1
|
Miller HA, Priester A, Curtis ET, Hilmas K, Abbott A, Kievit FM, Convertine AJ. Optimized gadolinium-DO3A loading in RAFT-polymerized copolymers for superior MR imaging of aging blood-brain barrier. SENSORS & DIAGNOSTICS 2024; 3:1513-1521. [PMID: 39149521 PMCID: PMC11320174 DOI: 10.1039/d4sd00063c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
The development of gadolinium-based contrast agents (GBCAs) has been pivotal in advancing magnetic resonance imaging (MRI), offering enhanced soft tissue contrast without ionizing radiation exposure. Despite their widespread clinical use, the need for improved GBCAs has led to innovations in ligand chemistry and polymer science. We report a novel approach using methacrylate-functionalized DO3A ligands to synthesize a series of copolymers through direct reversible addition-fragmentation chain transfer (RAFT) polymerization. This technique enables precise control over the gadolinium content within the polymers, circumventing the need for subsequent conjugation and purification steps, and facilitates the addition of other components such as targeting ligands. The resulting copolymers were analysed for their relaxivity properties, indicating that specific gadolinium-DO3A loading contents between 12-30 mole percent yield optimal MRI contrast enhancement. Inductively coupled plasma (ICP) measurements corroborated these findings, revealing a non-linear relationship between gadolinium content and relaxivity. Optimized copolymers were synthesized with the claudin-1 targeting peptide, C1C2, to image BBB targeting in aged mice to show imaging utility. This study presents a promising pathway for the development of more efficient GBCA addition to copolymers for targeted drug delivery and bioimaging application.
Collapse
Affiliation(s)
- Hunter A Miller
- Department of Biological Systems Engineering, University of Nebraska-Lincoln 262 Morrison Center Lincoln NE 68583 USA
| | - Aaron Priester
- Department of Materials Science and Engineering, Missouri University of Science and Technology 1400 North Bishop Avenue Rolla MO 65409 USA
| | - Evan T Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln 262 Morrison Center Lincoln NE 68583 USA
| | - Krista Hilmas
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill Raleigh NC 27695 USA
| | - Ashleigh Abbott
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida- Gainesville 1275 Center Drive Gainesville FL 32611 USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln 262 Morrison Center Lincoln NE 68583 USA
| | - Anthony J Convertine
- Department of Materials Science and Engineering, Missouri University of Science and Technology 1400 North Bishop Avenue Rolla MO 65409 USA
| |
Collapse
|
2
|
Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and Its Application in Drug Delivery. Pharmaceuticals (Basel) 2021; 14:ph14090855. [PMID: 34577554 PMCID: PMC8468356 DOI: 10.3390/ph14090855] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Inulin’s unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Correspondence: ; Tel.: +61-88-302-1575; Fax: +61-88-302-2389
| |
Collapse
|
3
|
Synthesis and Relaxometric Characterization of New Poly[
N
,
N
‐bis(3‐aminopropyl)glycine] (PAPGly) Dendrons Gd‐Based Contrast Agents and Their
in Vivo
Study by Using the Dynamic Contrast‐Enhanced MRI Technique at Low Field (1 T). Chem Biodivers 2019; 16:e1900322. [DOI: 10.1002/cbdv.201900322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
|
4
|
Ndiaye M, Malytskyi V, Vangijzegem T, Sauvage F, Wels M, Cadiou C, Moreau J, Henoumont C, Boutry S, Muller RN, Harakat D, Smedt SD, Laurent S, Chuburu F. Comparison of MRI Properties between Multimeric DOTAGA and DO3A Gadolinium-Dendron Conjugates. Inorg Chem 2019; 58:12798-12808. [DOI: 10.1021/acs.inorgchem.9b01747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Maleotane Ndiaye
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
| | - Volodymyr Malytskyi
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| | - Thomas Vangijzegem
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Mike Wels
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Cyril Cadiou
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| | - Juliette Moreau
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| | - Céline Henoumont
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041 Charleroi, Belgium
| | - Robert N. Muller
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041 Charleroi, Belgium
| | - Dominique Harakat
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sophie Laurent
- Laboratoire de RMN et d’Imagerie Moléculaire, Université de Mons, B-7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041 Charleroi, Belgium
| | - Françoise Chuburu
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| |
Collapse
|
5
|
Granato L, Vander Elst L, Henoumont C, Muller RN, Laurent S. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI. Chem Biodivers 2018; 15. [PMID: 29460387 DOI: 10.1002/cbdv.201700487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/13/2017] [Indexed: 11/07/2022]
Abstract
Thanks to the understanding of the relationships between the residence lifetime τM of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τR of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL1 )x with intent to slow down the rotational correlation time (τR ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL1 ) showed a slight decrease of the τM value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL1 complex (τR = 33,700 ps), which results in an enhanced proton relaxivity.
Collapse
Affiliation(s)
- Luigi Granato
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium
| | - Luce Vander Elst
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium
| | - Celine Henoumont
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium
| | - Robert N Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8, B-6041, Gosselies, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8, B-6041, Gosselies, Belgium
| |
Collapse
|
6
|
Chilla SNM, Zemek O, Kotek J, Boutry S, Larbanoix L, Sclavons C, Elst LV, Lukes I, Muller RN, Laurent S. Synthesis and characterization of monophosphinic acid DOTA derivative: A smart tool with functionalities for multimodal imaging. Bioorg Med Chem 2017; 25:4297-4303. [PMID: 28655418 DOI: 10.1016/j.bmc.2017.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 02/01/2023]
Abstract
A new facile synthetic strategy was developed to prepare bifunctional monophosphinic acid Ln-DOTA derivatives, Gd-DO2AGAPNBn and Gd- DO2AGAPABn. The relaxivities of the Gd-complexes are enhanced compared to Gd-DOTA. Monophosphinic acid arm of these Gd-complexes affords enhancement of inner sphere water exchange rate due to its steric bulkiness. The different functionalities of DO2AGAPNBn were appended in trans positions and are designed to conjugate identical or different vectors according to the potential applications. The conjugation of Gd-DO2AGAPABn with E3 peptide known to target apoptosis was successfully performed and in vivo MRI allowed cell death detection in a mouse model.
Collapse
Affiliation(s)
- Satya Narayana Murthy Chilla
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium.
| | - Ondrej Zemek
- Department of Inorganic Chemistry, Universita Karlova, Hlavova 2030, 128 40 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Universita Karlova, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Sébastien Boutry
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Lionel Larbanoix
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Coralie Sclavons
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Ivan Lukes
- Department of Inorganic Chemistry, Universita Karlova, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, Mendeleïev Building, 7000 Mons, Belgium; Centre for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, 6041 Charleroi-Gosselies, Belgium.
| |
Collapse
|
7
|
Chilla SNM, Henoumont C, Elst LV, Muller RN, Laurent S. Importance of DOTA derivatives in bimodal imaging. Isr J Chem 2017. [DOI: 10.1002/ijch.201700024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Céline Henoumont
- General Organic and Biomedical chemistry University of Mons; Avenue Victor Maistriau, 19 7000 Mons Belgium
| | - Luce Vander Elst
- General Organic and Biomedical chemistry University of Mons; Avenue Victor Maistriau, 19 7000 Mons Belgium
| | - Robert N. Muller
- General Organic and Biomedical chemistry University of Mons; Avenue Victor Maistriau, 19 7000 Mons Belgium
- Center for Microscopy and Molecular Imaging (CMMI); Institution Rue Adrienne Bolland 8 Gosselies 6041 Belgium
| | - Sophie Laurent
- General Organic and Biomedical chemistry University of Mons; Avenue Victor Maistriau, 19 7000 Mons Belgium
- Center for Microscopy and Molecular Imaging (CMMI); Institution Rue Adrienne Bolland 8 Gosselies 6041 Belgium
| |
Collapse
|
8
|
Chen DH, Lin L, Sheng TL, Wen YH, Hu SM, Fu RB, Zhuo C, Li HR, Wu XT. Syntheses, structures and luminescence properties of five coordination polymers based on designed 2,7-bis(4-benzoic acid)-N-(4-benzoic acid) carbazole. CrystEngComm 2017. [DOI: 10.1039/c7ce00361g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Abakumova TO, Nukolova NV, Gusev EI, Chekhonin VP. [Contrast agents in MRI-diagnosis of multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:58-65. [PMID: 25909791 DOI: 10.17116/jnevro20151151158-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance imaging using contrast agents plays an important role in diagnosis and assessment of treatment efficacy in multiple sclerosis. The development of contrast agents on the basis of gadolinium or iron oxide nanoparticles has potential for diagnosis of pathological foci (tumors, amyloid plaques, inflammation and foci of demyelination or necrosis) in nervous system diseases. Newly developing types of diagnostic substances for visualization of pathological foci in multiple sclerosis are presented in this review.
Collapse
Affiliation(s)
- T O Abakumova
- Pirogov Russian National Research Medical University, Moscow
| | - N V Nukolova
- Pirogov Russian National Research Medical University, Moscow
| | - E I Gusev
- Pirogov Russian National Research Medical University, Moscow
| | - V P Chekhonin
- Pirogov Russian National Research Medical University, Moscow
| |
Collapse
|
10
|
Stasiuk GJ, Long NJ. The ubiquitous DOTA and its derivatives: the impact of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid on biomedical imaging. Chem Commun (Camb) 2013; 49:2732-46. [PMID: 23392443 DOI: 10.1039/c3cc38507h] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last twenty-five years 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) has made a significant impact on the field of diagnostic imaging. DOTA is not the only metal chelate in use in medical diagnostics, but it is the only one to significantly impact on all of the major imaging modalities Magnetic Resonance (MR), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Fluorescence imaging. This crossover of modalities has been possible due to the versatility of DOTA firstly, to complex a variety of metal ions and secondly, the ease with which it can be modified for different disease states. This has driven research over the last two decades into the chemistry of DOTA and the modification of the substituent pendant arms of this macrocycle to create functional, targeted and dual-modal imaging agents. The primary use of DOTA has been with the lanthanide series of metals, gadolinium for MRI, europium and terbium for fluorescence and neodymium for near infra-red imaging. There are now many research groups dedicated to the use of lanthanides with DOTA although other chelates such as DTPA and NOTA are being increasingly employed. The ease with which DOTA can be conjugated to peptides has given rise to targeted imaging agents seen in the PET, SPECT and radiotherapy fields. These modalities use a variety of radiometals that complex with DOTA, e.g.(64)Cu and (68)Ga which are used in clinical PET scans, (111)In, and (90)Y for SPECT and radiotherapy. In this article, we will demonstrate the remarkable versatility of DOTA, how it has crossed the imaging modality boundaries and how it has been successfully transferred into the clinic.
Collapse
Affiliation(s)
- Graeme J Stasiuk
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
11
|
Laurent S, Henoumont C, Vander Elst L, Muller RN. Synthesis and Physicochemical Characterisation of Gd-DTPA Derivatives as Contrast Agents for MRI. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101226] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|