1
|
Sarbadhikary P, George BP, Abrahamse H. Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics 2021; 11:9054-9088. [PMID: 34522227 PMCID: PMC8419035 DOI: 10.7150/thno.62479] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | |
Collapse
|
2
|
Molecular Theranostic Agents for Photodynamic Therapy (PDT) and Magnetic Resonance Imaging (MRI). INORGANICS 2019. [DOI: 10.3390/inorganics7010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful non-invasive diagnostic tool that can provide important insights for medical treatment monitoring and optimization. Photodynamic therapy (PDT), a minimally invasive treatment for various types of tumors, is drawing increasing interest thanks to its temporal and spatial selectivity. The combination of MRI and PDT offers real-time monitoring of treatment and can give significant information for drug-uptake and light-delivery parameters optimization. In this review we will give an overview of molecular theranostic agents that have been designed for their potential application in MRI and PDT.
Collapse
|
3
|
Wang RG, Zhao MY, Deng D, Ye X, Zhang F, Chen H, Kong JL. An intelligent and biocompatible photosensitizer conjugated silicon quantum dots–MnO2 nanosystem for fluorescence imaging-guided efficient photodynamic therapy. J Mater Chem B 2018; 6:4592-4601. [DOI: 10.1039/c8tb00931g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed an intelligent and biocompatible BSA–Ce6–Si QDs–MnO2 nanocomplex as a pH/H2O2 responsive photosensitizer nanocarrier for fluorescence imaging-guided photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Rong-gui Wang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Meng-yao Zhao
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Di Deng
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Xin Ye
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Fan Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Hui Chen
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Ji-lie Kong
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
4
|
Kandela IK, McAuliffe KJ, Cochran LE, Barrett AGM, Hoffman BM, Mazar AP, Trivedi ER. Discovery of the Antitumor Effects of a Porphyrazine Diol (Pz 285) in MDA-MB-231 Breast Tumor Xenograft Models in Mice. ACS Med Chem Lett 2017; 8:705-709. [PMID: 28740602 DOI: 10.1021/acsmedchemlett.7b00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
A series of porphyrazines (Pzs) with chiral bis-acetal moieties in the β-pyrrole positions ((2R,3R)-2,3-dimethyl-2,3-dimethoxy-1,4-diox-2-ene) have been synthesized and screened as antitumor agents in MDA-MB-231 breast tumor cells in vitro. The lead Pz 285 was further tested in a mouse tumor xenograft model with Td-tomato-luc2 fluorescent breast tumor cells (MDA-MB-231 LM24 Her2+) that are highly metastatic to the lungs. Pz 285 shows marked antitumor effects in vivo, with treated mice exhibiting longer median survival that we attribute to smaller primary tumor regrowth after resection and less occurrence of metastasis when compared to vehicle control groups. Pz 285 is further compared to the clinically approved chemotherapeutic doxorubicin (Dox). This report lays the groundwork for development of an understudied class of compounds for classical chemotherapy.
Collapse
Affiliation(s)
- Irawati K. Kandela
- Center
for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Lauren E. Cochran
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Anthony G. M. Barrett
- Department
of Chemistry, Imperial College of Science, Technology, and Medicine, London SW7 2AZ, England
| | - Brian M. Hoffman
- Departments
of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrew P. Mazar
- Center
for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan R. Trivedi
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|
5
|
Lacerda S, Tóth É. Lanthanide Complexes in Molecular Magnetic Resonance Imaging and Theranostics. ChemMedChem 2017; 12:883-894. [DOI: 10.1002/cmdc.201700210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR4301; Université d'Orléans; rue Charles Sadron 45071 Orléans France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR4301; Université d'Orléans; rue Charles Sadron 45071 Orléans France
| |
Collapse
|
6
|
Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: Synthesis and applications. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Hapuarachchige S, Artemov D. Click Chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging. Top Magn Reson Imaging 2016; 25:205-213. [PMID: 27748712 PMCID: PMC5082715 DOI: 10.1097/rmr.0000000000000099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry provides fast, convenient, versatile, and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce a minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving magnetic resonance imaging performance.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
POONAM, NAGPAL RITIKA, ARORA SMRITI, S CHAUHAN SHIVEM. Efficient synthesis of metallated thioporphyrazines in task specific ionic liquids and their spectroscopic investigation of binding with selected transition metal ions. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Haedicke IE, Li T, Zhu YLK, Martinez F, Hamilton AM, Murrell DH, Nofiele JT, Cheng HLM, Scholl TJ, Foster PJ, Zhang XA. An enzyme-activatable and cell-permeable Mn III-porphyrin as a highly efficient T1 MRI contrast agent for cell labeling. Chem Sci 2016; 7:4308-4317. [PMID: 30155077 PMCID: PMC6013825 DOI: 10.1039/c5sc04252f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/15/2016] [Indexed: 01/03/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a preferred technique for noninvasively monitoring the fate of implanted cells, such as stem cells and immune cells in vivo. Cellular MRI requires contrast agents (CAs) to label the cells of interest. Despite promising progress made in this emerging field, highly sensitive, stable and biocompatible T1 CAs with high cell permeability and specificity remains an unmet challenge. To address this need, a novel MnIII-porphyrin, MnAMP was designed and synthesized based on the modification of MnIIItetra(carboxy-porphyrin) (MnTCP), a small and highly stable non-Gd extracellular CA with good biocompatibility and high T1 relaxivity (r1 = 7.9 mM-1 s-1) at clinical field of 3 Tesla (T). Cell permeability was achieved by masking the polar carboxylates of MnTCP with acetoxymethyl-ester (AM) groups, which are susceptible to hydrolysis by intracellular esterases. The enzymatic cleavage of AM groups led to disaggregation of the hydrophobic MnAMP, releasing activated MnTCP with significant increase in T1 relaxivity. Cell uptake of MnAMP is highly efficient as tested on two non-phagocytic human cell lines with no side effects observed on cell viability. MRI of labeled cells exhibited significant contrast enhancement with a short T1 of 161 ms at 3 T, even though a relatively low concentration of MnAMP and short incubation time was applied for cell labeling. Overall, MnAMP is among the most efficient T1 cell labeling agents developed for cellular MRI.
Collapse
Affiliation(s)
- Inga E Haedicke
- Department of Chemistry , University of Toronto , Toronto , ON M5S 3H6 , Canada .
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Tan Li
- Department of Biological Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Yong Le K Zhu
- Department of Chemistry , University of Toronto , Toronto , ON M5S 3H6 , Canada .
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Francisco Martinez
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Amanda M Hamilton
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Donna H Murrell
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Joris T Nofiele
- Physiology & Experimental Medicine , The Research Institute , Hospital for Sick Children , Toronto , Ontario , Canada M5G 1X8
| | - Hai-Ling M Cheng
- Physiology & Experimental Medicine , The Research Institute , Hospital for Sick Children , Toronto , Ontario , Canada M5G 1X8
- Translational Biology & Engineering Program , Ted Rogers Centre for Heart Research , University of Toronto , Toronto , Ontario , Canada M5S 3G9
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering , University of Toronto , Toronto , Ontario , Canada M5S 3G9
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , Ontario , Canada M5S 3G9 .
| | - Timothy J Scholl
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Paula J Foster
- Imaging Research Laboratories , Robarts Research Institute , 1151 Richmond St. N , London , ON N6A 5B7 , Canada . ;
- Department of Medical Biophysics , Western University , 1151 Richmond St. N , N6A 5C1 , London , Ontario , Canada
| | - Xiao-An Zhang
- Department of Chemistry , University of Toronto , Toronto , ON M5S 3H6 , Canada .
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
- Department of Biological Sciences , University of Toronto Scarborough , 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| |
Collapse
|
10
|
Sour A, Jenni S, Ortí-Suárez A, Schmitt J, Heitz V, Bolze F, Loureiro de Sousa P, Po C, Bonnet CS, Pallier A, Tóth É, Ventura B. Four Gadolinium(III) Complexes Appended to a Porphyrin: A Water-Soluble Molecular Theranostic Agent with Remarkable Relaxivity Suited for MRI Tracking of the Photosensitizer. Inorg Chem 2016; 55:4545-54. [DOI: 10.1021/acs.inorgchem.6b00381] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Angélique Sour
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Sébastien Jenni
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Ana Ortí-Suárez
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Julie Schmitt
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse
des Assemblages Moléculaires Multifonctionnels, Institut de
Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue
Blaise Pascal, 67000 Strasbourg, France
| | - Frédéric Bolze
- CAMB, UMR 7199,
UdS/CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route
du Rhin, 67401 Illkirch, France
| | - Paulo Loureiro de Sousa
- CNRS, ICube, FMTS, Institut de Physique
Biologique, Faculté de Médecine, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg Cedex, France
| | - Chrystelle Po
- CNRS, ICube, FMTS, Institut de Physique
Biologique, Faculté de Médecine, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg Cedex, France
| | - Célia S. Bonnet
- Centre
de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, rue Charles Sadron, CS 80054, 45071 Orléans Cedex 2, France
| | - Agnès Pallier
- Centre
de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, rue Charles Sadron, CS 80054, 45071 Orléans Cedex 2, France
| | - Éva Tóth
- Centre
de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, rue Charles Sadron, CS 80054, 45071 Orléans Cedex 2, France
| | | |
Collapse
|
11
|
|
12
|
Desbois N, Michelin C, Chang Y, Stupar V, Bonnaud M, Pacquelet S, Gros CP. Synthetic strategy for preparation of a folate corrole DOTA heterobimetallic Cu–Gd complex as a potential bimodal contrast agent in medical imaging. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Qiao Z, Perestrelo R, Reyes-Gallardo EM, Lucena R, Cárdenas S, Rodrigues J, Câmara JS. Octadecyl functionalized core-shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites. J Chromatogr A 2015; 1393:18-25. [PMID: 25818559 DOI: 10.1016/j.chroma.2015.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 02/08/2023]
Abstract
In this present study, magnetic Fe3O4@SiO2 nanoparticles (MNPs) functionalized with octadecyl groups (Fe3O4@SiO2-C18 NPs) were synthesized, characterized and employed, for the first time, as powerful nanosorbent to extract endogenous volatile organic metabolites (EVOMs) namely, hexanal, heptanal, decanal, benzaldehyde, 4-heptanone, 5-methyl-2-furfural and phenol, described as potential biomarkers of cancer, from human urine. By using co-precipitation, surface modification methods, the carbon-ferromagnetic nanocomposite was synthesized and characterized by infrared spectrum (IR) and transmission electron microscopy (TEM). By coupling with gas chromatography-mass spectrometry (GC-qMS), a reliable, sensitive and cost-effective method was validated. To test the extraction efficiency of the carbon-ferromagnetic nanocomposite toward urinary EVOMs experimental variables affecting the extraction performance, including nanosorbent amount, adsorption time, elution time, and nature of elution solvent, were investigated in detail. The extraction process was performed by dispersing Fe3O4@SiO2-C18 NPs into working solution containing targeted VOMs, and into urine samples, and then eluted with an adequate organic solvent. The eluate was collected, concentrated and analyzed by GC-qMS. Under the optimized conditions, the LODs and LOQs achieved were in the range of 9.7-57.3 and 32.4-190.9ng/mL, respectively. Calibration curves were linear (r(2)≥0. 988) over the concentration ranges from 0.25 to 250ng/mL. In addition, a satisfying reproducibility was achieved by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 3 and 11%, respectively. The method also afforded satisfactory results in terms of the matrix effect (72.8-96.1%) and recoveries (accuracy) higher than 75.1% for most of the studied EVOMs. The Fe3O4@SiO2-C18 NPs-based sorbent extraction combined with GC-qMS revealed that the new nanosorbent had a strong ability to retain the target metabolites providing a new, reliable and high throughput strategy for isolation of targeted EVOMs in human urine, suggesting their potential to be applied in other EVOMs.
Collapse
Affiliation(s)
- Zheng Qiao
- CQM, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Rosa Perestrelo
- CQM, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Emilia M Reyes-Gallardo
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - R Lucena
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - S Cárdenas
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - João Rodrigues
- CQM, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal; Centro de Ciências Exatas e de Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Portugal
| | - José S Câmara
- CQM, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal; Centro de Ciências Exatas e de Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Portugal.
| |
Collapse
|
14
|
Kim YS, Zhou Y, Bryant H, Milenic DE, Baidoo KE, Lewis BK, Frank JA, Brechbiel MW. Synthesis and characterization of gadolinium-Peptidomimetic complex as an αvβ3 integrin targeted MR contrast agent. Bioorg Med Chem Lett 2015; 25:2056-9. [PMID: 25870133 DOI: 10.1016/j.bmcl.2015.03.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
There is growing interest in small and rigid peptidomimetic αvβ3 integrin antagonists that are readily synthesized and characterized and amenable to physiological conditions. Peptidomimetic 4-[2-(3,4,5,6-tetrahydropyrimidine-2-ylamino)ethyloxy]benzoyl-2-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-β-alanine (IAC) was successfully conjugated to DOTA, complexed with Gd(III) and radiolabeled with (153)Gd. Radioassay results demonstrated specificity of the labeled conjugate by blocking ∼95% binding with the addition of a 50-fold molar excess of cold IAC to the reaction solution. Relaxometry was used to support the hypothesis that the specificity of the Gd-peptidomimetic targeting αvβ3 integrin would increase the contrast and therefore enhance the sensitivity of an MRI scan of αvβ3 integrin positive tissues. Magnetic resonance imaging of cell pellets (M21 human melanoma) was also performed, and the images clearly show that cells reacted with Gd(III)-DOTA-IAC display a brighter image than cells without the Gd(III)-DOTA-IAC contrast agent. In addition, Gd(III)-DOTA-IAC and IAC, with IC50 of 300nM and 230nM, respectively, are 2.1 and 2.7 times more potent than c(RGDfK) whose IC50 is 625nM. This promising preliminary data fuels further investigation of DOTA-IAC conjugates for targeting tumor associated angiogenesis and αvβ3 integrin positive tumors using magnetic resonance imaging.
Collapse
Affiliation(s)
- Young-Seung Kim
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA
| | - Yang Zhou
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA
| | - Henry Bryant
- Laboratory of Diagnostic Radiology Research (CC), NIH, Bethesda, MD, USA
| | - Diane E Milenic
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA
| | - Kwamena E Baidoo
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA
| | - Bobbi K Lewis
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA; National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Martin W Brechbiel
- Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, 10 Center Drive, Building 10, Rm B3B69, Bethesda, MD 20892-1002, USA.
| |
Collapse
|
15
|
Truillet C, Bouziotis P, Tsoukalas C, Brugière J, Martini M, Sancey L, Brichart T, Denat F, Boschetti F, Darbost U, Bonnamour I, Stellas D, Anagnostopoulos CD, Koutoulidis V, Moulopoulos LA, Perriat P, Lux F, Tillement O. Ultrasmall particles for Gd-MRI and (68) Ga-PET dual imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:309-19. [PMID: 25483609 DOI: 10.1002/cmmi.1633] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022]
Abstract
Nanoparticles made of a polysiloxane matrix and surrounded by 1,4,7,10-tetraazacyclododecane-1-glutaric anhydride-4,7,10-triacetic acid (DOTAGA)[Gd(3+) ] and 2,2'-(7-(1-carboxy-4-((2,5-dioxopyrrolidin-1-yl)oxy)-4-oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid) NODAGA[(68) Ga(3+) ] have been synthesized for positron emission tomography/magnetic resonance (PET/MRI) dual imaging. Characterizations were carried out in order to determine the nature of the ligands available for radiolabelling and to quantify them. High radiolabelling purity (>95%) after (68) Ga labelling was obtained. The MR and PET images demonstrate the possibility of using the nanoparticles for a combined PET/MR imaging scanner. The images show fast renal elimination of the nanoparticles after intravenous injection.
Collapse
Affiliation(s)
- Charles Truillet
- ILM, UMR 5306 - Université Claude Bernard Lyon 1, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Penelope Bouziotis
- Radiochemistry Studies Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Charalambos Tsoukalas
- Radiochemistry Studies Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Jérémy Brugière
- ILM, UMR 5306 - Université Claude Bernard Lyon 1, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Matteo Martini
- ILM, UMR 5306 - Université Claude Bernard Lyon 1, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Lucie Sancey
- ILM, UMR 5306 - Université Claude Bernard Lyon 1, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Thomas Brichart
- ILM, UMR 5306 - Université Claude Bernard Lyon 1, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 21078, Dijon Cedex, France
| | | | - Ulrich Darbost
- ICBMS, UMR 5246 - Université Claude Bernard Lyon 1, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Isabelle Bonnamour
- ICBMS, UMR 5246 - Université Claude Bernard Lyon 1, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Dimitris Stellas
- Department of Cancer Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Constantinos D Anagnostopoulos
- Center for Experimental surgery, Clinical and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Vassilis Koutoulidis
- Department of Radiology, University of Athens Medical School, Areteion Hospital, Athens, Greece
| | - Lia A Moulopoulos
- Department of Radiology, University of Athens Medical School, Areteion Hospital, Athens, Greece
| | - Pascal Perriat
- Matériaux Ingénierie et Science, INSA Lyon, UMR 5510, 69621, Villeurbanne Cedex, France
| | - François Lux
- ILM, UMR 5306 - Université Claude Bernard Lyon 1, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Olivier Tillement
- ILM, UMR 5306 - Université Claude Bernard Lyon 1, Université de Lyon, 69622, Villeurbanne Cedex, France
| |
Collapse
|