1
|
Sun Y, Lyu B, Yang C, He B, Zhang H, Wang X, Zhang Q, Dai W. An enzyme-responsive and transformable PD-L1 blocking peptide-photosensitizer conjugate enables efficient photothermal immunotherapy for breast cancer. Bioact Mater 2023; 22:47-59. [PMID: 36203955 PMCID: PMC9519467 DOI: 10.1016/j.bioactmat.2022.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 12/07/2022] Open
Abstract
Mild photothermal therapy combined with immune checkpoint blockade has received increasing attention for the treatment of advanced or metastatic cancers due to its good therapeutic efficacy. However, it remains a challenge to facilely integrate the two therapies and make it potential for clinical translation. This work designed a peptide-photosensitizer conjugate (PPC), which consisted of a PD-L1 antagonist peptide (CVRARTR), an MMP-2 specific cleavable sequence, a self-assembling motif, and the photosensitizer Purpurin 18. The single-component PPC can self-assemble into nanospheres which is suitable for intravenous injection. The PPC nanosphere is cleaved by MMP-2 when it accumulates in tumor sites, thereby initiating the cancer-specific release of the antagonist peptide. Simultaneously, the nanospheres gradually transform into co-assembled nanofibers, which promotes the retention of the remaining parts within the tumor. In vivo studies demonstrated that PPC nanospheres under laser irradiation promote the infiltration of cytotoxic T lymphocytes and maturation of DCs, which sensitize 4T1 tumor cells to immune checkpoint blockade therapy. Therefore, PPC nanospheres inhibit tumor growth efficiently both in situ and distally and blocked the formation of lung metastases. The present study provides a simple and efficient integrated strategy for breast cancer photoimmunotherapy. A peptide-photosensitizer conjugate (PPC) with self-assembled ability. Self-assembled PPC realized enzyme-responsive PD-L1 blocking peptide release. Shape transformation from nanospheres to co-assembled nanofibers. Efficient integrated strategy for breast cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Yanan Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bochen Lyu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| |
Collapse
|
2
|
Capuana F, Phinikaridou A, Stefania R, Padovan S, Lavin B, Lacerda S, Almouazen E, Chevalier Y, Heinrich-Balard L, Botnar RM, Aime S, Digilio G. Imaging of Dysfunctional Elastogenesis in Atherosclerosis Using an Improved Gadolinium-Based Tetrameric MRI Probe Targeted to Tropoelastin. J Med Chem 2021; 64:15250-15261. [PMID: 34661390 PMCID: PMC8558862 DOI: 10.1021/acs.jmedchem.1c01286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dysfunctional elastin turnover plays a major role in the progression of atherosclerotic plaques. Failure of tropoelastin cross-linking into mature elastin leads to the accumulation of tropoelastin within the growing plaque, increasing its instability. Here we present Gd4-TESMA, an MRI contrast agent specifically designed for molecular imaging of tropoelastin within plaques. Gd4-TESMA is a tetrameric probe composed of a tropoelastin-binding peptide (the VVGS-peptide) conjugated with four Gd(III)-DOTA-monoamide chelates. It shows a relaxivity per molecule of 34.0 ± 0.8 mM-1 s-1 (20 MHz, 298 K, pH 7.2), a good binding affinity to tropoelastin (KD = 41 ± 12 μM), and a serum half-life longer than 2 h. Gd4-TESMA accumulates specifically in atherosclerotic plaques in the ApoE-/- murine model of plaque progression, with 2 h persistence of contrast enhancement. As compared to the monomeric counterpart (Gd-TESMA), the tetrameric Gd4-TESMA probe shows a clear advantage regarding both sensitivity and imaging time window, allowing for a better characterization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Federico Capuana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center, Via Nizza 52, Torino 10126, Italy
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, Orléans Cedex 2 45071, France
| | - Eyad Almouazen
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Yves Chevalier
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Laurence Heinrich-Balard
- INSA Lyon, CNRS, MATEIS, UMR5510, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna, Santiago 4860, Chile
| | | | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale ″Amedeo Avogadro″, Viale T. Michel 11, Alessandria 15121, Italy
| |
Collapse
|
3
|
Garello F, Gündüz S, Vibhute S, Angelovski G, Terreno E. Dendrimeric calcium-sensitive MRI probes: the first low-field relaxometric study. J Mater Chem B 2020; 8:969-979. [DOI: 10.1039/c9tb02600b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work the first investigation ever of calcium sensitive dendrimer relaxation mechanisms at low fields is reported.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- 10126 Torino
- Italy
| | - Serhat Gündüz
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- Max-Planck-Ring 11
- 72076 Tuebingen
- Germany
| | - Sandip Vibhute
- Physiology of Cognitive Processes
- Max Planck Institute for Biological Cybernetics
- Max-Planck-Ring 8
- 72076 Tuebingen
- Germany
| | - Goran Angelovski
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- Max-Planck-Ring 11
- 72076 Tuebingen
- Germany
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers
- Department of Molecular Biotechnology and Health Sciences
- University of Torino
- 10126 Torino
- Italy
| |
Collapse
|
4
|
Accelerated 19F·MRI Detection of Matrix Metalloproteinase-2/-9 through Responsive Deactivation of Paramagnetic Relaxation Enhancement. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:4826520. [PMID: 30944549 PMCID: PMC6421815 DOI: 10.1155/2019/4826520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/10/2018] [Indexed: 01/12/2023]
Abstract
Paramagnetic gadolinium ions (GdIII), complexed within DOTA-based chelates, have become useful tools to increase the magnetic resonance imaging (MRI) contrast in tissues of interest. Recently, "on/off" probes serving as 19F·MRI biosensors for target enzymes have emerged that utilize the increase in transverse (T 2 ∗ or T 2) relaxation times upon cleavage of the paramagnetic GdIII centre. Molecular 19F·MRI has the advantage of high specificity due to the lack of background signal but suffers from low signal intensity that leads to low spatial resolution and long recording times. In this work, an "on/off" probe concept is introduced that utilizes responsive deactivation of paramagnetic relaxation enhancement (PRE) to generate 19F longitudinal (T 1) relaxation contrast for accelerated molecular MRI. The probe concept is applied to matrix metalloproteinases (MMPs), a class of enzymes linked with many inflammatory diseases and cancer that modify bioactive extracellular substrates. The presence of these biomarkers in extracellular space makes MMPs an accessible target for responsive PRE deactivation probes. Responsive PRE deactivation in a 19F biosensor probe, selective for MMP-2 and MMP-9, is shown to enable molecular MRI contrast at significantly reduced experimental times compared to previous methods. PRE deactivation was caused by MMP through cleavage of a protease substrate that served as a linker between the fluorine-containing moiety and a paramagnetic GdIII-bound DOTA complex. Ultrashort echo time (UTE) MRI and, alternatively, short echo times in standard gradient echo (GE) MRI were employed to cope with the fast 19F transverse relaxation of the PRE active probe in its "on-state." Upon responsive PRE deactivation, the 19F·MRI signal from the "off-state" probe diminished, thereby indicating the presence of the target enzyme through the associated negative MRI contrast. Null point 1H·MRI, obtainable within a short time course, was employed to identify false-positive 19F·MRI responses caused by dilution of the contrast agent.
Collapse
|
5
|
Mohamed-Ahmed AHA, Lockwood A, Fadda H, Madaan S, Khaw PT, Brocchini S, Karu K. LC-MS analysis to determine the biodistribution of a polymer coated ilomastat ocular implant. J Pharm Biomed Anal 2018; 157:100-106. [PMID: 29777984 DOI: 10.1016/j.jpba.2018.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/06/2018] [Accepted: 05/12/2018] [Indexed: 11/16/2022]
Abstract
Ilomastat is a matrix metalloproteinase inhibitor (MMPi) that has shown the potential to inhibit scarring (fibrosis) by mediating healing after injury or surgery. A long lasting ocular implantable pharmaceutical formulation of ilomastat is being developed to mediate the healing process to prevent scarring after glaucoma filtration surgery. The ilomastat implant was coated with water permeable and biocompatible phosphoryl choline polymer (PC1059) displayed extended slow release of ilomastat in vitro and in vivo. The ocular distribution of ilomastat from the implant in rabbits at day 30 post surgery was determined by the extraction of ilomastat and its internal standard marimastat from the ocular tissues, plasma, aqueous humour and vitreous fluid followed by capillary-flow liquid chromatography (cap-LC), the column effluent was directed into a triple quadrupole mass spectrometer operating in product scan mode. The lower limits of quantification (LLOQs) were 0.3 pg/μL for ocular fluids and plasma, and 3 pg/mg for ocular tissues. The extraction recoveries were 90-95% for ilomastat and its internal standard from ocular tissues. Ilomastat was found in ocular fluids and tissues at day 30 after surgery. The level of ilomastat was 18 times higher in the aqueous humour than vitreous humour. The concentration ranking of ilomastat in the ocular tissues was sclera > bleb conjunctiva > conjunctiva (rest of the eye) > cornea. Mass spectrometry analysis to confirm the presence of ilomastat in the ocular tissues and fluids at day 30 post-surgery establishes the extended release of ilomastat can be achieved in vivo, which is crucial information for optimisation of the ilomastat coated implant.
Collapse
Affiliation(s)
| | - Alastair Lockwood
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Hala Fadda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Shivam Madaan
- UCL School of Pharmacy, 29/39 Brunswick Square, London, WC1N 1AX, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Steve Brocchini
- UCL School of Pharmacy, 29/39 Brunswick Square, London, WC1N 1AX, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, Department of Chemistry, Christopher Ignold Building, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
6
|
Tripepi M, Capuana F, Gianolio E, Kock FVC, Pagoto A, Stefania R, Digilio G, Aime S. Synthesis of High Relaxivity Gadolinium AAZTA Tetramers as Building Blocks for Bioconjugation. Bioconjug Chem 2018; 29:1428-1437. [PMID: 29470084 DOI: 10.1021/acs.bioconjchem.8b00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular imaging requires the specific accumulation of contrast agents at the target. To exploit the superb resolution of MRI for applications in molecular imaging, gadolinium chelates, as the MRI contrast agents (CA), have to be conjugated to a specific vector able to recognize the epitope of interest. Several Gd(III)-chelates can be chemically linked to the same binding vector in order to deliver multiple copies of the CA (multimers) in a single targeting event thus increasing the sensitivity of the molecular probe. Herein three novel bifunctional agents, carrying one functional group for the bioconjugation to targeting vectors and four Gd(III)-AAZTA chelate functions for MRI contrast enhancement (AAZTA = 6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), are reported. The relaxivity in the tetrameric derivatives is 16.4 ± 0.2 mMGd-1 s-1 at 21.5 MHz and 25 °C, being 2.4-fold higher than that of parent, monomeric Gd(III)-AAZTA. These compounds can be used as versatile building blocks to insert preformed, high relaxivity, and high density Gd-centers to biological targeting vectors. As an example, we describe the use of these bifunctional Gd(III)-chelates to label a fibrin-targeting peptide.
Collapse
Affiliation(s)
- Martina Tripepi
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Federico Capuana
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Flávio Vinicius Crizóstomo Kock
- São Carlos Institute of Chemistry , São Paulo University , Av. Trabalhador São Carlense, 400 , 13566-590 , São Carlos , São Paulo , Brazil
| | - Amerigo Pagoto
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Giuseppe Digilio
- Department of Science and Technological Innovation , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| |
Collapse
|
7
|
Hong J, Chen YF, Shen JJ, Ding Y. Noninvasive Detection and Imaging of Matrix Metalloproteinases for Cancer Diagnosis. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0036-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Experimental and theoretical studies of acetatodi(methylcyano)bis(O,O′-dialkyl and alkylene dithiophosphate)gadolinium(III) novel adducts. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.09.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Lebel R, Lepage M. A comprehensive review on controls in molecular imaging: lessons from MMP-2 imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 9:187-210. [PMID: 24700747 DOI: 10.1002/cmmi.1555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022]
Abstract
Metalloproteinases (MMPs), including MMP-2, play critical roles in tissue remodeling and are involved in a large array of pathologies, including cancer, arthritis and atherosclerosis. Their prognostic value warranted a large investment or resources in the development of noninvasive detection methods, based on probes for many current clinical and pre-clinical imaging modalities. However, the potential of imaging techniques is only matched by the complexity of the data they generate. This complexity must be properly assessed and accounted for in the early steps of probe design and testing in order to accurately determine the efficacy and efficiency of an imaging strategy. This review proposes basic rules for the evaluation of novel probes by addressing the specific case of MMP targeted probes.
Collapse
Affiliation(s)
- Réjean Lebel
- Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
10
|
Study of the binding interaction between fluorinated matrix metalloproteinase inhibitors and Human Serum Albumin. Eur J Med Chem 2014; 79:13-23. [DOI: 10.1016/j.ejmech.2014.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/18/2014] [Accepted: 03/21/2014] [Indexed: 11/18/2022]
|
11
|
Westmeyer GG, Emer Y, Lintelmann J, Jasanoff A. MRI-based detection of alkaline phosphatase gene reporter activity using a porphyrin solubility switch. ACTA ACUST UNITED AC 2014; 21:422-9. [PMID: 24613020 DOI: 10.1016/j.chembiol.2014.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 12/23/2022]
Abstract
The ability to map patterns of gene expression noninvasively in living animals could have impact in many areas of biology. Reporter systems compatible with MRI could be particularly valuable, but existing strategies tend to lack sensitivity or specificity. Here we address the challenge of MRI-based gene mapping using the reporter enzyme secreted alkaline phosphatase (SEAP), in conjunction with a water-soluble metalloporphyrin contrast agent. SEAP cleaves the porphyrin into an insoluble product that accumulates at sites of enzyme expression and can be visualized by MRI and optical absorbance. The contrast mechanism functions in vitro, in brain slices, and in animals. The system also provides the possibility of readout both in the living animal and by postmortem histology, and it notably does not require intracellular delivery of the contrast agent. The solubility switch mechanism used to detect SEAP could be adapted for imaging of additional reporter enzymes or endogenous targets.
Collapse
Affiliation(s)
- Gil G Westmeyer
- Departments of Brain & Cognitive Sciences, Biological Engineering, and Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, MA 02139, USA; Department of Nuclear Medicine, Technische Universität München, 81675 Munich, Germany; Institutes of Biological and Medical Imaging and Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany
| | - Yelena Emer
- Departments of Brain & Cognitive Sciences, Biological Engineering, and Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, MA 02139, USA
| | - Jutta Lintelmann
- Comprehensive Molecular Analytics Cooperation Group, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany
| | - Alan Jasanoff
- Departments of Brain & Cognitive Sciences, Biological Engineering, and Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev 2014; 66:90-100. [PMID: 24064465 DOI: 10.1016/j.addr.2013.09.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/07/2013] [Accepted: 09/13/2013] [Indexed: 12/11/2022]
Abstract
Novel molecular imaging techniques have the potential to significantly enhance the diagnostic and therapeutic approaches for cancer treatment. For solid tumors in particular, novel molecular enhancers for imaging modalities such as US, CT, MRI and PET may facilitate earlier and more accurate diagnosis and staging which are prerequisites for successful surgical therapy. Enzymatically activatable "smart" molecular MRI probes seem particularly promising because of their potential to image tumors before and after surgical removal without re-administration of the probe to evaluate completeness of surgical resection. Furthermore, the use of "smart" MR probes as part of screening programs may enable detection of small tumors throughout the body in at-risk patient populations. Dual labeling of molecular MR probes with fluorescent dyes can add real time intraoperative guidance facilitating complete tumor resection and preservation of important structures. A truly theranostic approach with the further addition of therapeutic agents to the molecular probe for adjuvant therapy is conceivable for the future.
Collapse
|
13
|
Nwe K, Huang CH, Tsourkas A. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments. J Med Chem 2013; 56:7862-9. [PMID: 24044414 DOI: 10.1021/jm4012565] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neoplastic lesions can create a hostile tumor microenvironment with low extracellular pH. It is commonly believed that these conditions can contribute to tumor progression as well as resistance to therapy. We report the development and characterization of a pH-responsive magnetic resonance imaging contrast agent for imaging the acidic tumor microenvironment. The preparation included the conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1-(2,5-dioxo-1-pyrrolidinyl) ester (DOTA-NHS) to the surface of a water-soluble glycol chitosan (GC) polymer, which contains pH-titrable primary amines, followed by gadolinium complexation (GC-NH2-GdDOTA). GC-NH2-GdDOTA had a chelate-to-polymer ratio of approximately1:24 and a molar relaxivity of 9.1 mM(-1) s(-1). GC-NH2-GdDOTA demonstrated pH-dependent cellular association in vitro compared to the control. It also generated a 2.4-fold enhancement in signal in tumor-bearing mice 2 h postinjection. These findings suggest that glycol chitosan coupled with contrast agents can provide important diagnostic information about the tumor microenvironment.
Collapse
Affiliation(s)
- Kido Nwe
- Department of Bioengineering, University of Pennsylvania , 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia 19104, Pennsylvania, United States
| | | | | |
Collapse
|
14
|
Casalini F, Fugazza L, Esposito G, Cabella C, Brioschi C, Cordaro A, D’Angeli L, Bartoli A, Filannino AM, Gringeri CV, Longo DL, Muzio V, Nuti E, Orlandini E, Figlia G, Quattrini A, Tei L, Digilio G, Rossello A, Maiocchi A. Synthesis and Preliminary Evaluation in Tumor Bearing Mice of New 18F-Labeled Arylsulfone Matrix Metalloproteinase Inhibitors as Tracers for Positron Emission Tomography. J Med Chem 2013; 56:2676-89. [DOI: 10.1021/jm4001743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesca Casalini
- Department of Science and Technological
Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11,
I-15121 Alessandria, Italy
| | - Lorenza Fugazza
- Research and Development, Advanced Accelerator Applications, Via Ribes 5, I-10010
Colleretto Giacosa (TO), Italy
| | - Giovanna Esposito
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Via Ribes 5, I-10010 Colleretto
Giacosa (TO), Italy
| | - Chiara Brioschi
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Via Ribes 5, I-10010 Colleretto
Giacosa (TO), Italy
| | - Alessia Cordaro
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Via Ribes 5, I-10010 Colleretto
Giacosa (TO), Italy
| | - Luca D’Angeli
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Antonietta Bartoli
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Azzurra M. Filannino
- Research and Development, Advanced Accelerator Applications, Via Ribes 5, I-10010
Colleretto Giacosa (TO), Italy
| | - Concetta V. Gringeri
- Department of Science and Technological
Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11,
I-15121 Alessandria, Italy
| | - Dario L. Longo
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Valeria Muzio
- Research and Development, Advanced Accelerator Applications, Via Ribes 5, I-10010
Colleretto Giacosa (TO), Italy
| | - Elisa Nuti
- Department
of Pharmacy, University of Pisa, Via Bonanno
6, I-56126 Pisa, Italy
| | | | - Gianluca Figlia
- Institute of Experimental Neurology,
Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Angelo Quattrini
- Institute of Experimental Neurology,
Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Lorenzo Tei
- Department of Science and Technological
Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11,
I-15121 Alessandria, Italy
| | - Giuseppe Digilio
- Department of Science and Technological
Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11,
I-15121 Alessandria, Italy
- Molecular Imaging Centre, University of Torino, Via Nizza 52, I-10126 Torino,
Italy
| | - Armando Rossello
- Department
of Pharmacy, University of Pisa, Via Bonanno
6, I-56126 Pisa, Italy
| | - Alessandro Maiocchi
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Via Ribes 5, I-10010 Colleretto
Giacosa (TO), Italy
| |
Collapse
|
15
|
Catanzaro V, Gringeri CV, Menchise V, Padovan S, Boffa C, Dastrù W, Chaabane L, Digilio G, Aime S. AR2p/R1pRatiometric Procedure to Assess Matrix Metalloproteinase-2 Activity by Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Catanzaro V, Gringeri CV, Menchise V, Padovan S, Boffa C, Dastrù W, Chaabane L, Digilio G, Aime S. A R2p /R1p ratiometric procedure to assess matrix metalloproteinase-2 activity by magnetic resonance imaging. Angew Chem Int Ed Engl 2013; 52:3926-30. [PMID: 23450786 DOI: 10.1002/anie.201209286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Indexed: 01/30/2023]
Affiliation(s)
- Valeria Catanzaro
- Istituto di Ricerca Diagnostica e Nucleare SDN, Via Gianturco 113, 80143 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang CH, Nwe K, Zaki AA, Brechbiel MW, Tsourkas A. Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents. ACS NANO 2012; 6:9416-24. [PMID: 23098069 PMCID: PMC3508381 DOI: 10.1021/nn304160p] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gadolinium-conjugated dendrimer nanoclusters (DNCs) are a promising platform for the early detection of disease; however, their clinical utility is potentially limited due to safety concerns related to nephrogenic systemic fibrosis (NSF). In this paper, biodegradable DNCs were prepared with polydisulfide linkages between the individual dendrimers to facilitate excretion. Further, DNCs were labeled with premetalated Gd chelates to eliminate the risk of free Gd becoming entrapped in dendrimer cavities. The biodegradable polydisulfide DNCs possessed a circulation half-life of >1.6 h in mice and produced significant contrast enhancement in the abdominal aorta and kidneys for as long as 4 h. The DNCs were reduced in circulation as a result of thiol-disulfide exchange, and the degradation products were rapidly excreted via renal filtration. These agents demonstrated effective and prolonged in vivo contrast enhancement and yet minimized Gd tissue retention. Biodegradable polydisulfide DNCs represent a promising biodegradable macromolecular MRI contrast agent for magnetic resonance angiography and can potentially be further developed into target-specific MRI contrast agents.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kido Nwe
- Radioimmune Inorganic Chemistry Section, National Cancer Institute, Bethesda, MD 20892
| | - Ajlan Al Zaki
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin W. Brechbiel
- Radioimmune Inorganic Chemistry Section, National Cancer Institute, Bethesda, MD 20892
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corresponding Author: Dr. Andrew Tsourkas 210 S. 33rd Street 240 Skirkanich Hall Philadelphia, PA 19104 Phone: 215-898-8167 Fax: 215-573-2071
| |
Collapse
|
18
|
Promising strategies for Gd-based responsive magnetic resonance imaging contrast agents. Curr Opin Chem Biol 2012; 17:158-66. [PMID: 23141598 DOI: 10.1016/j.cbpa.2012.10.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/18/2012] [Accepted: 10/20/2012] [Indexed: 11/22/2022]
Abstract
Magnetic resonance imaging is a powerful imaging modality that is often coupled with paramagnetic contrast agents based on gadolinium to enhance sensitivity and image quality. Responsive contrast agents are key to furthering the diagnostic potential of MRI, both to provide anatomical information and to discern biochemical activity. Recent design of responsive gadolinium-based T₁ agents has made interesting progress, with the development of novel complexes which sense their chemical environment through changes in the coordination of water molecules, the molecular tumbling time or the number of metal centres. Particular promising design strategies include the use of multimeric systems, and the development of dual imaging probes.
Collapse
|
19
|
Longo DL, Busato A, Lanzardo S, Antico F, Aime S. Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med 2012; 70:859-64. [DOI: 10.1002/mrm.24513] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/10/2012] [Accepted: 09/10/2012] [Indexed: 12/28/2022]
Affiliation(s)
- Dario Livio Longo
- Department of Chemistry and Molecular Imaging Center; University of Turin; Torino Italy
| | - Alice Busato
- Department of Chemistry and Molecular Imaging Center; University of Turin; Torino Italy
| | - Stefania Lanzardo
- Department of Clinical and Biological Science; University of Turin; Torino Italy
| | - Federica Antico
- Department of Internal Medicine; University of Turin; Torino Italy
| | - Silvio Aime
- Department of Chemistry and Molecular Imaging Center; University of Turin; Torino Italy
| |
Collapse
|