1
|
Remmo A, Kosch O, Kampen L, Ludwig A, Wiekhorst F, Löwa N. Counting cells in motion by quantitative real-time magnetic particle imaging. Sci Rep 2024; 14:4253. [PMID: 38378785 PMCID: PMC10879211 DOI: 10.1038/s41598-024-54784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
Magnetic Particle Imaging (MPI) is an advanced and powerful imaging modality for visualization and quantitative real-time detection of magnetic nanoparticles (MNPs). This opens the possibility of tracking cells in vivo once they have been loaded by MNPs. Imaging modalities such as optical imaging, X-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI) face limitations, from depth of penetration and radiation exposure to resolution and quantification accuracy. MPI addresses these challenges, enabling radiation-free tracking of MNP-loaded cells with precise quantification. However, the real-time tracking of MNP-loaded cells with MPI has not been demonstrated yet. This study establishes real-time quantitative tracking of MNP-loaded cells. Therefore, THP-1 monocytes were loaded with three different MNP systems, including the MPI gold standard Resovist and Synomag. The real-time MPI experiments reveal different MPI resolution behaviors of the three MNP systems after cellular uptake. Real-time quantitative imaging was achieved by time-resolved cell number determination and comparison with the number of inserted cells. About 95% of the inserted cells were successfully tracked in a controlled phantom environment. These results underline the potential of MPI for real-time investigation of cell migration and interaction with tissue in vivo.
Collapse
Affiliation(s)
- Amani Remmo
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany.
| | - Olaf Kosch
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany
| | - Lena Kampen
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Antje Ludwig
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany
| | - Norbert Löwa
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587, Berlin, Germany
| |
Collapse
|
2
|
Estimation of SPIO Nanoparticles Uptakes by Macrophages Using Transmission Electron Microscopy. Int J Mol Sci 2022; 23:ijms232213801. [PMID: 36430278 PMCID: PMC9692596 DOI: 10.3390/ijms232213801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Due to their interesting size-dependent magnetic characteristics and relative biocompatibility, magnetic superparamagnetic iron oxide (SPIO) nanoparticles have been widely exploited as probes for cell and subcellular structure identification, as well as medication and gene delivery. A thorough understanding of the mechanics of the interaction between nanoparticles and macrophages is vital in managing dynamic processes in nanomedicine. In this study, the interaction behavior and uptake of SPIO nanoparticles by M1- and M2-type macrophages were investigated. Mice monocytes were differentiated into M1 and M2 macrophages, and the uptake of SPIO nanoparticles was studied using a TEM microscope. A high resolution image of 1 nm resolution, an image processing technique, was developed to extract the SPIO-NPs from tomographic TEM microscopic images. Lysosomes appear to be the zones of high concentrations of SPIO inside macrophages. Lysosomes were first selected in each image, and then segmentation by the Otsu thresholding method was used to extract the SPIO-NPs. The Otsu threshold method is a global thresholding technique used to automatically differentiate SPIOs from the background. The SPIO-NPs appear in red colors, and the other pixels in the image are considered background. Then, an estimation of the SPIO-NP uptakes by lysosomes is produced. Higher uptake of all-sized nanoparticles was observed in M1- and M2-type macrophages. An accurate estimation of the number of SPIO-NPs was obtained. This result will help in controlling targeted drug delivery and assessing the safety impact of the use of SPIO-NPs in nanomedicine for humans.
Collapse
|
3
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Almijalli M, Saad A, Alhussaini K, Aleid A, Alwasel A. Towards Drug Delivery Control Using Iron Oxide Nanoparticles in Three-Dimensional Magnetic Resonance Imaging. NANOMATERIALS 2021; 11:nano11081876. [PMID: 34443707 PMCID: PMC8401072 DOI: 10.3390/nano11081876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this paper was to detect and separate the cluster intensity provided by Iron oxide nanoparticles (IO-NPs), in the MRI images, to investigate the drug delivery effectiveness. IO-NPs were attached to the macrophages and inserted into the eye of the inflamed mouse’s calf. The low resolution of MRI and the tiny dimension of the IO-NPs made the situation challenging. IO-NPs serve as a marker, due to their strong intensity in the MRI, enabling us to follow the track of the macrophages. An image processing procedure was developed to estimate the position and the amount of IO-NPs spreading inside the inflamed mouse leg. A fuzzy Clustering algorithm was adopted to select the region of interest (ROI). A 3D model of the femoral region was used for the detection and then the extraction IO-NPs in the MRI images. The results achieved prove the effectiveness of the proposed method to improve the control process of targeted drug delivered. It helps in optimizing the treatment and opens a promising novel research axis for nanomedicine applications.
Collapse
Affiliation(s)
| | - Ali Saad
- Correspondence: ; Tel.: +966-508975969
| | | | | | | |
Collapse
|
5
|
Mulens-Arias V, Rojas JM, Barber DF. The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment. Front Immunol 2021; 12:693709. [PMID: 34177955 PMCID: PMC8221395 DOI: 10.3389/fimmu.2021.693709] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The synthesis and functionalization of iron oxide nanoparticles (IONPs) is versatile, which has enhanced the interest in studying them as theranostic agents over recent years. As IONPs begin to be used for different biomedical applications, it is important to know how they affect the immune system and its different cell types, especially their interaction with the macrophages that are involved in their clearance. How immune cells respond to therapeutic interventions can condition the systemic and local tissue response, and hence, the final therapeutic outcome. Thus, it is fundamental to understand the effects that IONPs have on the immune response, especially in cancer immunotherapy. The biological effects of IONPs may be the result of intrinsic features of their iron oxide core, inducing reactive oxygen species (ROS) and modulating intracellular redox and iron metabolism. Alternatively, their effects are driven by the nanoparticle coating, for example, through cell membrane receptor engagement. Indeed, exploiting these properties of IONPs could lead to the development of innovative therapies. In this review, after a presentation of the elements that make up the tumor immunological microenvironment, we will review and discuss what is currently known about the immunomodulatory mechanisms triggered by IONPs, mainly focusing on macrophage polarization and reprogramming. Consequently, we will discuss the implications of these findings in the context of plausible therapeutic scenarios for cancer immunotherapy.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - José Manuel Rojas
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA)-CSIC, Valdeolmos, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| |
Collapse
|
6
|
Aleid A, Alhussaini K, Saad AS. Nanoparticles visualization and extraction for diagnosis and therapy in nanomedicine. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nanomedicine is a rapidly developing field of science that has the potential to treat a wide range of complicated ailments. This paper uses a mouse with an inflamed calf and iron oxide nanoparticles (IO-NPs) attached to the therapeutic medicine and put into the mouse’s eye to investigate drug delivery efficiency. The idea is to track and quantify drug delivered to the inflamed calf of the mouse. A high-resolution MRI approach was used to capture images of the inflammatory calf area. Knowing that iron oxide has a high magnetic strength in MRI, image processing techniques were used to calculate the position and number of IO-NPs linked to the administered medication. This paper proposes an image processing approach for detecting and extracting IO-NPs. The images go through pre-processing steps that includes noise filtering and background removal. IO-NPs are isolated from the surrounding tissues using Otsu’s method. The number of IO-NPs grouped in the region, as well as the quantity of medications supplied to the region of interest, can be estimated using IO-NPs extraction. The findings on nanoparticle detection and extraction appear to be a potential method for estimating the amount of medicine targeting a specific location.
Collapse
|
7
|
Kolosnjaj-Tabi J, Kralj S, Griseti E, Nemec S, Wilhelm C, Plan Sangnier A, Bellard E, Fourquaux I, Golzio M, Rols MP. Magnetic Silica-Coated Iron Oxide Nanochains as Photothermal Agents, Disrupting the Extracellular Matrix, and Eradicating Cancer Cells. Cancers (Basel) 2019; 11:E2040. [PMID: 31861146 PMCID: PMC6966508 DOI: 10.3390/cancers11122040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Cancerous cells and the tumor microenvironment are among key elements involved in cancer development, progression, and resistance to treatment. In order to tackle the cells and the extracellular matrix, we herein propose the use of a class of silica-coated iron oxide nanochains, which have superior magnetic responsiveness and can act as efficient photothermal agents. When internalized by different cancer cell lines and normal (non-cancerous) cells, the nanochains are not toxic, as assessed on 2D and 3D cell culture models. Yet, upon irradiation with near infrared light, the nanochains become efficient cytotoxic photothermal agents. Besides, not only do they generate hyperthermia, which effectively eradicates tumor cells in vitro, but they also locally melt the collagen matrix, as we evidence in real-time, using engineered cell sheets with self-secreted extracellular matrix. By simultaneously acting as physical (magnetic and photothermal) effectors and chemical delivery systems, the nanochain-based platforms offer original multimodal possibilities for prospective cancer treatment, affecting both the cells and the extracellular matrix.
Collapse
Affiliation(s)
- Jelena Kolosnjaj-Tabi
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Askerceva cesta 7, 1000 Ljubljana, Slovenia;
| | - Elena Griseti
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| | - Sebastjan Nemec
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Askerceva cesta 7, 1000 Ljubljana, Slovenia;
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, Bâtiment Condorcet, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France;
| | - Anouchka Plan Sangnier
- Faculty of Pharmacy, University of Ljubljana, Askerceva cesta 7, 1000 Ljubljana, Slovenia;
| | - Elisabeth Bellard
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, 133 Route de Narbonne, 31400 Toulouse, France;
| | - Muriel Golzio
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| | - Marie-Pierre Rols
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France; (E.G.); (E.B.); (M.G.); (M.-P.R.)
| |
Collapse
|
8
|
Mulens-Arias V, Balfourier A, Nicolás-Boluda A, Carn F, Gazeau F. Disturbance of adhesomes by gold nanoparticles reveals a size- and cell type-bias. Biomater Sci 2019; 7:389-408. [PMID: 30484789 DOI: 10.1039/c8bm01267a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gold nanoparticles (AuNP) have been thoroughly studied as multifunctional theranosis agents for cell imaging and cancer therapy as well as sensors due to their tunable physical and chemical properties. Although AuNP have proved to be safe in a wide concentration range, yet other important biological effects can arise in the sublethal window of treatment. This is especially pivotal to understand how AuNP can affect cell biology when labeling steps are needed for cell tracking in vivo, as nanoparticle loading can affect cell migratory/invasion ability, a function mediated by filamentous actin-rich nanometric structures collectively called adhesomes. It is noteworthy that, although numerous research studies have addressed the cell response to AuNP loading, yet none of them focuses on adhesome dynamics as a target of intracellular pathways affected by AuNP. We intend to study the collective dynamics of adhesive F-actin rich structures upon AuNP treatment as an approach to understand the complex AuNP-triggered modulation of migration/invasion related cellular functions. We demonstrated that citrate-coated spherical AuNP of different sizes (3, 11, 16, 30 and 40 nm) disturbed podosome-forming rosettes and the resulting extracellular matrix (ECM) degradation in a murine macrophage model depending on core size. This phenomenon was accompanied by a reduction in metalloproteinase MMP2 and an increment in metalloproteinase inhibitors, TIMP-1/2 and SerpinE1. We also found that AuNP treatment has opposite effects on focal adhesions (FA) in endothelial and mesenchymal stem cells. While endothelial cells reduced their mature FA number and ECM degradation rate upon AuNP treatment, mouse mesenchymal stem cells increased the number and size of mature FA and, therefore, the ECM degradation rate. Overall, AuNP appear to disturb adhesive structures and therefore migratory/invasive cell functions measured as ECM degradation ability, providing new insights into AuNP-cell interaction depending on cell type.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7075, CNRS and Université Paris Diderot, Université Sorbonne Paris Cité (USPC), 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
| | | | | | | | | |
Collapse
|
9
|
Atanasov G, Schierle K, Hau HM, Dietel C, Krenzien F, Brandl A, Wiltberger G, Englisch JP, Robson SC, Reutzel-Selke A, Pascher A, Jonas S, Pratschke J, Benzing C, Schmelzle M. Prognostic Significance of Tumor Necrosis in Hilar Cholangiocarcinoma. Ann Surg Oncol 2016; 24:518-525. [PMID: 27480355 DOI: 10.1245/s10434-016-5472-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Tumor necrosis and peritumoral fibrosis have both been suggested to have a prognostic value in selected solid tumors. However, little is known regarding their influence on tumor progression and prognosis in hilar cholangiocarcinoma (HC). METHODS Surgically resected tumor specimens of HC (n = 47) were analyzed for formation of necrosis and extent of peritumoral fibrosis. Tumor necrosis and grade of fibrosis were assessed histologically and correlated with clinicopathological characteristics, tumor recurrence, and patients' survival. Univariate Kaplan-Meier analysis and a stepwise multivariable Cox regression model were applied. RESULTS Mild peritumoral fibrosis was evident in 12 tumor samples, moderate peritumoral fibrosis in 20, and high-grade fibrosis in 15. Necrosis was evident in 19 of 47 tumor samples. Patients with tumors characterized by necrosis showed a significantly decreased 5-year recurrence-free survival (37.9 vs. 25.7 %; p < .05) and a significantly decreased 5-year overall survival (42.6 vs. 12.4 %; p < .05), when compared with patients with tumors showing no necrosis. R status, tumor recurrence, and tumor necrosis were of prognostic value in the univariate analysis (all p < .05). Multivariate survival analysis confirmed tumor necrosis (p = .038) as the only independent prognostic variable. CONCLUSIONS The assessment of tumor necrosis appears as a valuable additional prognostic tool in routine histopathological evaluation of HC. These observations might have implications for monitoring and more individualized multimodal therapeutic strategies.
Collapse
Affiliation(s)
- Georgi Atanasov
- Department of Surgery, Campus Virchow and Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Katrin Schierle
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Hans-Michael Hau
- Department of Visceral-, Transplantation-, Thoracic- and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Corinna Dietel
- Department of Visceral-, Transplantation-, Thoracic- and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Felix Krenzien
- Department of Surgery, Campus Virchow and Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Brandl
- Department of Surgery, Campus Virchow and Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Wiltberger
- Department of Visceral-, Transplantation-, Thoracic- and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Julianna Paulina Englisch
- Department of Surgery, Campus Virchow and Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon C Robson
- The Transplant Institute and Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Virchow and Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Pascher
- Department of Surgery, Campus Virchow and Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Jonas
- Department of Hepato-Pancreato-Biliary Surgery, 310Klinik Nürnberg, Nuremberg, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Virchow and Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Benzing
- Department of Surgery, Campus Virchow and Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Schmelzle
- Department of Surgery, Campus Virchow and Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Pagoto A, Stefania R, Garello F, Arena F, Digilio G, Aime S, Terreno E. Paramagnetic Phospholipid-Based Micelles Targeting VCAM-1 Receptors for MRI Visualization of Inflammation. Bioconjug Chem 2016; 27:1921-30. [DOI: 10.1021/acs.bioconjchem.6b00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amerigo Pagoto
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126-Torino, Italy
| | - Rachele Stefania
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126-Torino, Italy
| | - Francesca Garello
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126-Torino, Italy
| | - Francesca Arena
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126-Torino, Italy
| | - Giuseppe Digilio
- DISIT,
Università
del Piemonte Orientale “A. Avogadro”, Via T. Michel 11, 15121 Alessandria, Italy
| | - Silvio Aime
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126-Torino, Italy
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126-Torino, Italy
| |
Collapse
|
11
|
Heuke S, Chernavskaia O, Bocklitz T, Legesse FB, Meyer T, Akimov D, Dirsch O, Ernst G, von Eggeling F, Petersen I, Guntinas-Lichius O, Schmitt M, Popp J. Multimodal nonlinear microscopy of head and neck carcinoma - toward surgery assisting frozen section analysis. Head Neck 2016; 38:1545-52. [PMID: 27098552 DOI: 10.1002/hed.24477] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 01/06/2016] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of early cancer stages is deeply connected to a good prognosis, a moderate reduction of the quality of life, and comparably low treatment costs. METHODS Head and neck squamous cell carcinomas were investigated using the multimodal combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second-harmonic generation (SHG) microscopy. RESULTS An increased median TPEF to CARS contrast was found comparing cancerous and healthy squamous epithelium with a p value of 1.8·10(-10) . A following comprehensive image analysis was able to predict the diagnosis of imaged tissue sections with an overall accuracy of 90% for a 4-class model. CONCLUSION Nonlinear multimodal imaging is verified objectively as a valuable diagnostic tool that complements conventional staining protocols and can serve as filter in future clinical routine reducing the pathologist's workload. © 2016 Wiley Periodicals, Inc. Head Neck 38: First-1552, 2016.
Collapse
Affiliation(s)
- Sandro Heuke
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Olga Chernavskaia
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Fisseha Bekele Legesse
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Tobias Meyer
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Denis Akimov
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz, Chemnitz, Germany
| | - Günther Ernst
- Leibniz Institute of Photonic Technology, Jena, Germany.,Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Ferdinand von Eggeling
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany.,Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | | | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany. .,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
12
|
Rubio-Navarro A, Carril M, Padro D, Guerrero-Hue M, Tarín C, Samaniego R, Cannata P, Cano A, Villalobos JMA, Sevillano ÁM, Yuste C, Gutiérrez E, Praga M, Egido J, Moreno JA. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles. Theranostics 2016; 6:896-914. [PMID: 27162559 PMCID: PMC4860897 DOI: 10.7150/thno.14915] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Macrophages play an important role in rhabdomyolysis-acute kidney injury (AKI), although the molecular mechanisms involved in macrophage differentiation are poorly understood. We analyzed the expression and regulation of CD163, a membrane receptor mainly expressed by anti-inflammatory M2 macrophages, in rhabdomyolysis-AKI and developed targeted probes for its specific detection in vivo by MRI. Intramuscular injection of glycerol in mice promoted an early inflammatory response, with elevated proportion of M1 macrophages, and partial differentiation towards a M2 phenotype in later stages, where increased CD163 expression was observed. Immunohistological studies confirmed the presence of CD163-macrophages in human rhabdomyolysis-AKI. In cultured macrophages, myoglobin upregulated CD163 expression via HO-1/IL-10 axis. Moreover, we developed gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody that specifically targeted CD163 in kidneys from glycerol-injected mice, as determined by MRI studies, and confirmed by electron microscopy and immunological analysis. Our findings are the first to demonstrate that CD163 is present in both human and experimental rhabdomyolysis-induced AKI, suggesting an important role of this molecule in this pathological condition. Therefore, the use of probes targeting CD163-macrophages by MRI may provide important information about the cellular composition of renal lesion in rhabdomyolysis.
Collapse
|
13
|
Atanasov G, Hau HM, Dietel C, Benzing C, Krenzien F, Brandl A, Wiltberger G, Matia I, Prager I, Schierle K, Robson SC, Reutzel-Selke A, Pratschke J, Schmelzle M, Jonas S. Prognostic significance of macrophage invasion in hilar cholangiocarcinoma. BMC Cancer 2015; 15:790. [PMID: 26497197 PMCID: PMC4620011 DOI: 10.1186/s12885-015-1795-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) promote tumor progression and have an effect on survival in human cancer. However, little is known regarding their influence on tumor progression and prognosis in human hilar cholangiocarcinoma. Methods We analyzed surgically resected tumor specimens of hilar cholangiocarcinoma (n = 47) for distribution and localization of TAMs, as defined by expression of CD68. Abundance of TAMs was correlated with clinicopathologic characteristics, tumor recurrence and patients’ survival. Statistical analysis was performed using SPSS software. Results Patients with high density of TAMs in tumor invasive front (TIF) showed significantly higher local and overall tumor recurrence (both ρ < 0.05). Furthermore, high density of TAMs was associated with decreased overall (one-year 83.6 % vs. 75.1 %; three-year 61.3 % vs. 42.4 %; both ρ < 0.05) and recurrence-free survival (one-year 93.9 % vs. 57.4 %; three-year 59.8 % vs. 26.2 %; both ρ < 0.05). TAMs in TIF and tumor recurrence, were confirmed as the only independent prognostic variables in the multivariate survival analysis (all ρ < 0.05). Conclusions Overall survival and recurrence free survival of patients with hilar cholangiocarcinoma significantly improved in patients with low levels of TAMs in the area of TIF, when compared to those with a high density of TAMs. These observations suggest their utilization as valuable prognostic markers in routine histopathologic evaluation, and might indicate future therapeutic approaches by targeting TAMs.
Collapse
Affiliation(s)
- Georgi Atanasov
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Hans-Michael Hau
- Department of Visceral-, Transplantation-, Thoracic- and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany.
| | - Corinna Dietel
- Department of Visceral-, Transplantation-, Thoracic- and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany.
| | - Christian Benzing
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Felix Krenzien
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Andreas Brandl
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Georg Wiltberger
- Department of Visceral-, Transplantation-, Thoracic- and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany.
| | - Ivan Matia
- Department of Visceral-, Transplantation-, Thoracic- and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany.
| | - Isabel Prager
- Department of Visceral-, Transplantation-, Thoracic- and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany.
| | - Katrin Schierle
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany.
| | - Simon C Robson
- The Transplant Institute and Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA.
| | - Anja Reutzel-Selke
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Johann Pratschke
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Moritz Schmelzle
- Department of General, Visceral and Transplantation Surgery and Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Translational Centre for Regenerative Medicine, Leipzig University, Leipzig, Germany.
| | - Sven Jonas
- Centre Hépato-Biliaire, Université Paris Sud, Hôpital Paul Brousse, Paris, France.
| |
Collapse
|
14
|
Antitumoral Effect of Mural Cells Assessed With High-Resolution MRI and Fluorescence Microscopy. AJR Am J Roentgenol 2015; 205:W11-8. [PMID: 26102408 DOI: 10.2214/ajr.14.13680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study was to detect labeled mural cells in vivo and study their therapeutic effect on tumor growth and on functional changes in the vascular network by use of MRI and fibered confocal fluorescence microscopy (FCFM). MATERIALS AND METHODS Twenty-eight mice were allocated to the following three groups 7 days after injection of TC1 tumor cells (C157 black 6): control, no injection (n = 7); sham, injection of phosphate-buffered saline solution (n = 10); and treated, injection of human mural cells (n = 11). Tumor growth was measured with calipers. Labeled mural cells were tracked with high-resolution MRI and FCFM. Microvessel density was assessed with MRI and FCFM, and the findings were compared with the histologic results. RESULTS Tumor growth was significantly slowed in the treated group starting on day 10 (p = 0.001). Round signal-intensity voids were observed in the center of six of seven tumors treated with magnetically labeled mural cells. Positive staining for iron was observed in histologic sections of two of five of these tumors. Microvessel density measured with FCFM was greater in the treated mice (p = 0.03). Flow cytometry revealed viable human mural cells only in treated tumors. CONCLUSION In this study, imaging techniques such as high-resolution MRI and FCFM showed the therapeutic effect of mural cell injection on tumor growth and microvessel function.
Collapse
|
15
|
Al Faraj A, Shaik AS, Alnafea M. Intrapulmonary administration of bone-marrow derived M1/M2 macrophages to enhance the resolution of LPS-induced lung inflammation: noninvasive monitoring using free-breathing MR and CT imaging protocols. BMC Med Imaging 2015; 15:16. [PMID: 25986463 PMCID: PMC4449577 DOI: 10.1186/s12880-015-0059-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/13/2015] [Indexed: 01/24/2023] Open
Abstract
Background Alveolar macrophages, with their high functional plasticity, were reported to orchestrate the induction and resolution of inflammatory processes in chronic pulmonary diseases. Noninvasive imaging modalities that offer simultaneous monitoring of inflammation progression and tracking of macrophages subpopulations involved in the inflammatory cascade, can provide an ideal and specific diagnostic tool to visualize the action mechanism in its initial stages. Therefore, the purpose of the current study was to evaluate the role of M1 and M2 macrophages in the resolution of lipopolysaccharide (LPS)-induced lung inflammation and monitor this process using noninvasive free-breathing MRI and CT protocols. Methods Bone-marrow derived macrophages were first polarized to M1 and M2 macrophages and then labeled with superparamagnetic iron oxide nanoparticles. BALB/c mice with lung inflammation received an intrapulmonary instillation of these ex vivo polarized M1 or M2 macrophages. The biodistribution of macrophages subpopulations and the subsequent resolution of lung inflammation were noninvasively monitored using MRI and micro-CT. Confirmatory immunohistochemistry analyses were performed on lung tissue sections using specific macrophage markers. Results As expected, large inflammatory areas noninvasively imaged using pulmonary MR and micro-CT were observed within the lungs following LPS challenge. Subsequent intrapulmonary administration of M1 and M2 macrophages resulted in a significant decrease in inflammation starting from 72 h. Confirmatory immunohistochemistry analyses established a progression of lung inflammation with LPS and its subsequent reduction with both macrophages subsets. An enhanced resolution of inflammation was observed with M2 macrophages compared to M1. Conclusions The current study demonstrated that ex vivo polarized macrophages decreased LPS-induced lung inflammation. Noninvasive free-breathing MR and CT imaging protocols enabled efficient monitoring of progression and resolution of lung inflammation.
Collapse
Affiliation(s)
- Achraf Al Faraj
- Molecular & Cellular Imaging Lab, Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
| | - Asma Sultana Shaik
- Prince Naif Health Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohammed Alnafea
- Molecular & Cellular Imaging Lab, Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
16
|
|
17
|
Modo M, Kolosnjaj-Tabi J, Nicholls F, Ling W, Wilhelm C, Debarge O, Gazeau F, Clement O. Considerations for the clinical use of contrast agents for cellular MRI in regenerative medicine. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 8:439-55. [PMID: 24375900 DOI: 10.1002/cmmi.1547] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/21/2013] [Accepted: 05/09/2013] [Indexed: 12/24/2022]
Abstract
Advances in regenerative medicine are rapidly transforming healthcare. A cornerstone of regenerative medicine is the introduction of cells that were grown or manipulated in vitro. Key questions that arise after these cells are re-introduced are: whether these cells are localized in the appropriate site; whether cells survive; and whether these cells migrate. These questions predominantly relate to the safety of the therapeutic approach (i.e. tumorigenesis), but certain aspects can also influence the efficacy of the therapeutic approach (e.g. site of injection). The European Medicines Agency has indicated that suitable methods for stem cell tracking should be applied where these methods are available. We here discuss the European regulatory framework, as well as the scientific evidence, that should be considered to facilitate the potential clinical implementation of magnetic resonance imaging contrast media to track implanted/injected cells in human studies.
Collapse
Affiliation(s)
- Michel Modo
- University of Pittsburgh, Department of Radiology, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15203, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Al Faraj A, Shaik AS, Afzal S, Al Sayed B, Halwani R. MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. Int J Nanomedicine 2014; 9:1491-503. [PMID: 24711699 PMCID: PMC3969341 DOI: 10.2147/ijn.s59394] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Targeting and noninvasive imaging of a specific alveolar macrophage subpopulation in the lung has revealed the importance for early and better diagnosis and therapy of chronic obstructive pulmonary disease (COPD). In this study, the in vivo effect of pulmonary administration of iron oxide nanoparticles on the polarization profile of macrophages was assessed, and a noninvasive free-breathing magnetic resonance imaging (MRI) protocol coupled with the use of biocompatible antibody-conjugated superparamagnetic iron oxide (SPIO) nanoparticles was developed to enable specific targeting and imaging of a particular macrophage subpopulation in lipopolysaccharide-induced COPD mice model. Materials and methods Enzyme-linked immunosorbent assay, Real-time polymerase chain reaction, and flow cytometry analysis were performed to assess the biocompatibility of PEGylated dextran-coated SPIO nanoparticles. Specific biomarkers for M1 and M2 macrophages subsets were selected for conjugation with magnetic nanoparticles. MRI protocol using ultra-short echo time sequence was optimized to enable simultaneous detection of inflammation progress in the lung and detection of macrophages subsets. Flow cytometry and immunohistochemistry analysis were finally performed to confirm MRI readouts and to characterize the polarization profile of targeted macrophages. Results The tested SPIO nanoparticles, under the current experimental conditions, were found to be biocompatible for lung administration in preclinical settings. Cluster of differentiation (CD)86- and CD206-conjugated magnetic nanoparticles enabled successful noninvasive detection of M1 and M2 macrophage subpopulations, respectively, and were found to co-localize with inflammatory regions induced by lipopolysaccharide challenge. No variation in the polarization profile of targeted macrophages was observed, even though a continuum switch in their polarization might occur. However, further confirmatory studies are required to conclusively establish this observation. Conclusion Coupling of magnetic iron oxide nanoparticles with a specific antibody targeted to a particular macrophage subpopulation could offer a promising strategy for an early and better diagnosis of pulmonary inflammatory diseases using noninvasive MRI.
Collapse
Affiliation(s)
- Achraf Al Faraj
- King Saud University, College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, Riyadh, Saudi Arabia
| | - Asma Sultana Shaik
- King Saud University, College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, Riyadh, Saudi Arabia
| | - Sibtain Afzal
- King Saud University, Prince Naif Center for Immunology Research, Asthma Research Chair, College of Medicine, Riyadh, Saudi Arabia
| | - Baraa Al Sayed
- King Saud University, College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, Riyadh, Saudi Arabia
| | - Rabih Halwani
- King Saud University, Prince Naif Center for Immunology Research, Asthma Research Chair, College of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Al Faraj A, Sultana Shaik A, Pureza MA, Alnafea M, Halwani R. Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI. PLoS One 2014; 9:e90829. [PMID: 24598763 PMCID: PMC3945006 DOI: 10.1371/journal.pone.0090829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/05/2014] [Indexed: 11/22/2022] Open
Abstract
Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of chronic obstructive respiratory diseases (COPD), which make them attractive vehicles to deliver contrast agents for diagnostic or drugs for therapeutic purposes. This study was designed to monitor and evaluate the migration of differently polarized M1 and M2 iron labeled macrophage subsets to the lung of a LPS-induced COPD animal model and to assess their polarization state once they have reached the inflammatory sites in the lung after intravenous injection. Ex vivo polarized bone marrow derived M1 or M2 macrophages were first efficiently and safely labeled with amine-modified PEGylated dextran-coated SPIO nanoparticles and without altering their polarization profile. Their biodistribution in abdominal organs and their homing to the site of inflammation in the lung was tracked for the first time using a free-breathing non-invasive MR imaging protocol on a 4.7T magnet after their intravenous administration. This imaging protocol was optimized to allow both detection of iron labeled macrophages and visualization of inflammation in the lung. M1 and M2 macrophages were successfully detected in the lung starting from 2 hours post injection with no variation in their migration profile. Quantification of cytokines release, analysis of surface membrane expression using flow cytometry and immunohistochemistry investigations confirmed the successful recruitment of injected iron labeled macrophages in the lung of COPD mice and revealed that even with a continuum switch in the polarization profile of M1 and M2 macrophages during the time course of inflammation a balanced number of macrophage subsets predominate.
Collapse
Affiliation(s)
- Achraf Al Faraj
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Asma Sultana Shaik
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, Saudi Arabia
| | - Mary Angeline Pureza
- Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alnafea
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Legacz M, Roepke K, Giersig M, Pison U. Contrast Agents and Cell Labeling Strategies for <i>in Vivo</i> Imaging. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/anp.2014.32007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Valetti S, Mura S, Stella B, Couvreur P. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. J Nanobiotechnology 2013; 11 Suppl 1:S6. [PMID: 24564841 PMCID: PMC4029540 DOI: 10.1186/1477-3155-11-s1-s6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field.
Collapse
|
22
|
Kolosnjaj-Tabi J, Wilhelm C, Clément O, Gazeau F. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnology 2013; 11 Suppl 1:S7. [PMID: 24564857 PMCID: PMC4029272 DOI: 10.1186/1477-3155-11-s1-s7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo.
Collapse
|
23
|
Hachani R, Lowdell M, Birchall M, Thanh NTK. Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. NANOSCALE 2013; 5:11362-11373. [PMID: 24108444 DOI: 10.1039/c3nr03861k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The use of human stem cells (SCs) in tissue engineering holds promise in revolutionising the treatment of numerous diseases. There is a pressing need to comprehend the distribution, movement and role of SCs once implanted onto scaffolds. Nanotechnology has provided a platform to investigate this through the development of inorganic magnetic nanoparticles (MNPs). MNPs can be used to label and track SCs by magnetic resonance imaging (MRI) since this clinically available imaging modality has high spatial resolution. In this review, we highlight recent applications of iron oxide and gadolinium based MNPs in SC labelling and MRI; and offer novel considerations for their future development.
Collapse
Affiliation(s)
- Roxanne Hachani
- Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
24
|
Di Corato R, Gazeau F, Le Visage C, Fayol D, Levitz P, Lux F, Letourneur D, Luciani N, Tillement O, Wilhelm C. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs. ACS NANO 2013; 7:7500-12. [PMID: 23924160 DOI: 10.1021/nn401095p] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recent advances in cell therapy and tissue engineering opened new windows for regenerative medicine, but still necessitate innovative noninvasive imaging technologies. We demonstrate that high-resolution magnetic resonance imaging (MRI) allows combining cellular-scale resolution with the ability to detect two cell types simultaneously at any tissue depth. Two contrast agents, based on iron oxide and gadolinium oxide rigid nanoplatforms, were used to "tattoo" endothelial cells and stem cells, respectively, with no impact on cell functions, including their capacity for differentiation. The labeled cells' contrast properties were optimized for simultaneous MRI detection: endothelial cells and stem cells seeded together in a polysaccharide-based scaffold material for tissue engineering appeared respectively in black and white and could be tracked, at the cellular level, both in vitro and in vivo. In addition, endothelial cells labeled with iron oxide nanoparticles could be remotely manipulated by applying a magnetic field, allowing the creation of vessel substitutes with in-depth detection of individual cellular components.
Collapse
Affiliation(s)
- Riccardo Di Corato
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Diderot , France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lamanna G, Garofalo A, Popa G, Wilhelm C, Bégin-Colin S, Felder-Flesch D, Bianco A, Gazeau F, Ménard-Moyon C. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations. NANOSCALE 2013; 5:4412-21. [PMID: 23579421 DOI: 10.1039/c3nr00636k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.
Collapse
Affiliation(s)
- Giuseppe Lamanna
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, UPR 3572, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|