1
|
Zhao Y, Bhosale AA, Zhang X. Multimodal surface coils for low field MR imaging. Magn Reson Imaging 2024; 112:107-115. [PMID: 38971265 DOI: 10.1016/j.mri.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Low field MRI is safer and more cost effective than the high field MRI. One of the inherent problems of low field MRI is its low signal-to-noise ratio or sensitivity. In this work, we introduce a multimodal surface coil technique for signal excitation and reception to improve the RF magnetic field (B1) efficiency and potentially improve MR sensitivity. The proposed multimodal surface coil consists of multiple identical resonators that are electromagnetically coupled to form a multimodal resonator. The field distribution of its lowest frequency mode is suitable for MR imaging applications. The prototype multimodal surface coils are built, and the performance is investigated and validated through numerical simulation, standard RF measurements and tests, and comparison with the conventional surface coil at low fields. Our results show that the B1 efficiency of the multimodal surface coil outperforms that of the conventional surface coil which is known to offer the highest B1 efficiency among all coil categories, i.e., volume coil, half-volume coil and surface coil. In addition, in low-field MRI, the required low-frequency coils often use large value capacitance to achieve the low resonant frequency which makes frequency tuning difficult. The proposed multimodal surface coil can be conveniently tuned to the required low frequency for low-field MRI with significantly reduced capacitance value, demonstrating excellent low-frequency operation capability over the conventional surface coil.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
2
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-Tuned Coaxial-Transmission-Line RF Coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. IEEE Trans Biomed Eng 2024; 71:1521-1530. [PMID: 38090865 PMCID: PMC11095995 DOI: 10.1109/tbme.2023.3341760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. METHODS Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. RESULTS Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. CONCLUSION The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. SIGNIFICANCE The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
|
3
|
Perera Molligoda Arachchige AS, Teixeira de Castro Gonçalves Ortega AC, Catapano F, Politi LS, Hoff MN. From strength to precision: A systematic review exploring the clinical utility of 7-Tesla magnetic resonance imaging in abdominal imaging. World J Radiol 2024; 16:20-31. [PMID: 38312348 PMCID: PMC10835428 DOI: 10.4329/wjr.v16.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND After approval for clinical use in 2017 early investigations of ultra-high-field abdominal magnetic resonance imaging (MRI) have demonstrated the feasibility as well as diagnostic capabilities of liver, kidney, and prostate MRI at 7-Tesla. However, the elevation of the field strength to 7-Tesla not only brought advantages to abdominal MRI but also presented considerable challenges and drawbacks, primarily stemming from heightened artifacts and limitations in Specific Absorption Rate, etc. Furthermore, evidence in the literature is relatively scarce concerning human studies in comparison to phantom/animal studies which necessitates an investigation into the evidence so far in humans and summarizing all relevant evidence. AIM To offer a comprehensive overview of current literature on clinical abdominal 7T MRI that emphasizes current trends, details relevant challenges, and provides a concise set of potential solutions. METHODS This systematic review adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A PubMed search, utilizing Medical Subject Headings terms such as "7-Tesla" and organ-specific terms, was conducted for articles published between January 1, 1985, and July 25, 2023. Eligibility criteria included studies exploring 7T MRI for imaging human abdominal organs, encompassing various study types (in-vivo/ex-vivo, method development, reviews/meta-analyses). Exclusion criteria involved animal studies and those lacking extractable data. Study selection involved initial identification via title/abstract, followed by a full-text review by two researchers, with discrepancies resolved through discussion. Data extraction covered publication details, study design, population, sample size, 7T MRI protocol, image characteristics, endpoints, and conclusions. RESULTS The systematic review included a total of 21 studies. The distribution of clinical 7T abdominal imaging studies revealed a predominant focus on the prostate (n = 8), followed by the kidney (n = 6) and the hepatobiliary system (n = 5). Studies on these organs, and in the pancreas, demonstrated clear advantages at 7T. However, small bowel studies showed no significant improvements compared to traditional MRI at 1.5T. The majority of studies evaluated originated from Germany (n = 10), followed by the Netherlands (n = 5), the United States (n = 5), Austria (n = 2), the United Kingdom (n = 1), and Italy (n = 1). CONCLUSION Further increase of abdominal clinical MRI field strength to 7T demonstrated high imaging potential, yet also limitations mainly due to the inhomogeneous radiofrequency (RF) excitation field relative to lower field strengths. Hence, further optimization of dedicated RF coil elements and pulse sequences are expected to better optimize clinical imaging at high magnetic field strength.
Collapse
Affiliation(s)
| | | | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| |
Collapse
|
4
|
Bhosale AA, Zhao Y, Zhang X. Electric Field and SAR Reduction in High Impedance RF Arrays by Using High Permittivity Materials for 7T MR Imaging. ARXIV 2023:arXiv:2312.04491v1. [PMID: 38106453 PMCID: PMC10723527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Higher frequencies and shorter wavelengths present significant design issues at ultra-high fields, making multi-channel array setup a critical component for ultra-high field MR imaging. The requirement for multi-channel arrays, as well as ongoing efforts to increase the number of channels in an array, are always limited by the major issue known as inter-element coupling. This coupling affects the current and field distribution, noise correlation between channels, and frequency of array elements, lowering imaging quality and performance. To realize the full potential of UHF MRI, we must ensure that the coupling between array elements is kept to a minimum. High-impedance coils allow array systems to completely realize their potential by providing optimal isolation while requiring minimal design modifications. These minor design changes, which demand the use of low capacitance on the conventional loop to induce elevated impedance, result in a significant safety hazard that cannot be overlooked. High electric fields are formed across these low capacitance lumped elements, which may result in higher SAR values in the imaging subject, depositing more power and, ultimately, providing a greater risk of tissue heating-related injury to the human sample. We propose an innovative method of utilizing high-dielectric material to effectively reduce electric fields and SAR values in the imaging sample while preserving the B1 efficiency and inter-element decoupling between the array elements to address this important safety concern with minimal changes to the existing array design comprising high-impedance coils.
Collapse
Affiliation(s)
- Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
Zhao Y, Bhosale AA, Zhang X. Coupled stack-up volume RF coils for low-field MR imaging. ARXIV 2023:arXiv:2311.09430v1. [PMID: 38013888 PMCID: PMC10680881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The advent of low field open magnetic resonance imaging (MRI) systems has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated RF coil, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. In response to these challenges, we introduce the coupled stack-up volume coil, a novel RF coil design that addresses the shortcomings of conventional birdcage in the context of low field open MRI. The proposed coupled stack-up volume coil design utilizes a unique architecture that optimizes both transmit/receive efficiency and RF field homogeneity and offers the advantage of a simple design and construction, making it a practical and feasible solution for low field MRI applications. This paper presents a comprehensive exploration of the theoretical framework, design considerations, and experimental validation of this innovative coil design. Through rigorous analysis and empirical testing, we demonstrate the superior performance of the coupled stack-up volume coil in achieving improved transmit/receive efficiency and more uniform magnetic field distribution compared to traditional birdcage coils.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-tuned Coaxial-transmission-line RF coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. ARXIV 2023:arXiv:2307.11221v3. [PMID: 37502626 PMCID: PMC10370217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Objective Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ 2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. Methods Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. Results Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. Conclusion The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. Significance The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
Affiliation(s)
- Komlan Payne
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Aditya Ashok Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Xiaoliang Zhang
- Departments of Biomedical Engineering and Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| |
Collapse
|
7
|
Rivera D, Kalleveen I, de Castro CA, van Laarhoven H, Klomp D, van der Kemp W, Stoker J, Nederveen A. Inherently decoupled 1 H antennas and 31 P loops for metabolic imaging of liver metastasis at 7 T. NMR IN BIOMEDICINE 2020; 33:e4221. [PMID: 31922319 DOI: 10.1002/nbm.4221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
High field 31 P spectroscopy has thus far been limited to diffuse liver disease. Unlike lower field-strength scanners, there is no body coil in the bore of the 7 T and despite inadequate penetration depth (<10 cm), surface coils are the current state-of-the-art for acquiring anatomical images to support multinuclear studies. We present a system of proton antennas and phosphorus loops for 31 P spectroscopy and provide the first ultrahigh-field phosphorus metabolic imaging of a tumor in the abdomen. Herein we characterize the degree to which antennas are isolated from underlying loops. Next, we evaluate the penetration depth of the two antennas available during multinuclear examinations. Finally, we combine phosphorus spectroscopy (two loops) with parallel transmit imaging (eight antennas) in a patient. The loops and antennas are inherently decoupled (no added circuitry, <0.1% power coupling). The penetration depth of two antennas gives twice that of conventional loops. The liver and full axial slice of the abdomen were imaged with eight transmit/receive antennas using parallel transmit B1-shimming to overcome image voids. Phosphorus spectroscopy from a liver metastasis resolved individual peaks for phosphocholine and phosphoethenalomine. Proton antennas are inherently decoupled from phosphorus loops. By using two proton antennas it is possible to perform region-of-interest image-based shimming in over 80% of the liver volume, thereby enabling phosphorus spectroscopy of localized disease. Shimming of the full extent of the abdominal cross-section is feasible using a parallel transmit array of eight antennas. A system architecture capable of supporting eight-channel parallel transmit and multinuclear spectroscopy is optimal for supporting multiparametric body imaging, including metabolic imaging, for monitoring the response of patients with liver metastases to cancer treatments and for patient risk stratification. In the meantime, the existing infrastructure using two antennas is sufficient for preliminary studies in metabolic imaging of tumors in the liver.
Collapse
Affiliation(s)
- Debra Rivera
- Department of Electrical Engineering, Technical University Eindhoven, Eindhoven, the Netherlands
- MR Coils, BV Zaltbommel, the Netherlands
| | | | | | | | - Dennis Klomp
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wybe van der Kemp
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap Stoker
- Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Aart Nederveen
- Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Li Y, Lee J, Zhang L, Chen Q, Tie C, Luo C, Zhang X, Liang D, Liu X, Zheng H. Design and testing of a 24-channel head coil for MR imaging at 3 T. Magn Reson Imaging 2019; 58:162-173. [DOI: 10.1016/j.mri.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/07/2018] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
|
9
|
Horneff A, Eder M, Hell E, Ulrici J, Felder J, Rasche V, Anders J. An EM Simulation-Based Design Flow for Custom-Built MR Coils Incorporating Signal and Noise. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:527-535. [PMID: 29053444 DOI: 10.1109/tmi.2017.2764160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing custom-built MR coils is a cumbersome task, in which an a priori prediction of the coils' SNR performance, their sensitivity pattern, and their depth of penetration helps to greatly speed up the design process by reducing the required hardware manufacturing iterations. The simulation-based design flow presented in this paper takes the entire MR imaging process into account. That is, it includes all geometric and material properties of the coil and the phantom, the thermal noise as well as the target MR sequences. The proposed simulation-driven design flow is validated using a manufactured prototype coil, whose performance was optimized regarding its SNR performance, based on the presented design flow, by comparing the coil's measured performance against the simulated results. In these experiments, the mean and the standard deviation of the relative error between the simulated and measured coil sensitivity pattern were found to be and . Moreover, the peak deviation between the simulated and measured voxel SNR was found to be less than 4%, indicating that simulations are in good accordance with the measured results, validating the proposed software-based design approach.
Collapse
|
10
|
Zhang X, Martin A, Jordan C, Lillaney P, Losey A, Pang Y, Hu J, Wilson M, Cooke D, Hetts SW. Design of catheter radio frequency coils using coaxial transmission line resonators for interventional neurovascular MR imaging. Quant Imaging Med Surg 2017; 7:187-194. [PMID: 28516044 DOI: 10.21037/qims.2016.12.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND It is technically challenging to design compact yet sensitive miniature catheter radio frequency (RF) coils for endovascular interventional MR imaging. METHODS In this work, a new design method for catheter RF coils is proposed based on the coaxial transmission line resonator (TLR) technique. Due to its distributed circuit, the TLR catheter coil does not need any lumped capacitors to support its resonance, which simplifies the practical design and construction and provides a straightforward technique for designing miniature catheter-mounted imaging coils that are appropriate for interventional neurovascular procedures. The outer conductor of the TLR serves as an RF shield, which prevents electromagnetic energy loss, and improves coil Q factors. It also minimizes interaction with surrounding tissues and signal losses along the catheter coil. To investigate the technique, a prototype catheter coil was built using the proposed coaxial TLR technique and evaluated with standard RF testing and measurement methods and MR imaging experiments. Numerical simulation was carried out to assess the RF electromagnetic field behavior of the proposed TLR catheter coil and the conventional lumped-element catheter coil. RESULTS The proposed TLR catheter coil was successfully tuned to 64 MHz for proton imaging at 1.5 T. B1 fields were numerically calculated, showing improved magnetic field intensity of the TLR catheter coil over the conventional lumped-element catheter coil. MR images were acquired from a dedicated vascular phantom using the TLR catheter coil and also the system body coil. The TLR catheter coil is able to provide a significant signal-to-noise ratio (SNR) increase (a factor of 200 to 300) over its imaging volume relative to the body coil. CONCLUSIONS Catheter imaging RF coil design using the proposed coaxial TLR technique is feasible and advantageous in endovascular interventional MR imaging applications.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,UC Berkeley/UCSF Joint Bioengineering Program, University of California, Berkeley, San Francisco, CA, USA
| | - Alastair Martin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Caroline Jordan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Prasheel Lillaney
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Aaron Losey
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Yong Pang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Jeffrey Hu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Mark Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Daniel Cooke
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Steven W Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
|
12
|
Pang Y, Wong EWH, Yu B, Zhang X. Design and numerical evaluation of a volume coil array for parallel MR imaging at ultrahigh fields. Quant Imaging Med Surg 2014; 4:50-6. [PMID: 24649435 DOI: 10.3978/j.issn.2223-4292.2014.02.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 11/14/2022]
Abstract
In this work, we propose and investigate a volume coil array design method using different types of birdcage coils for MR imaging. Unlike the conventional radiofrequency (RF) coil arrays of which the array elements are surface coils, the proposed volume coil array consists of a set of independent volume coils including a conventional birdcage coil, a transverse birdcage coil, and a helix birdcage coil. The magnetic fluxes of these three birdcage coils are intrinsically cancelled, yielding a highly decoupled volume coil array. In contrast to conventional non-array type volume coils, the volume coil array would be beneficial in improving MR signal-to-noise ratio (SNR) and also gain the capability of implementing parallel imaging. The volume coil array is evaluated at the ultrahigh field of 7T using FDTD numerical simulations, and the g-factor map at different acceleration rates was also calculated to investigate its parallel imaging performance.
Collapse
Affiliation(s)
- Yong Pang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Ernest W H Wong
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Baiying Yu
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Xiaoliang Zhang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Agilent Technologies, Santa Clara, CA, USA ; 3 Magwale, Palo Alto, CA, USA ; 4 UC Berkeley/UCSF Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, USA ; 5 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| |
Collapse
|
13
|
Hu X, Chen X, Liu X, Zheng H, Li Y, Zhang X. Parallel imaging performance investigation of an 8-channel common-mode differential-mode (CMDM) planar array for 7T MRI. Quant Imaging Med Surg 2014; 4:33-42. [PMID: 24649433 DOI: 10.3978/j.issn.2223-4292.2014.02.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 11/14/2022]
Abstract
An 8-channel planar phased array was proposed based on the common-mode differential-mode (CMDM) structure for ultrahigh field MRI. The parallel imaging performance of the 8-channel CMDM planar array was numerically investigated based on electromagnetic simulations and Cartesian sensitivity encoding (SENSE) reconstruction. The signal-to-noise ratio (SNR) of multichannel images combined using root-sum-of-squares (rSoS) and covariance weighted root-sum-of-squares (Cov-rSoS) at various reduction factors were compared between 8-channel CMDM array and 4-channel CM and DM array. The results of the study indicated the 8-channel CMDM array excelled the 4-channel CM and DM in SNR. The g-factor maps and artifact power were calculated to evaluate parallel imaging performance of the proposed 8-channel CMDM array. The artifact power of 8-channel CMDM array was reduced dramatically compared with the 4-channel CM and DM arrays demonstrating the parallel imaging feasibility of the CMDM array.
Collapse
Affiliation(s)
- Xiaoqing Hu
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Xiao Chen
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Xin Liu
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Hairong Zheng
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Ye Li
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - Xiaoliang Zhang
- 1 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen 518055, China ; 2 Shenzhen Key Laboratory for MRI, Shenzhen 518055, China ; 3 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 4 UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| |
Collapse
|
14
|
Li Y, Yu B, Pang Y, Vigneron DB, Zhang X. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM) transmission line method for 7T MR imaging. PLoS One 2013; 8:e80428. [PMID: 24265823 PMCID: PMC3827179 DOI: 10.1371/journal.pone.0080428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Baiying Yu
- Magwale, Palo Alto, California, United States of America
| | - Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- UC Berkeley/UCSF Joint Graduate Group in Bioengineering, Berkeley & San Francisco, California, United States of America
- California Institute for Quantitative Biosciences (QB3), San Francisco, California, United States of America
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- UC Berkeley/UCSF Joint Graduate Group in Bioengineering, Berkeley & San Francisco, California, United States of America
- California Institute for Quantitative Biosciences (QB3), San Francisco, California, United States of America
| |
Collapse
|
15
|
Pang Y, Yu B, Zhang X. Hepatic fat assessment using advanced Magnetic Resonance Imaging. Quant Imaging Med Surg 2012; 2:213-8. [PMID: 23256082 DOI: 10.3978/j.issn.2223-4292.2012.08.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/31/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Yong Pang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | | | | |
Collapse
|
16
|
Multi-reception strategy with improved SNR for multichannel MR imaging. PLoS One 2012; 7:e42237. [PMID: 22879921 PMCID: PMC3411773 DOI: 10.1371/journal.pone.0042237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 07/04/2012] [Indexed: 12/03/2022] Open
Abstract
A multi-reception strategy with extended GRAPPA is proposed in this work to improve MR imaging performance at ultra-high field MR systems with limited receiver channels. In this method, coil elements are separated to two or more groups under appropriate grouping criteria. Those groups are enabled in sequence for imaging first, and then parallel acquisition is performed to compensate for the redundant scan time caused by the multiple receptions. To efficiently reconstruct the data acquired from elements of each group, a specific extended GRAPPA was developed. This approach was evaluated by using a 16-element head array on a 7 Tesla whole-body MRI scanner with 8 receive channels. The in-vivo experiments demonstrate that with the same scan time, the 16-element array with twice receptions and acceleration rate of 2 can achieve significant SNR gain in the periphery area of the brain and keep nearly the same SNR in the center area over an eight-element array, which indicates the proposed multi-reception strategy and extended GRAPPA are feasible to improve image quality for MRI systems with limited receive channels. This study also suggests that it is advantageous for a MR system with N receiver channels to utilize a coil array with more than N elements if an appropriate acquisition strategy is applied.
Collapse
|