1
|
Kumar Shukla M, Parihar A, Karthikeyan C, Kumar D, Khan R. Multifunctional GQDs for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. NANOSCALE 2023; 15:14698-14716. [PMID: 37655476 DOI: 10.1039/d3nr03161f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Pancreatic cancer is a devastating disease with a low survival rate and limited treatment options. Graphene quantum dots (GQDs) have recently become popular as a promising platform for cancer diagnosis and treatment due to their exceptional physicochemical properties, such as biocompatibility, stability, and fluorescence. This review discusses the potential of multifunctional GQDs as a platform for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. The current studies emphasized the ability of GQDs to selectively target pancreatic cancer cells by overexpressing binding receptors on the cell surface. Additionally, this review discussed the uses of GQDs as drug delivery vehicles for the controlled and targeted release of therapeutics for pancreatic cancer cells. Finally, the potential of GQDs as imaging agents for pancreatic cancer detection and monitoring has been discussed. Overall, multifunctional GQDs showed great promise as a versatile platform for the diagnosis and treatment of pancreatic cancer. Further investigation of multifunctional GQDs in terms of their potential and optimization in the context of pancreatic cancer therapy is needed.
Collapse
Affiliation(s)
- Monu Kumar Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
| | | | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Delle Cave D, Rizzo R, Sainz B, Gigli G, del Mercato LL, Lonardo E. The Revolutionary Roads to Study Cell-Cell Interactions in 3D In Vitro Pancreatic Cancer Models. Cancers (Basel) 2021; 13:930. [PMID: 33672435 PMCID: PMC7926501 DOI: 10.3390/cancers13040930] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.
Collapse
Affiliation(s)
- Donatella Delle Cave
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomedicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain;
- Spain and Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Arnesano, 73100 Lecce, Italy
| | - Loretta L. del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Enza Lonardo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|
3
|
Darrigues E, Nima ZA, Nedosekin DA, Watanabe F, Alghazali KM, Zharov VP, Biris AS. Tracking Gold Nanorods' Interaction with Large 3D Pancreatic-Stromal Tumor Spheroids by Multimodal Imaging: Fluorescence, Photoacoustic, and Photothermal Microscopies. Sci Rep 2020; 10:3362. [PMID: 32099027 PMCID: PMC7042370 DOI: 10.1038/s41598-020-59226-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/24/2020] [Indexed: 01/31/2023] Open
Abstract
Pancreatic cancer is one of the most complex types of cancers to detect, diagnose, and treat. However, the field of nanomedicine has strong potential to address such challenges. When evaluating the diffusion and penetration of theranostic nanoparticles, the extracellular matrix (ECM) is of crucial importance because it acts as a barrier to the tumor microenvironment. In the present study, the penetration of functionalized, fluorescent gold nanorods into large (>500 μm) multicellular 3D tissue spheroids was studied using a multimodal imaging approach. The spheroids were generated by co-culturing pancreatic cancer cells and pancreatic stellate cells in multiple ratios to mimic variable tumor-stromal compositions and to investigate nanoparticle penetration. Fluorescence live imaging, photothermal, and photoacoustic analysis were utilized to examine nanoparticle behavior in the spheroids. Uniquely, the nanorods are intrinsically photoacoustic and photothermal, enabling multi-imaging detection even when fluorescence tracking is not possible or ideal.
Collapse
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA.
| | - Zeid A Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA
| | - Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA
| | - Karrer M Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR, 72204, USA.
| |
Collapse
|
4
|
El-Zahaby SA, Elnaggar YSR, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release 2019; 293:21-35. [PMID: 30445002 DOI: 10.1016/j.jconrel.2018.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is nowadays the most life-threatening cancer type worldwide. The problem of poor diagnosis, anti-neoplastics resistance and biopharmaceutical drawbacks of effective anti-cancer drugs lead to worsen disease state. Nanotechnology-based carrier systems used in both imaging and treatment procedures had solved many of these problems. It is critical to develop advanced detection method to save patients from being too late diagnosed. Targeting the pancreatic cancer cells as well helped in decreasing the side effects associated with normal cells destruction. Drug resistance is another challenge in pancreatic cancer management that can be solved by thorough understanding of the microenvironment associated with the disease to design creative nanocarriers. This is the first article to review multifaceted approaches of nanomedicine in pancreatic cancer detection and management. Additionally, mortality rates in selected Arab and European countries were illustrated herein. An emphasis was given on therapeutic and diagnostic challenges and different nanotechnologies adopted to overcome. The four main approaches encompassed nanomedicine for herbal treatment, nanomedicine of synthetic anti-cancer drugs, metal nanoparticles as a distinct treatment policy and nanotechnology for cancer diagnosis. Future research perspectives have been finally proposed.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
El-Zahaby SA, Elnaggar YS, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release 2019. [DOI: https://doi.org/10.1016/j.jconrel.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Sanjai C, Kothan S, Gonil P, Saesoo S, Sajomsang W. Super-paramagnetic loaded nanoparticles based on biological macromolecules for in vivo targeted MR imaging. Int J Biol Macromol 2016; 86:233-41. [PMID: 26783640 DOI: 10.1016/j.ijbiomac.2016.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Target-specific MRI contrast agent based on super-paramagnetic iron oxide-chitosan-folic acid (SPIONP-CS-FA) nanoparticles was fabricated by using an ionotropic gelation method, which involved the loading of SPIONPs at various concentrations into CS-FA nanoparticles by electrostatic interaction. The SPIONP-CS-FA nanoparticles were characterized by ATR-FTIR, XRD, TEM, and VSM techniques. This study revealed that the advantages of this system would be green fabrication, low cytotoxicity at iron concentrations ranging from 0.52 mg/L to 4.16 mg/L, and high water stability (pH 6) at 4°C over long periods. Average particle size and positive zeta-potential of the SPIONP-CS-FA nanoparticles was found to be 130 nm with narrow size distribution and 42 mV, respectively. In comparison to SPIONP-0.5-CS nanoparticles, SPIONP-0.5-CS-FA nanoparticles showed higher and specific cellular uptake levels into human cervical adenocarcinoma cells due to the presence of folate receptors, while in vivo results (Wistar rat) indicated that only liver tissue showed significant decreases in MR image intensity on T2 weighted images and T2* weighted images after post-injection, in comparison with other organs. Our results demonstrated that SPIONP-CS-FA nanoparticles can be applied as an either tumor or organ specific MRI contrast agents.
Collapse
Affiliation(s)
- Chutimon Sanjai
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Pattarapond Gonil
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 10120, Thailand
| | - Somsak Saesoo
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 10120, Thailand
| | - Warayuth Sajomsang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 10120, Thailand.
| |
Collapse
|
7
|
Chen C, Wu CQ, Chen TW, Tang MY, Zhang XM. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:624074. [PMID: 26579537 PMCID: PMC4633535 DOI: 10.1155/2015/624074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 12/11/2022]
Abstract
Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC.
Collapse
Affiliation(s)
- Chen Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Chang Qiang Wu
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Meng Yue Tang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Wenhua Road 63, Nanchong, Sichuan 637000, China
| |
Collapse
|
8
|
Gong M, Yang H, Zhang S, Yang Y, Zhang D, Qi Y, Zou L. Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging. J Nanobiotechnology 2015; 13:24. [PMID: 25890315 PMCID: PMC4387586 DOI: 10.1186/s12951-015-0080-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 02/07/2023] Open
Abstract
Background GoldMag nanoparticles (GMNPs) possess the properties of colloid gold and superparamagnetic iron oxide nanoparticles, which make them useful for delivery, separation and molecular imaging. However, because of the nanometer effect, GMNPs are highly toxic. Thus, the biosafety of GMNPs should be fully studied prior to their use in biomedicine. The main purpose of this study was to evaluate the nanotoxicity of GMNPs on human umbilical vein endothelial cells (HUVECs) and determine a suitable size, concentration and time for magnetic resonance imaging (MRI). Results Transmission electron microscopy showed that GMNPs had a typical shell/core structure, and the shell was confirmed to be gold using energy dispersive spectrometer analysis. The average sizes of the 30 and 50 nm GMNPs were 30.65 ± 3.15 and 49.23 ± 5.01 nm, respectively, and the shell thickness were 6.8 ± 0.65 and 8.5 ± 1.36 nm, respectively. Dynamic light scattering showed that the hydrodynamic diameter of the 30 and 50 nm GMNPs were 33.2 ± 2.68 and 53.12 ± 4.56 nm, respectively. The r2 relaxivity of the 50 nm GMNPs was 98.65 mM−1 s−1, whereas it was 80.18 mM−1 s−1 for the 30 nm GMNPs. The proliferation, cytoskeleton, migration, tube formation, apoptosis and ROS generation of labeled HUVECs depended on the size and concentration of GMNPs and the time of exposure. Because of the higher labeling rate, the 50 nm GMNPs exhibited a significant increase in nanotoxicity compared with the 30 nm GMNPs at the same concentration and time. At no more than 25 μg/mL and 12 hours, the 50 nm GMNPs exhibited no significant nanotoxicity in HUVECs, whereas no toxicity was observed at 50 μg/mL and 24 hours for the 30 nm GMNPs. Conclusions These results demonstrated that the nanotoxicity of GMNPs in HUVECs depended on size, concentration and time. Exposure to larger GMNPs with a higher concentration for a longer period of time resulted in a higher labeling rate and ROS level for HUVECs. Coupled with r2 relaxivity, it was suggested that the 50 nm GMNPs are more suitable for HUVEC labeling and MRI, and the suitable concentration and time were 25 μg/mL and 12 hours.
Collapse
Affiliation(s)
- Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Hua Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Song Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Yan Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Yueyong Qi
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Liguang Zou
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
9
|
Zuo HD, Yao WW, Chen TW, Zhu J, Zhang JJ, Pu Y, Liu G, Zhang XM. The effect of superparamagnetic iron oxide with iRGD peptide on the labeling of pancreatic cancer cells in vitro: a preliminary study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:852352. [PMID: 24977163 PMCID: PMC4055133 DOI: 10.1155/2014/852352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/29/2014] [Accepted: 05/04/2014] [Indexed: 01/02/2023]
Abstract
The iRGD peptide loaded with iron oxide nanoparticles for tumor targeting and tissue penetration was developed for targeted tumor therapy and ultrasensitive MR imaging. Binding of iRGD, a tumor homing peptide, is mediated by integrins, which are widely expressed on the surface of cells. Several types of small molecular drugs and nanoparticles can be transfected into cells with the help of iRGD peptide. Thus, we postulate that SPIO nanoparticles, which have good biocompatibility, can also be transfected into cells using iRGD. Despite the many kinds of cell labeling studies that have been performed with SPIO nanoparticles and RGD peptide or its analogues, only a few have applied SPIO nanoparticles with iRGD peptide in pancreatic cancer cells. This paper reports our preliminary findings regarding the effect of iRGD peptide (CRGDK/RGPD/EC) combined with SPIO on the labeling of pancreatic cancer cells. The results suggest that SPIO with iRGD peptide can enhance the positive labeling rate of cells and the uptake of SPIO. Optimal functionalization was achieved with the appropriate concentration or concentration range of SPIO and iRGD peptide. This study describes a simple and economical protocol to label panc-1 cells using SPIO in combination with iRGD peptide and may provide a useful method to improve the sensitivity of pancreatic cancer imaging.
Collapse
Affiliation(s)
- Hou Dong Zuo
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Wei Wu Yao
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Juan Juan Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Gang Liu
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| |
Collapse
|
10
|
Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1533-45. [PMID: 23019129 DOI: 10.1002/smll.201201531] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Indexed: 05/22/2023]
Abstract
Owing to their unique physical and chemical properties, magnetic iron oxide nanoparticles have become a powerful platform in many diverse aspects of biomedicine, including magnetic resonance imaging, drug and gene delivery, biological sensing, and hyperthermia. However, the biomedical applications of magnetic iron oxide nanoparticles arouse serious concerns about their pharmacokinetics, metabolism, and toxicity. In this review, the updated research on the biomedical applications and potential toxicity of magnetic iron oxide nanoparticles is summarized. Much more effort is required to develop magnetic iron oxide nanoparticles with improved biocompatible surface engineering to achieve minimal toxicity, for various applications in biomedicine.
Collapse
Affiliation(s)
- Gang Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China.
| | | | | | | |
Collapse
|
11
|
Liu T, Zhou H, Xia R, Liao J, Wu C, Wang H, Ai H, Bi F, Gao F. Tracking Tumor Cells in Lymphatics in a Mice Xenograft Model by Magnetic Resonance Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ting Liu
- From the Molecular Imaging Laboratory, Department of Radiology, and Department of Oncology, West China Hospital, Sichuan University, and the National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Haijun Zhou
- From the Molecular Imaging Laboratory, Department of Radiology, and Department of Oncology, West China Hospital, Sichuan University, and the National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Rui Xia
- From the Molecular Imaging Laboratory, Department of Radiology, and Department of Oncology, West China Hospital, Sichuan University, and the National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jichun Liao
- From the Molecular Imaging Laboratory, Department of Radiology, and Department of Oncology, West China Hospital, Sichuan University, and the National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Changqiang Wu
- From the Molecular Imaging Laboratory, Department of Radiology, and Department of Oncology, West China Hospital, Sichuan University, and the National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hui Wang
- From the Molecular Imaging Laboratory, Department of Radiology, and Department of Oncology, West China Hospital, Sichuan University, and the National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hua Ai
- From the Molecular Imaging Laboratory, Department of Radiology, and Department of Oncology, West China Hospital, Sichuan University, and the National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Feng Bi
- From the Molecular Imaging Laboratory, Department of Radiology, and Department of Oncology, West China Hospital, Sichuan University, and the National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Fabao Gao
- From the Molecular Imaging Laboratory, Department of Radiology, and Department of Oncology, West China Hospital, Sichuan University, and the National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|