1
|
Cheng HLM. A primer on in vivo cell tracking using MRI. Front Med (Lausanne) 2023; 10:1193459. [PMID: 37324153 PMCID: PMC10264782 DOI: 10.3389/fmed.2023.1193459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Cell tracking by in vivo magnetic resonance imaging (MRI) offers a collection of multiple advantages over other imaging modalities, including high spatial resolution, unlimited depth penetration, 3D visualization, lack of ionizing radiation, and the potential for long-term cell monitoring. Three decades of innovation in both contrast agent chemistry and imaging physics have built an expansive array of probes and methods to track cells non-invasively across a diverse range of applications. In this review, we describe both established and emerging MRI cell tracking approaches and the variety of mechanisms available for contrast generation. Emphasis is given to the advantages, practical limitations, and persistent challenges of each approach, incorporating quantitative comparisons where possible. Toward the end of this review, we take a deeper dive into three key application areas - tracking cancer metastasis, immunotherapy for cancer, and stem cell regeneration - and discuss the cell tracking techniques most suitable to each.
Collapse
Affiliation(s)
- Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, ON, Canada
| |
Collapse
|
2
|
Mignion L, Desmet CM, Harkemanne E, Tromme I, Joudiou N, Wehbi M, Baurain JF, Gallez B. Noninvasive detection of the endogenous free radical melanin in human skin melanomas using electron paramagnetic resonance (EPR). Free Radic Biol Med 2022; 190:226-233. [PMID: 35987421 DOI: 10.1016/j.freeradbiomed.2022.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
We explored the capability of low-frequency Electron Paramagnetic Resonance (EPR) to noninvasively detect melanin (a stable semiquinone free radical) in the human skin. As previous in vitro studies on biopsies suggested that the EPR signal from melanin was different when measured in skin melanomas or benign nevi, we conducted a prospective first-in-man clinical EPR study in patients with skin lesions suspicious of melanoma. EPR spectra were obtained using a spectrometer operating at 1 GHz, with a surface coil placed over the area of interest. Two clinical studies were carried out: 1) healthy volunteers (n = 45) presenting different skin phototypes; 2) patients (n = 88) with skin lesions suspicious of melanoma (n = 100) requiring surgical resection. EPR data obtained before surgery were compared with histopathology results. The method was not sensitive enough to measure differences in melanin content due to changes in skin pigmentation. In patients, 92% of the spectra were analyzable. The EPR signal of melanin was significantly higher (p < 0.0001) in melanoma lesions (n = 26) than that in benign atypical nevi (n = 62). A trend toward a higher signal intensity (though not significant) was observed in high Breslow depth melanomas (a marker of skin invasion) than in low Breslow lesions. To date, no naturally occurring free radicals have been detected by low-frequency EPR systems adapted for clinical studies. Here, we demonstrated for the first time the ability of this technology to detect an endogenous free radical, opening new avenues for evaluating clinical EPR as a potential aid in the diagnosis of pigmented skin lesions.
Collapse
Affiliation(s)
- Lionel Mignion
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute, Nuclear and Electron Spin Technologies Platform, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Celine M Desmet
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Evelyne Harkemanne
- Dermatology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Tromme
- Dermatology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nicolas Joudiou
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute, Nuclear and Electron Spin Technologies Platform, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Mohammad Wehbi
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
3
|
Ma M, Hua S, Min X, Wang L, Li J, Wu P, Liang H, Zhang B, Chen X, Xiang S. p53 positively regulates the proliferation of hepatic progenitor cells promoted by laminin-521. Signal Transduct Target Ther 2022; 7:290. [PMID: 36042225 PMCID: PMC9427945 DOI: 10.1038/s41392-022-01107-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 07/04/2022] [Indexed: 01/20/2023] Open
Abstract
Hepatic progenitor cells (HPCs) hold tremendous potential for liver regeneration, but their well-known limitation of proliferation hampers their broader use. There is evidence that laminin is required for the proliferation of HPCs, but the laminin isoform that plays the dominant role and the key intracellular downstream targets that mediate the regulation of HPC proliferation have yet to be determined. Here we showed that p53 expression increased gradually and reached maximal levels around 8 days when laminin α4, α5, β2, β1, and γ1 subunit levels also reached a maximum during HPC activation and expansion. Laminin-521 (LN-521) promoted greater proliferation of HPCs than do laminin, matrigel or other laminin isoforms. Inactivation of p53 by PFT-α or Ad-p53V143A inhibited the promotion of proliferation by LN-521. Further complementary MRI and bioluminescence imaging analysis showed that p53 inactivation decreased the proliferation of transplanted HPCs in vivo. p53 was activated by LN-521 through the Integrin α6β1/FAK-Src-Paxillin/Akt axis. Activated p53 was involved in the nuclear translocation of CDK4 and inactivation of Rb by inducing p27Kip1. Taken together, this study identifies LN-521 as an ideal candidate substrate for HPC culture and uncovers an unexpected positive role for p53 in regulating proliferation of HPCs, which makes it a potential target for HPC-based regenerative medicine.
Collapse
Affiliation(s)
- Mingyang Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyao Hua
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Ping Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China.
| |
Collapse
|
4
|
Liu L, Schuetze R, Gerberich JL, Lopez R, Odutola SO, Tanpure RP, Charlton-Sevcik AK, Tidmore JK, Taylor EAS, Kapur P, Hammers H, Trawick ML, Pinney KG, Mason RP. Demonstrating Tumor Vascular Disrupting Activity of the Small-Molecule Dihydronaphthalene Tubulin-Binding Agent OXi6196 as a Potential Therapeutic for Cancer Treatment. Cancers (Basel) 2022; 14:4208. [PMID: 36077745 PMCID: PMC9454770 DOI: 10.3390/cancers14174208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The vascular disrupting activity of a promising tubulin-binding agent (OXi6196) was demonstrated in mice in MDA-MB-231 human breast tumor xenografts growing orthotopically in mammary fat pad and syngeneic RENCA kidney tumors growing orthotopically in the kidney. To enhance water solubility, OXi6196, was derivatized as its corresponding phosphate prodrug salt OXi6197, facilitating effective delivery. OXi6197 is stable in water, but rapidly releases OXi6196 in the presence of alkaline phosphatase. At low nanomolar concentrations OXi6196 caused G2/M cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells and monolayers of rapidly growing HUVECs underwent concentration-dependent changes in their morphology. Loss of the microtubule structure and increased bundling of filamentous actin into stress fibers followed by cell collapse, rounding and blebbing was observed. OXi6196 (100 nM) disrupted capillary-like endothelial networks pre-established with HUVECs on Matrigel®. When prodrug OXi6197 was administered to mice bearing orthotopic MDA-MB-231-luc tumors, dynamic bioluminescence imaging (BLI) revealed dose-dependent vascular shutdown with >80% signal loss within 2 h at doses ≥30 mg/kg and >90% shutdown after 6 h for doses ≥35 mg/kg, which remained depressed by at least 70% after 24 h. Twice weekly treatment with prodrug OXi6197 (20 mg/kg) caused a significant tumor growth delay, but no overall survival benefit. Similar efficacy was observed for the first time in orthotopic RENCA-luc tumors, which showed massive hemorrhage and necrosis after 24 h. Twice weekly dosing with prodrug OXi6197 (35 mg/kg) caused tumor growth delay in most orthotopic RENCA tumors. Immunohistochemistry revealed extensive necrosis, though with surviving peripheral tissues. These results demonstrate effective vascular disruption at doses comparable to the most effective vascular-disrupting agents (VDAs) suggesting opportunities for further development.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeni L. Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ramona Lopez
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel O. Odutola
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Justin K. Tidmore
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Emily A.-S. Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Payal Kapur
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hans Hammers
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Thi Kim Dung D, Umezawa M, Nigoghossian K, Yeroslavsky G, Okubo K, Kamimura M, Yamaguchi M, Fujii H, Soga K. Development of Molecular Imaging Probe for Dual NIR/MR Imaging. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Doan Thi Kim Dung
- Research Institute for Biomedical Science, Tokyo University of Science
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center
| | - Masakazu Umezawa
- Department of Material Science and Technology, Tokyo University of Science
| | | | | | - Kyohei Okubo
- Department of Material Science and Technology, Tokyo University of Science
- Imaging Frontier Center (IFC), Tokyo University of Science
| | - Masao Kamimura
- Department of Material Science and Technology, Tokyo University of Science
- Imaging Frontier Center (IFC), Tokyo University of Science
| | - Masayuki Yamaguchi
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center
| | - Hirofumi Fujii
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center
| | - Kohei Soga
- Research Institute for Biomedical Science, Tokyo University of Science
- Department of Material Science and Technology, Tokyo University of Science
- Imaging Frontier Center (IFC), Tokyo University of Science
| |
Collapse
|
6
|
Partain BD, Unni M, Rinaldi C, Allen KD. The clearance and biodistribution of magnetic composite nanoparticles in healthy and osteoarthritic rat knees. J Control Release 2020; 321:259-271. [PMID: 32004585 PMCID: PMC7942179 DOI: 10.1016/j.jconrel.2020.01.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
Intra-articular injections are the most direct route for administering osteoarthritis (OA) therapies, yet how drug carriers distribute within the joint remains understudied. To this end, we developed a magnetic composite nanoparticle that can be tracked with fluorescence in vivo via an in vivo imaging system (IVIS), and quantified ex vivo via electron paramagnetic resonance (EPR) spectroscopy. Using this particle, the effects of age and OA pathogenesis on particle clearance and distribution were evaluated in the medial meniscus transection model of OA (5-, 10-, and 15-month old male Lewis rats). At 9 weeks after meniscus transection, composite nanoparticles were injected and joint clearance was assessed via IVIS. At 2 weeks after injection, animals were euthanized and particle distribution was quantified ex vivo via EPR spectroscopy. IVIS and EPR spectroscopy data indicate a predominant amount of particles remained in the joint after 14 days. EPR spectroscopy data suggests particles cleared more slowly from OA knees than from the contralateral control, with particles clearing more slowly from 15-month old rats than from 5- and 10-month old rats. This study demonstrates the importance of including both age and OA as factors when evaluating nanoparticles for intra-articular drug delivery.
Collapse
Affiliation(s)
- Brittany D Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mythreyi Unni
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, University of Florida, Gainesville, FL, USA.
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies. Oncotarget 2018; 8:38876-38885. [PMID: 28467814 PMCID: PMC5503579 DOI: 10.18632/oncotarget.17103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells.
Collapse
|
8
|
Jiang J, Tian S, Wang K, Wang Y, Zang S, Yu A, Zhang Z. Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe. Anal Bioanal Chem 2017; 410:1817-1824. [PMID: 29279988 DOI: 10.1007/s00216-017-0837-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022]
Abstract
With the help of iron oxide nanoparticles, electron spin resonance spectroscopy (ESR) was applied to immunoassay. Iron oxide nanoparticles were used as the ESR probe in order to achieve an amplification of the signal resulting from the large amount of Fe3+ ion enclosed in each nanoparticle. Rabbit IgG was used as antigen to test this method. Polyclonal antibody of rabbit IgG was used as antibody to detect the antigen. Iron oxide nanoparticle with a diameter of either 10 or 30 nm was labeled to the antibody, and Fe3+ in the nanoparticle was probed for ESR signal. The sepharose beads were used as solid phase to which rabbit IgG was conjugated. The nanoparticle-labeled antibody was first added in the sample containing antigen, and the antigen-conjugated sepharose beads were then added into the sample. The nanoparticle-labeled antibody bound to the antigen on sepharose beads was separated from the sample by centrifugation and measured. We found that the detection ranges of the antigen obtained with nanoparticles of different sizes were different because the amount of antibody on nanoparticles of 10 nm was about one order of magnitude higher than that on nanoparticles of 30 nm. When 10 nm nanoparticle was used as probe, the upper limit of detection was 40.00 μg mL-1, and the analytical sensitivity was 1.81 μg mL-1. When 30 nm nanoparticle was used, the upper limit of detection was 3.00 μg mL-1, and the sensitivity was 0.014 and 0.13 μg mL-1 depending on the ratio of nanoparticle to antibody. Graphical abstract Schematic diagram of procedure and ESR spectra.
Collapse
Affiliation(s)
- Jia Jiang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, Jilin, 130012, China
| | - Sizhu Tian
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, Jilin, 130012, China
| | - Kun Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, Jilin, 130012, China
| | - Yang Wang
- Department of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, 132022, China
| | - Shuang Zang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, Jilin, 130012, China
| | - Aimin Yu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, Jilin, 130012, China
| | - Ziwei Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, Jilin, 130012, China.
| |
Collapse
|
9
|
Thi Kim Dung D, Fukushima S, Furukawa T, Niioka H, Sannomiya T, Kobayashi K, Yukawa H, Baba Y, Hashimoto M, Miyake J. Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E163. [PMID: 28335291 PMCID: PMC5224635 DOI: 10.3390/nano6090163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/30/2023]
Abstract
Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL), and near-infrared (NIR), as favored by imaging probe Gd₂O₃ co-doped lanthanide nanophosphors (NPPs). A series of Gd₂O₃:Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide range of emissions spanning from the visible to the NIR region under 980 nm excitation. The dependence of the upconverting (UC)/downconverting (DC) emission intensity on the dopant ratio is investigated. The optimum ratios of dopants obtained for emissions in the NIR regions at 810 nm, 1200 nm, and 1530 nm are applied to produce nanoparticles by the homogeneous precipitation (HP) method. The nanoparticles produced from the HP method are used to investigate the dual NIR and CL imaging modalities. The results indicate the possibility of using Gd₂O₃ co-doped Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) in correlation with NIR and CL imaging. The use of Gd₂O₃ promises an extension of the object dimension to the whole-body level by employing magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Doan Thi Kim Dung
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Shoichiro Fukushima
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Taichi Furukawa
- Institute for NanoScience Design, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Hirohiko Niioka
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Takumi Sannomiya
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8503, Japan.
| | - Kaori Kobayashi
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiroshi Yukawa
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- ImPACT Research Center for Advanced Nanobiodevices, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Yoshinobu Baba
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- ImPACT Research Center for Advanced Nanobiodevices, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu 761-0395, Japan.
| | - Mamoru Hashimoto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Jun Miyake
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
10
|
Danhier P, Krishnamachary B, Bharti S, Kakkad S, Mironchik Y, Bhujwalla ZM. Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors. Neoplasia 2015; 17:871-881. [PMID: 26696369 PMCID: PMC4688563 DOI: 10.1016/j.neo.2015.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023]
Abstract
Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE). The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2) for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies.
Collapse
Affiliation(s)
- Pierre Danhier
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Santosh Bharti
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF. Iron Oxide as an MRI Contrast Agent for Cell Tracking. MAGNETIC RESONANCE INSIGHTS 2015; 8:15-29. [PMID: 26483609 PMCID: PMC4597836 DOI: 10.4137/mri.s23557] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
Abstract
Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation.
Collapse
Affiliation(s)
- Daniel J. Korchinski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Taha
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Runze Yang
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nabeela Nathoo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,CORRESPONDENCE:
| |
Collapse
|
12
|
Danhier P, Magat J, Levêque P, De Preter G, Porporato PE, Bouzin C, Jordan BF, Demeur G, Haufroid V, Feron O, Sonveaux P, Gallez B. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance. NMR IN BIOMEDICINE 2015; 28:367-375. [PMID: 25611487 DOI: 10.1002/nbm.3259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR allowed the assessment of the number of SPIO-labeled cells in organs shortly after injection.
Collapse
Affiliation(s)
- Pierre Danhier
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:266-81. [PMID: 25362845 DOI: 10.1002/cmmi.1630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
The purpose of this paper is to describe some of the areas where electron paramagnetic resonance (EPR) has provided unique information to MRI developments. The field of application mainly encompasses the EPR characterization of MRI paramagnetic contrast agents (gadolinium and manganese chelates, nitroxides) and superparamagnetic agents (iron oxide particles). The combined use of MRI and EPR has also been used to qualify or disqualify sources of contrast in MRI. Illustrative examples are presented with attempts to qualify oxygen sensitive contrast (i.e. T1 - and T2 *-based methods), redox status or melanin content in tissues. Other areas are likely to benefit from the combined EPR/MRI approach, namely cell tracking studies. Finally, the combination of EPR and MRI studies on the same models provides invaluable data regarding tissue oxygenation, hemodynamics and energetics. Our description will be illustrative rather than exhaustive to give to the readers a flavour of 'what EPR can do for MRI'.
Collapse
Affiliation(s)
- Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 2014; 194:82-91. [DOI: 10.1016/j.jconrel.2014.07.059] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/22/2023]
|