nanoparticles-based imaging agents, and discusses how systematic imaging can be achieved. In the near future, systematic imaging which combines multiple imaging modalities with multimodal imaging agents will pave a new avenue for comprehensive characterization of diseases, successful achievement of image-guided therapy, precise evaluation of therapeutic effects, and rapid development of novel pharmaceuticals, with the final goal of improving human health-related outcomes.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Min Zhou
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Tingting Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuanxue Gao
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ting Chen
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yao Chen
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xin Yao
- Department of Gastroenterology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Mei Tian
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. .,The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Gadolinium Oxide Nanoparticles Induce Toxicity in Human Endothelial HUVECs via Lipid Peroxidation, Mitochondrial Dysfunction and Autophagy Modulation. NANOMATERIALS 2020; 10:nano10091675. [PMID: 32859033 PMCID: PMC7559735 DOI: 10.3390/nano10091675] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022]
Abstract
In spite of the potential preclinical advantage of Gd2O3 nanoparticles (designated here as GO NPs) over gadolinium-based compounds in MRI, recent concerns of gadolinium deposits in various tissues undergoing MRI demands a mechanistic investigation. Hence, we chose human to measure umbilical vein endothelial cells (HUVECs) that line the vasculature and relevant biomarkers due to GO NPs exposure in parallel with the NPs of ZnO as a positive control of toxicity. GO NPs, as measured by TEM, had an average length of 54.8 ± 29 nm and a diameter of 13.7 ± 6 nm suggesting a fiber-like appearance. With not as pronounced toxicity associated with a 24-h exposure, GO NPs induced a concentration-dependent cytotoxicity (IC50 = 304 ± 17 µg/mL) in HUVECs when exposed for 48 h. GO NPs emerged as significant inducer of lipid peroxidation (LPO), reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and autophagic vesicles in comparison to that caused by ZnO NPs at its IC50 for the same exposure time (48 h). While ZnO NPs clearly appeared to induce apoptosis, GO NPs revealed both apoptotic as well as necrotic potentials in HUVECs. Intriguingly, the exogenous antioxidant NAC (N-acetylcysteine) co-treatment significantly attenuated the oxidative imbalance due to NPs preventing cytotoxicity significantly.
Collapse
|
7
|
Tian X, Liu Z, Zeng A, Wang H, Lou J, Wei Y, Man Y, Li L, Yang F. Evaluation of in vivo immunotoxicity for Ho3+-doped Gd2O3 nanoparticles as dual-modality nanoprobes. MATERIALS TODAY COMMUNICATIONS 2020; 23:100899. [DOI: 10.1016/j.mtcomm.2020.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
8
|
Yue H, Marasini S, Ahmad MY, Ho SL, Cha H, Liu S, Jang YJ, Tegafaw T, Ghazanfari A, Miao X, Chae KS, Chang Y, Lee GH. Carbon-coated ultrasmall gadolinium oxide (Gd2O3@C) nanoparticles: Application to magnetic resonance imaging and fluorescence properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Akhtar MJ, Ahamed M, Alhadlaq H, Alrokayan S. Toxicity Mechanism of Gadolinium Oxide Nanoparticles and Gadolinium Ions in Human Breast Cancer Cells. Curr Drug Metab 2019; 20:907-917. [DOI: 10.2174/1389200220666191105113754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Background:
Due to the potential advantages of Gadolinium Nanoparticles (NPs) over gadolinium elements,
gadolinium based NPs are currently being explored in the field of MRI. Either in elemental form or nanoparticulate
form, gadolinium toxicity is believed to occur due to the deposition of gadolinium ion (designated as Gd3+ ion
or simply G ion).
Objective:
There is a serious lack of literature on the mechanisms of toxicity caused by either gadolinium-based NPs
or ions. Breast cancer tumors are often subjected to MRIs, therefore, human breast cancer (MCF-7) cells could serve
as an appropriate in vitro model for the study of Gadolinium Oxide (GO) NP and G ion.
Methods:
Cytotoxicity and oxidative damage was determined by quantifying cell viability, cell membrane damage,
and Reactive Oxygen Species (ROS). Intracellular Glutathione (GSH) was measured along with cellular Total Antioxidant
Capacity (TAC). Autophagy was determined by using Monodansylcadaverine (MDC) and Lysotracker Red
(LTR) dyes in tandem. Mitochondrial Membrane Potential (MMP) was measured by JC-1 fluorescence. Physicochemical
properties of GO NPs were characterized by field emission transmission electron microscopy, X-ray diffraction,
and energy dispersive spectrum.
Results:
A time- and concentration-dependent toxicity and oxidative damage was observed due to GO NPs and G
ions. Bax/Bcl2 ratios, FITC-7AAD double staining, and cell membrane blebbing in phase-contrast images all suggested
different modes of cell death induced by NPs and ions.
Conclusion:
In summary, cell death induced by GO NPs with high aspect ratio favored apoptosis-independent cell
death, whereas G ions favored apoptosis-dependent cell death.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Salman Alrokayan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Anthony GJ, Bader KB, Wang J, Zamora M, Ostdiek A, Antic T, Krueger S, Weiss S, Trogler WC, Blair SL, Kummel AC, Sammet S. MRI-guided transurethral insonation of silica-shell phase-shift emulsions in the prostate with an advanced navigation platform. Med Phys 2019; 46:774-788. [PMID: 30414276 PMCID: PMC6367027 DOI: 10.1002/mp.13279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 02/05/2023] Open
Abstract
PURPOSE In this study, the efficacy of transurethral prostate ablation in the presence of silica-shell ultrasound-triggered phase-shift emulsions (sUPEs) doped with MR contrast was evaluated. The influence of sUPEs on MR imaging assessment of the ablation zone was also investigated. METHODS sUPEs were doped with a magnetic resonance (MR) contrast agent, Gd2 O3 , to assess ultrasound transition. Injections of saline (sham), saline and sUPEs alone, and saline and sUPEs with Optison microbubbles were performed under guidance of a prototype interventional MRI navigation platform in a healthy canine prostate. Treatment arms were evaluated for differences in lesion size, T1 contrast, and temperature. In addition, non-perfused areas (NPAs) on dynamic contrast-enhanced (DCE) MRI, 55°C isotherms, and areas of 240 cumulative equivalent minutes at 43°C (CEM43 ) dose or greater computed from MR thermometry were measured and correlated with ablated areas indicated by histology. RESULTS For treatment arms including sUPEs, the computed correlation coefficients between the histological ablation zone and the NPA, 55°C isotherm, and 240 CEM43 area ranged from 0.96-0.99, 0.98-0.99, and 0.91-0.99, respectively. In the absence of sUPEs, the computed correlation coefficients between the histological ablation zone and the NPA, 55°C isotherm, and 240 CEM43 area were 0.69, 0.54, and 0.50, respectively. Across all treatment arms, the areas of thermal tissue damage and NPAs were not significantly different (P = 0.47). Areas denoted by 55°C isotherms and 240 CEM43 dose boundaries were significantly larger than the areas of thermal damage, again for all treatment arms (P = 0.009 and 0.003, respectively). No significant differences in lesion size, T1 contrast, or temperature were observed between any of the treatment arms (P > 0.0167). Lesions exhibiting thermal fixation on histological analysis were present in six of nine insonations involving sUPE injections and one of five insonations involving saline sham injections. Significantly larger areas (P = 0.002), higher temperatures (P = 0.004), and more frequent ring patterns of restricted diffusion on ex vivo diffusion-weighted imaging (P = 0.005) were apparent in lesions with thermal fixation. CONCLUSIONS T1 contrast suggesting sUPE transition was not evident in sUPE treatment arms. The use of MR imaging metrics to predict prostate ablation was not diminished by the presence of sUPEs. Lesions generated in the presence of sUPEs exhibited more frequent thermal fixation, though there were no significant changes in the ablation areas when comparing arms with and without sUPEs. Thermal fixation corresponded to some qualitative imaging features.
Collapse
Affiliation(s)
| | | | - James Wang
- The University of California San DiegoSan DiegoCA92093USA
| | | | | | | | | | | | | | - Sarah L. Blair
- The University of California San DiegoSan DiegoCA92093USA
| | | | | |
Collapse
|
11
|
Xu W, Lin Z, Li G, Long H, Du M, Fu G, Pu L. Linear PVA–DTPA–Gd conjugate for magnetic resonance imaging. RSC Adv 2019; 9:37052-37056. [PMID: 35539082 PMCID: PMC9075117 DOI: 10.1039/c9ra05607f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we report the preparation and characterization of the PVA–DTPA–Gd conjugate as a potential MRI contrast agent (CA). The r1 value and the r2/r1 ratio were about 5.6 mM−1 s−1 and 1.31, respectively. In vitro toxicity studies not only demonstrated that the polymeric system possessed good biocompatibility, but also proved that the conjugate could be an attractive candidate for CA. In this study, we report the preparation and characterization of the PVA–DTPA–Gd conjugate as a potential MRI contrast agent (CA).![]()
Collapse
Affiliation(s)
- Weibing Xu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Zhiyan Lin
- Clinical Medical College
- Gansu University of Chinese Medicine
- Lanzhou 730000
- China
| | - Guichen Li
- Gansu Provincial Key Laboratory of Aridland Crop Science
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Haitao Long
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Mingyuan Du
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Guorui Fu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Lumei Pu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
12
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Wang Q, Xiao A, Liu Y, Zou Q, Zhou Q, Wang H, Yang X, Zheng C, Yang Y, Zhu Y. One-step preparation of nano-in-micro poly(vinyl alcohol) embolic microspheres and used for dual-modal T 1/T 2-weighted magnetic resonance imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2551-2561. [PMID: 30153472 DOI: 10.1016/j.nano.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
It is crucial to develop dual or multi-modal self-imaging embolic microspheres to evaluate the effects of transcatheter arterial embolization therapy of tumor. However, the preparation of such hybrid microspheres always involved in multiple steps or complicated conditions. Here, poly(vinyl alcohol) (PVA) hybrid microspheres with dual-modal T1/T2-weighted magnetic resonance imaging (MRI) have been prepared based on microfluidic technique in one step. Gd2O3 and Fe3O4 nanoparticles with a size of ~5 nm act as T1- and T2-weighted MRI contrast agents, respectively, which are simultaneously in-situ synthesized in the PVA matrix via the reaction of metal ions and alkali with PVA chains as a soft template. Meanwhile, these metallic-oxide nanoparticles act as cross-linker to gelatinize the PVA droplets to obtain nano-in-micro PVA microspheres in one step. This procedure is simple, economic and feasible. The obtained nano-in-micro PVA microspheres show good magnetothermal effect, enhanced T1- and T2-weighted MRI and embolization effect.
Collapse
Affiliation(s)
- Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yajiang Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Yin J, Chen D, Zhang Y, Li C, Liu L, Shao Y. MRI relaxivity enhancement of gadolinium oxide nanoshells with a controllable shell thickness. Phys Chem Chem Phys 2018; 20:10038-10047. [DOI: 10.1039/c8cp00611c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The relaxation enhancement mechanism and MRI application of the designed core–shelled silica–Gd2O3 nanoparticle contrast agents were studied.
Collapse
Affiliation(s)
- Jinchang Yin
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Deqi Chen
- Medical Physics Graduate Program
- Duke Kunshan University
- Kunshan 215316
- P. R. China
| | - Yu Zhang
- Department of Pathology
- Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Guangzhou 510060
| | - Chaorui Li
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Lizhi Liu
- Center of Medical Imaging and Image-guided Therapy
- Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Guangzhou 510060
| | - Yuanzhi Shao
- School of Physics
- State Key Laboratory of Optoelectronic Materials and Technologies
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
15
|
Cui D, Lu X, Yan C, Liu X, Hou M, Xia Q, Xu Y, Liu R. Gastrin-releasing peptide receptor-targeted gadolinium oxide-based multifunctional nanoparticles for dual magnetic resonance/fluorescent molecular imaging of prostate cancer. Int J Nanomedicine 2017; 12:6787-6797. [PMID: 28979118 PMCID: PMC5602459 DOI: 10.2147/ijn.s139246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bombesin (BBN), an analog of gastrin-releasing peptide (GRP), specifically binds to GRP receptors, which are overexpressed in human prostate cancer (PC). Here, we synthesized a BBN-modified gadolinium oxide (Gd2O3) nanoprobe containing fluorescein (Gd2O3-5(6)-carboxyfluorescein [FI]-polyethylene glycol [PEG]-BBN) for targeted magnetic resonance (MR)/optical dual-modality imaging of PC. The Gd2O3-FI-PEG-BBN nanoparticles exhibited a relatively uniform particle size with an average diameter of 52.3 nm and spherical morphology as depicted by transmission electron microscopy. The longitudinal relaxivity (r1) of Gd2O3-FI-PEG-BBN (r1 =4.23 mM−1s−1) is comparable to that of clinically used Magnevist (Gd-DTPA). Fluorescence microscopy and in vitro cellular MRI demonstrated GRP receptor-specific and enhanced cellular uptake of the Gd2O3-FI-PEG-BBN in PC-3 tumor cells. Moreover, Gd2O3-FI-PEG-BBN showed more remarkable contrast enhancement than the corresponding nontargeted Gd2O3-FI-PEG according to in vivo MRI and fluorescent imaging. Tumor immunohistochemical analysis further demonstrated improved accumulation of the targeted nanoprobe in tumors. BBN-conjugated Gd2O3 may be a promising nanoplatform for simultaneous GRP receptor-targeted molecular cancer diagnosis and antitumor drug delivery in future clinical applications.
Collapse
Affiliation(s)
- Danting Cui
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaodan Lu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiang Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Meirong Hou
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qi Xia
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ruiyuan Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Lu X, Zhang Z, Xia Q, Hou M, Yan C, Chen Z, Xu Y, Liu R. Glucose functionalized carbon quantum dot containing organic radical for optical/MR dual-modality bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:190-196. [PMID: 29025647 DOI: 10.1016/j.msec.2017.08.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022]
Abstract
The organic paramagnetic compounds nitroxides have great potential as magnetic resonance imaging (MRI) contrast agents. Herein, we report the synthesis and characterization of glucose modified carbon quantum dot containing 2,2,6,6-tetramethyl-piperidinooxy (TEMPO) for targeted bimodal MR/optical imaging of tumor cells. CQD-TEMPO-Glu shows the greatest potentials for bioimaging applications in view of low cytotoxicity, good biocompatibility, green fluorescence emission and high T1 relaxivities. The in vitro MR and optical imaging results confirm enhanced cellular internalization of CQD-TEMPO-Glu in cancer cells through GLUT mediated endocytosis. These results confirm that CQD-TEMPO-Glu is expected to be widely exploited as dual-modal contrast for cancer imaging.
Collapse
Affiliation(s)
- Xiaodan Lu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhide Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Qi Xia
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Meirong Hou
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zelong Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
17
|
The key energy scales of Gd-based metallofullerene determined by resonant inelastic x-ray scattering spectroscopy. Sci Rep 2017; 7:8125. [PMID: 28811581 PMCID: PMC5557834 DOI: 10.1038/s41598-017-08685-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/12/2017] [Indexed: 11/12/2022] Open
Abstract
Endohedral metallofullerenes, formed by encaging Gd inside fullerenes like C80, can exhibit enhanced proton relaxitivities compared with other Gd-chelates, making them the promising contrast agents for magnetic resonance imaging (MRI). However, the underlying key energy scales of GdxSc3−xN@C80 (x = 1–3) remain unclear. Here, we carry out resonant inelastic x-ray scattering (RIXS) experiments on GdxSc3−xN@C80 at Gd N4,5-edges to directly study the electronic structure and spin flip excitations of Gd 4f electrons. Compared with reference Gd2O3 and contrast agent Gadodiamide, the features in the RIXS spectra of all metallofullerenes exhibit broader spectral lineshape and noticeable energy shift. Using atomic multiplet calculations, we have estimated the key energy scales such as the inter-site spin exchange field, intra-atomic 4f–4f Coulomb interactions, and spin-orbit coupling. The implications of these parameters to the 4f states of encapsulated Gd atoms are discussed.
Collapse
|
18
|
Zhang B, Yang W, Yu J, Guo W, Wang J, Liu S, Xiao Y, Shi D. Green Synthesis of Sub-10 nm Gadolinium-Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumor-Bearing Mice in Magnetic Resonance Imaging. Adv Healthc Mater 2017; 6. [PMID: 28004887 DOI: 10.1002/adhm.201600865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/18/2016] [Indexed: 12/13/2022]
Abstract
Gadolinium (Gd)-based nanoparticles are known for their high potential in magnetic resonance imaging (MRI). However, further MRI applications of these nanoparticles are hampered by their relatively large sizes resulting in poor organ/tumor targeting. In this study, ultrafine sub-10 nm and biocompatible Gd-based nanoparticles are synthesized in a bioinspired, environmentally benign, and straightforward fashion. This novel green synthetic strategy is developed for growing dextran-coated Gd-based nanoparticles (GdNPs@Dex). The as-prepared GdNPs@Dex is not only biocompatible but also stable with a sub-10 nm size. It exhibits higher longitudinal and transverse relaxivities in water (r1 and r2 values of 5.43 and 7.502 s-1 × 10-3 m-1 of Gd3+ , respectively) than those measured for Gd-DTPA solution (r1 and r2 values of 3.42 and 3.86 s-1 × 10-3 m-1 of Gd3+ , respectively). In vivo dynamic T1 -weighted MRI in tumor-bearing mice shows GdNPs@Dex can selectively target kidneys and tumor, in addition to liver and spleen. GdNPs@Dex is found particularly capable for determining the tumor boundary with clearly enhanced tumor angiogenesis. GdNPs@Dex is also found cleared from body gradually mainly via hepatobiliary and renal processing with no obvious systemic toxicity. With this green synthesis strategy, the sub-10 nm GdNPs@Dex presents promising potentials for translational biomedical imaging applications.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Weitao Yang
- School of Materials Science and Engineering; School of Life Science; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology; Tianjin University; Tianjin 300072 China
| | - Jiani Yu
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Weisheng Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Jun Wang
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Shiyuan Liu
- Department of Radiology; Changzheng Hospital; The Second Military Medical University; Shanghai 200003 China
| | - Yi Xiao
- Department of Radiology; Changzheng Hospital; The Second Military Medical University; Shanghai 200003 China
| | - Donglu Shi
- The Institute for Translational Nanomedicine; Shanghai East Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200092 P. R. China
- Department of Mechanical and Materials Engineering; College of Engineering and Applied Science; University of Cincinnati; Cincinnati OH 45221-0072 USA
| |
Collapse
|
19
|
Wang F, Peng E, Liu F, Li P, Li SFY, Xue JM. Fluorescence-tagged amphiphilic brush copolymer encapsulated Gd2O3 core-shell nanostructures for enhanced T 1 contrast effect and fluorescent imaging. NANOTECHNOLOGY 2016; 27:425101. [PMID: 27631870 DOI: 10.1088/0957-4484/27/42/425101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To obtain suitable T 1 contrast agents for magnetic resonance imaging (MRI) application, aqueous Gd2O3 nanoparticles (NPs) with high longitudinal relativity (r 1) are demanded. High quality Gd2O3 NPs are usually synthesized through a non-hydrolytic route which requires post-synthetic modification to render the NPs water soluble. The current challenge is to obtain aqueous Gd2O3 NPs with high colloidal stability and enhanced r 1 relaxivity. To overcome this challenge, fluorescence-tagged amphiphilic brush copolymer (AFCP) encapsulated Gd2O3 NPs were proposed as suitable T 1 contrast agents. Such a coating layer provided (i) superior aqueous stability, (ii) biocompatibility, as well as (iii) multi-modality (conjugation with fluorescence dye). The polymeric coating layer thickness was simply adjusted by varying the phase-transfer parameters. By reducing the coating thickness, i.e. the distance between the paramagnetic centre and surrounding water protons, the r 1 relaxivity could be enhanced. In contrast, a thicker polymeric layer coating prevents Gd(3+) ions leakage, thus improving its biocompatibility. Therefore, it is important to strike a balance between the biocompatibility and the r 1 relaxivity behaviour. Lastly, by conjugating fluorescence moiety, an additional imaging modality was enabled, as demonstrated from the cell-labelling experiment.
Collapse
Affiliation(s)
- Fenghe Wang
- Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore (NUS), 7 Engineering Drive 1, Singapore 117574
| | | | | | | | | | | |
Collapse
|
20
|
Ni K, Zhao Z, Zhang Z, Zhou Z, Yang L, Wang L, Ai H, Gao J. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T(1) contrast ability. NANOSCALE 2016; 8:3768-74. [PMID: 26814592 DOI: 10.1039/c5nr08402d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM(-1) s(-1). Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.
Collapse
Affiliation(s)
- Kaiyuan Ni
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang CT, Padmanabhan P, Gulyás BZ. Gadolinium(iii) based nanoparticles for T1-weighted magnetic resonance imaging probes. RSC Adv 2016. [DOI: 10.1039/c6ra07782j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review summarized the recent progress on Gd(iii)-based nanoparticles asT1-weighted MRI contrast agents and multimodal contrast agents.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| | | | - Balázs Z. Gulyás
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| |
Collapse
|
22
|
|
23
|
Wang Y, Yang T, Ke H, Zhu A, Wang Y, Wang J, Shen J, Liu G, Chen C, Zhao Y, Chen H. Smart Albumin-Biomineralized Nanocomposites for Multimodal Imaging and Photothermal Tumor Ablation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3874-3882. [PMID: 25997571 DOI: 10.1002/adma.201500229] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Smart cyanine-grafted gadolinium oxide nanocrystals (Cy-GdNCs) obtained by albumin-based biomineralization are shown to be theranostic nanocomposites, with promising properties for trimodal near-infrared fluorescence/photoacoustics/magnetic-resonance imaging-guided photothermal tumor ablation.
Collapse
Affiliation(s)
- Yong Wang
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Aijun Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yangyun Wang
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Junxin Wang
- Radiology Department, Second Affiliated Hospital, Soochow University, Suzhou, 215004, China
| | - Junkang Shen
- Radiology Department, Second Affiliated Hospital, Soochow University, Suzhou, 215004, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Huabing Chen
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
24
|
Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev 2015; 115:10725-815. [DOI: 10.1021/acs.chemrev.5b00091] [Citation(s) in RCA: 799] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Dong
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Shuo-Ren Du
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Xiao-Yu Zheng
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Guang-Ming Lyu
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Ling-Dong Sun
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Lin-Dong Li
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Pei-Zhi Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chao Zhang
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing
National Laboratory
for Molecular Sciences, State Key Laboratory of Rare Earth Materials
Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth
Materials and Bioinorganic Chemistry, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Du Q, Huang Z, Wu Z, Meng X, Yin G, Gao F, Wang L. Facile preparation and bifunctional imaging of Eu-doped GdPO4 nanorods with MRI and cellular luminescence. Dalton Trans 2015; 44:3934-40. [PMID: 25630852 DOI: 10.1039/c4dt03444a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eu-doped GdPO4 NRs coated by silk fibroin have been prepared in a template of silk fibroin (SF) peptides via a mineralization process. A growth mechanism of SF-NRs is proposed to explain their stronger luminescence, better cyto-compatibility and higher longitudinal relaxivity r1.
Collapse
Affiliation(s)
- Qijun Du
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Zhongbing Huang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Zhi Wu
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Research Center for Micro & Nano Materials and Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Guangfu Yin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Fabao Gao
- Molecular Imaging Center
- Department of Radiology
- West China Hospital of Sichuan University
- Chengdu
- China
| | - Lei Wang
- Molecular Imaging Center
- Department of Radiology
- West China Hospital of Sichuan University
- Chengdu
- China
| |
Collapse
|
26
|
Gu W, Song G, Li S, Shao C, Yan C, Ye L. Chlorotoxin-conjugated, PEGylated Gd2O3nanoparticles as a glioma-specific magnetic resonance imaging contrast agent. RSC Adv 2014. [DOI: 10.1039/c4ra10934a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Tian X, Yang F, Yang C, Peng Y, Chen D, Zhu J, He F, Li L, Chen X. Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo. Int J Nanomedicine 2014; 9:4043-53. [PMID: 25187708 PMCID: PMC4149443 DOI: 10.2147/ijn.s66164] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Poor toxicity characterization is one obstacle to the clinical deployment of Gd2O3@ SiO2 core-shell nanoparticles (Gd-NPs) for use as magnetic resonance (MR) imaging contrast agents. To date, there is no systematic toxicity data available for Gd-NPs prepared by laser ablation in liquid. In this article, we systematically studied the Gd-NPs’ cytotoxicity, apoptosis in vitro, immunotoxicity, blood circulation half-life, biodistribution and excretion in vivo, as well as pharmacodynamics. The results show the toxicity, and in vivo MR data show that these NPs are a good contrast agent for preclinical applications. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd-NPs and Gd in a DTPA (diethylenetriaminepentaacetic acid) chelator. Biodistribution data reveal a greater accumulation of the Gd-NPs in the liver, spleen, lung, and tumor than in the kidney, heart, and brain. Approximately 50% of the Gd is excreted via the hepatobiliary system within 4 weeks. Furthermore, dynamic contrast-enhanced T1-weighted MR images of xenografted murine tumors were obtained after intravenous administration of the Gd-NPs. Collectively, the single step preparation of Gd-NPs by laser ablation in liquid produces particles with satisfactory cytotoxicity, minimal immunotoxicity, and efficient MR contrast. This may lead to their utility as molecular imaging contrast agents in MR imaging for cancer diagnosis.
Collapse
Affiliation(s)
- Xiumei Tian
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Fanwen Yang
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Ye Peng
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Dihu Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jixiang Zhu
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Fupo He
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Li
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaoming Chen
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
28
|
Cortie MB, Nafea EH, Chen H, Valenzuela SM, Ting SS, Sonvico F, Milthorpe B. Nanomedical research in Australia and New Zealand. Nanomedicine (Lond) 2013; 8:1999-2006. [PMID: 24279489 DOI: 10.2217/nnm.13.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although Australia and New Zealand have a combined population of less than 30 million, they have an active and interlinked community of nanomedical researchers. This report provides a synopsis and update on this network with a view to identifying the main topics of interest and their likely future trajectories. In addition, our report may also serve to alert others to opportunities for joint projects. Australian and New Zealand researchers are engaged in most of the possible nanomedical topics, but the majority of interest is focused on drug and nucleic acid delivery using nanoparticles or nanoporous constructs. There are, however, smaller programs directed at hyperthermal therapy and radiotherapy, various kinds of diagnostic tests and regenerative technologies.
Collapse
Affiliation(s)
- Michael B Cortie
- Institute for Nanoscale Technology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhu D, Liu F, Ma L, Liu D, Wang Z. Nanoparticle-based systems for T(1)-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 2013; 14:10591-607. [PMID: 23698781 PMCID: PMC3676856 DOI: 10.3390/ijms140510591] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/29/2022] Open
Abstract
Because magnetic resonance imaging (MRI) contrast agents play a vital role in diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity and advanced functionalities, is very high. During the past decade, various inorganic nanoparticles have been used as MRI contrast agents due to their unique properties, such as large surface area, easy surface functionalization, excellent contrasting effect, and other size-dependent properties. This review provides an overview of recent progress in the development of nanoparticle-based T1-weighted MRI contrast agents. The chemical synthesis of the nanoparticle-based contrast agents and their potential applications were discussed and summarized. In addition, the recent development in nanoparticle-based multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT) and T1-weighted MRI/optical were also described, since nanoparticles may curtail the shortcomings of single mode contrast agents in diagnostic and clinical settings by synergistically incorporating functionality.
Collapse
Affiliation(s)
- Derong Zhu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Guangdong Medical College, Dongwan 523770, Guangdong, China; E-Mail:
| | - Fuyao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| |
Collapse
|
30
|
Luo N, Tian X, Yang C, Xiao J, Hu W, Chen D, Li L. Ligand-free gadolinium oxide for in vivo T1-weighted magnetic resonance imaging. Phys Chem Chem Phys 2013; 15:12235-40. [DOI: 10.1039/c3cp51530c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|