1
|
Colella M, Iannucci A, Maresca C, Albano F, Mazzoccoli C, Laudisi F, Monteleone I, Monteleone G. SMAD7 Sustains XIAP Expression and Migration of Colorectal Carcinoma Cells. Cancers (Basel) 2024; 16:2370. [PMID: 39001432 PMCID: PMC11240366 DOI: 10.3390/cancers16132370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The reorganization of the cell cytoskeleton and changes in the content of cell adhesion molecules are crucial during the metastatic spread of tumor cells. Colorectal cancer (CRC) cells express high SMAD7, a protein involved in the control of CRC cell growth. In the present study, we evaluated whether SMAD7 regulates the cytoskeleton reorganization and dynamics in CRC. Knockdown of SMAD7 with a specific antisense oligonucleotide (AS) in HCT116 and DLD1, two human CRC cell lines, reduced the migration rate and the content of F-ACTIN filaments. A gene array, real-time PCR, and Western blotting of SMAD7 AS-treated cells showed a marked down-regulation of the X-linked inhibitor of apoptosis protein (XIAP), a member of the inhibitor of apoptosis family, which has been implicated in cancer cell migration. IL-6 and IL-22, two cytokines that activate STAT3, enhanced XIAP in cancer cells, and such induction was attenuated in SMAD7-deficient cells. Finally, in human CRC, SMAD7 mRNA correlated with XIAP expression. Our data show that SMAD7 positively regulates XIAP expression and migration of CRC cells, and suggest a mechanism by which SMAD7 controls the architecture components of the CRC cell cytoskeleton.
Collapse
Affiliation(s)
- Marco Colella
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesco Albano
- Department of Biology, Laboratorio di Biologia Delle Cellule Staminali, University of Naples Federico II, 80126 Naples, Italy
| | - Carmela Mazzoccoli
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Gastroenterology Unit, Fondazione Policlinico "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
2
|
Subcellular localization of X-linked inhibitor of apoptosis protein (XIAP) in cancer: does that matter? BBA ADVANCES 2022; 2:100050. [PMID: 37082602 PMCID: PMC10074912 DOI: 10.1016/j.bbadva.2022.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) finely tunes the balance between survival and death to control homeostasis. XIAP is found aberrantly expressed in cancer, which has been shown to promote resistance to therapy-induced apoptosis and confer poor outcome. Despite its predominant cytoplasmic localization in human tissues, growing evidence implicates the expression of XIAP in other subcellular compartments in sustaining cancer hallmarks. Herein, we review our current knowledge on the prognostic role of XIAP localization and discuss molecular mechanisms underlying differential biological functions played in each compartment. The comprehension of XIAP subcellular shuttling and functional dynamics might provide the rationale for future anticancer therapeutics.
Collapse
|
3
|
Kussainova A, Bulgakova O, Aripova A, Khalid Z, Bersimbaev R, Izzotti A. The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines 2022; 10:428. [PMID: 35203638 PMCID: PMC8962319 DOI: 10.3390/biomedicines10020428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs are short, non-coding RNA molecules regulating gene expression by inhibiting the translation of messenger RNA (mRNA) or leading to degradation. The miRNAs are encoded in the nuclear genome and exported to the cytosol. However, miRNAs have been found in mitochondria and are probably derived from mitochondrial DNA. These miRNAs are able to directly regulate mitochondrial genes and mitochondrial activity. Mitochondrial dysfunction is the cause of many diseases, including cancer. In this review, we consider the role of mitochondrial miRNAs in the pathogenesis of lung cancer with particular reference to radon exposure.
Collapse
Affiliation(s)
- Assiya Kussainova
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
4
|
Kapadia BB, Roychowdhury A, Kayastha F, Nanaji N, Gartenhaus RB. PARK2 regulates eIF4B-driven lymphomagenesis. Mol Cancer Res 2022; 20:molcanres.MCR-21-0729-A.2021. [PMID: 35191952 PMCID: PMC9339581 DOI: 10.1158/1541-7786.mcr-21-0729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 01/09/2023]
Abstract
Patients with high-risk diffuse large B-cell lymphoma (DLBCL) have poor outcomes following first-line cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP); thus, treatment of this fatal disease remains an area of unmet medical need and requires identification of novel therapeutic approaches. Dysregulation of protein translation initiation has emerged as a common downstream node in several malignancies, including lymphoma. Ubiquitination, a prominent post-translational modification associated with substrate degradation, has recently been shown to be a key modulator of nascent peptide synthesis by limiting several translational initiation factors. While a few deubiquitinases have been identified, the E3-ligase responsible for the critical ubiquitination of these translational initiation factors is still unknown. In this study, using complementary cellular models along with clinical readouts, we establish that PARK2 ubiquitinates eIF4B and consequently regulates overall protein translational activity. The formation of this interaction depends on upstream signaling, which is negatively regulated at the protein level of PARK2. Through biochemical, mutational, and genetic studies, we identified PARK2 as a mTORC1 substrate. mTORC1 phosphorylates PARK2 at Ser127, which blocks its cellular ubiquitination activity, thereby hindering its tumor suppressor effect on eIF4B's stability. This resultant increase of eIF4B protein level helps drive enhanced overall protein translation. These data support a novel paradigm in which PARK2-generated eIF4B ubiquitination serves as an anti-oncogenic intracellular inhibitor of protein translation, attenuated by mTORC1 signaling. Implications: Our data implicates the FASN/mTOR-PARK2-eIF4B axis as a critical driver of enhanced oncogene expression contributing to lymphomagenesis.
Collapse
Affiliation(s)
- Bandish B. Kapadia
- Section of Hematology and Oncology, Medicine Service, McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Anirban Roychowdhury
- Section of Hematology and Oncology, Medicine Service, McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Forum Kayastha
- Section of Hematology and Oncology, Medicine Service, McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Nahid Nanaji
- Department of Veteran Affairs, Maryland Healthcare System, Baltimore, Maryland
| | - Ronald B. Gartenhaus
- Section of Hematology and Oncology, Medicine Service, McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
5
|
Ahmad I, Irfan S, Ali Beg MM, Kamli H, Ali SP, Begum N, Alshahrani MY, Rajagopalan P. The SMAC mimetic AT-101 exhibits anti-tumor and anti-metastasis activity in lung adenocarcinoma cells by the IAPs/ caspase-dependent apoptosis and p65-NFƙB cross-talk. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:969-977. [PMID: 34712428 PMCID: PMC8528260 DOI: 10.22038/ijbms.2021.56400.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/12/2021] [Indexed: 11/06/2022]
Abstract
Objective(s): The Inhibitors of Apoptosis (IAPs) regulate initiator and effector phases of caspase mediated apoptosis. This study evaluates the effects of SMAC mimetic AT-101 in regulation of IAPs/caspases/NFƙB-p65 in an adenocarcinoma cell line. Materials and Methods: MTT assay was performed in the NCI-H522 cell line. Flow cytometry was used for detecting cell cycle, apoptosis, and NFƙB-p65 regulation. Effects of AT-101 on IAPs and caspases were determined by quantitative real time-PCR and western blotting. AutoDock-VINA was used for computational analysis. Results: AT-101 reduced the cell proliferation of NCI-H522 with a GI50 value of 7 μM. The compound arrested adenocarcinoma cells in the G1 phase of the cell cycle and increased early and late phase apoptosis while decreasing tumor-cell trans-migration. AT-101 treatment to NCI H522 at a concentration of 0.35 μM decreased XIAP, cIAP-1, and cIAP-2 mRNA levels to 4.39±0.66, 1.93±0.26, and 2.20±0.24 folds, respectively. Increased dose of AT-101 at 0.7 μM concentration further decreased XIAP, cIAP-1, and cIAP-2 mRNA levels to 2.44±0.67, 1.46±0.93, and 0.97±0.10 folds, respectively. Similar effects of a dose-dependent decrease in the protein expressions of XIAP, cIAP-1, and cIAP-2 were observed with AT-101 treatments, while a dose-responsive increase in the mRNA and protein expression levels of caspase 6 and caspase 7 was observed in the NCI-H522 cell line. The compound exhibited binding affinity (-6.1 kcal/mol) and inhibited NFƙB-p65 in these cells. Conclusion: AT-101 had anti-tumor efficacy against lung adenocarcinoma cells which could be mediated through IAPs/caspase-dependent apoptosis and NFƙB-p65 cross talk. Results from this study suggests a signal cross talk between IAPs and NFkB and open new channels for further investigations in therapeutic intervention against lung cancer management.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Safia Irfan
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India.,Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyzstan.,Centre for Promotion of Medical Research, Ala-Too International University, Bishkek, Kyrgyzstan
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Syed Parveen Ali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Biochemistry, Maulana Azad Medical College, New Delhi, India.,Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyzstan.,Centre for Promotion of Medical Research, Ala-Too International University, Bishkek, Kyrgyzstan.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Naseem Begum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Genetic Events Inhibiting Apoptosis in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092167. [PMID: 33946435 PMCID: PMC8125500 DOI: 10.3390/cancers13092167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Despite the genetic heterogeneity of the disease, most patients are initially treated with a combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), but relapse occurs in ~50% of patients. One of the hallmarks of DLBCL is the occurrence of genetic events that inhibit apoptosis, which contributes to disease development and resistance to therapy. These events can affect the intrinsic or extrinsic apoptotic pathways, or their modulators. Understanding the factors that contribute to inhibition of apoptosis in DLBCL is crucial in order to be able to develop targeted therapies and improve outcomes, particularly in relapsed and refractory DLBCL (rrDLBCL). This review provides a description of the genetic events inhibiting apoptosis in DLBCL, their contribution to lymphomagenesis and chemoresistance, and their implication for the future of DLBCL therapy. Abstract Diffuse large B cell lymphoma (DLBCL) is curable with chemoimmunotherapy in ~65% of patients. One of the hallmarks of the pathogenesis and resistance to therapy in DLBCL is inhibition of apoptosis, which allows malignant cells to survive and acquire further alterations. Inhibition of apoptosis can be the result of genetic events inhibiting the intrinsic or extrinsic apoptotic pathways, as well as their modulators, such as the inhibitor of apoptosis proteins, P53, and components of the NF-kB pathway. Mechanisms of dysregulation include upregulation of anti-apoptotic proteins and downregulation of pro-apoptotic proteins via point mutations, amplifications, deletions, translocations, and influences of other proteins. Understanding the factors contributing to resistance to apoptosis in DLBCL is crucial in order to be able to develop targeted therapies that could improve outcomes by restoring apoptosis in malignant cells. This review describes the genetic events inhibiting apoptosis in DLBCL, provides a perspective of their interactions in lymphomagenesis, and discusses their implication for the future of DLBCL therapy.
Collapse
|
7
|
Identification of a Candidate Gene Set Signature for the Risk of Progression in IgM MGUS to Smoldering/Symptomatic Waldenström Macroglobulinemia (WM) by a Comparative Transcriptome Analysis of B Cells and Plasma Cells. Cancers (Basel) 2021; 13:cancers13081837. [PMID: 33921415 PMCID: PMC8070603 DOI: 10.3390/cancers13081837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Waldenström Macroglobulinemia (WM) is a B-cell lymphoma characterized by the precursor condition IgM monoclonal gammopathies of undetermined significance (IgM MGUS). We performed a gene expression profiling study to compare the transcriptome signatures of bone marrow (BM) B-cells and plasma cells of 36 WM patients, 13 IgM MGUS cases, and 7 healthy subjects used as controls (CTRLs) by Affymetrix microarray. We determined 2038 differentially expressed genes (DEGs) in CD19+ cells and 29 DEGs genes in CD138+ cells, respectively. The DEGs identified in B-cells were associated with KEGG pathways, mainly involved in hematopoietic cell lineage antigens, cell adhesion/focal adhesion/transmembrane proteins, adherens junctions, Wnt-signaling pathway, BCR-signaling pathway, calcium signaling pathway, complement/coagulation cascade, platelet activation, cytokine-cytokine receptor interactions, and signaling pathways responsible for cell cycle, apoptosis, proliferation and survival. In conclusion, we showed the deregulation of groups of genes belonging to KEGG pathways in the comparison among WM vs. IgM MGUS vs. CTRLs in B-cells. Interestingly, a small set of genes in B-cells displayed a common transcriptome expression profile between WM and IgM MGUS compared to CTRLs, suggesting its possible role in the risk of transformation of IgM MGUS to WM.
Collapse
|
8
|
Shahar N, Larisch S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat 2020; 52:100712. [DOI: 10.1016/j.drup.2020.100712] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
|
9
|
Jin H, Xue L, Mo L, Zhang D, Guo X, Xu J, Li J, Peng M, Zhao X, Zhong M, Xu D, Wu XR, Huang H, Huang C. Downregulation of miR-200c stabilizes XIAP mRNA and contributes to invasion and lung metastasis of bladder cancer. Cell Adh Migr 2020; 13:236-248. [PMID: 31240993 PMCID: PMC6601559 DOI: 10.1080/19336918.2019.1633851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous studies have demonstrated that XIAP promotes bladder cancer metastasis through upregulating RhoGDIβ/MMP-2 pathway. However, the molecular mechanisms leading to the XIAP upregulation was unclear. In current studies, we found that XIAP was overexpressed in human high grade BCs, high metastatic human BCs, and in mouse invasive BCs. Mechanistic studies indicated that XIAP overexpression in the highly metastatic T24T cells was due to increased mRNA stability of XIAP that was mediated by downregulated miR-200c. Moreover, the downregulated miR-200c was due to CREB inactivation, while miR-200c downregulation reduced its binding to the 3’-UTR region of XIAP mRNA. Collectively, our results demonstrate the molecular basis leading to XIAP overexpression and its crucial role in BC invasion.
Collapse
Affiliation(s)
- Honglei Jin
- a Nelson Institute of Environmental Medicine and Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Lei Xue
- b Department of Thoracic Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Lan Mo
- c Department of Pathology , New York Medical College , Valhalla , NY , USA
| | - Dongyun Zhang
- a Nelson Institute of Environmental Medicine and Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Xirui Guo
- a Nelson Institute of Environmental Medicine and Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Jiheng Xu
- a Nelson Institute of Environmental Medicine and Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Jingxia Li
- a Nelson Institute of Environmental Medicine and Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Minggang Peng
- a Nelson Institute of Environmental Medicine and Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Xuewei Zhao
- b Department of Thoracic Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Minghao Zhong
- c Department of Pathology , New York Medical College , Valhalla , NY , USA
| | - Dazhong Xu
- d Departments of Urology and Pathology , New York University School of Medicine , New York , NY , USA.,e Department of Environmental Medicine , VA Medical Center in Manhattan, New York University , New York , NY , USA
| | - Xue-Ru Wu
- d Departments of Urology and Pathology , New York University School of Medicine , New York , NY , USA.,e Department of Environmental Medicine , VA Medical Center in Manhattan, New York University , New York , NY , USA
| | - Haishan Huang
- f Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Chuanshu Huang
- a Nelson Institute of Environmental Medicine and Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| |
Collapse
|
10
|
Miao Y, Medeiros LJ, Xu-Monette ZY, Li J, Young KH. Dysregulation of Cell Survival in Diffuse Large B Cell Lymphoma: Mechanisms and Therapeutic Targets. Front Oncol 2019; 9:107. [PMID: 30881917 PMCID: PMC6406015 DOI: 10.3389/fonc.2019.00107] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of lymphoma worldwide, representing 30-40% of non-Hodgkin lymphomas, and is clinically aggressive. Although more than half of patients with DLBCL are cured by using standard first-line immunochemotherapy, the remaining patients are refractory to the first-line therapy or relapse after complete remission and these patients require novel therapeutic approaches. Understanding the pathogenesis of DLBCL is essential for identifying therapeutic targets to tackle this disease. Cell survival dysregulation, a hallmark of cancer, is a characteristic feature of DLBCL. Intrinsic signaling aberrations, tumor microenvironment dysfunction, and viral factors can all contribute to the cell survival dysregulation in DLBCL. In recent years, several novel drugs that target abnormal cell survival pathways, have been developed and tested in clinical trials of patients with DLBCL. In this review, we discuss cell survival dysregulation, the underlying mechanisms, and how to target abnormal cell survival therapeutically in DLBCL patients.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
11
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
12
|
Toosi B, Zaker F, Alikarami F, Kazemi A, Teremmahi Ardestanii M. VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-κB activity in B cell precursor-acute lymphoblastic leukemia. Biomed Pharmacother 2018; 102:428-437. [DOI: 10.1016/j.biopha.2018.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022] Open
|
13
|
XIAP RING domain mediates miR-4295 expression and subsequently inhibiting p63α protein translation and promoting transformation of bladder epithelial cells. Oncotarget 2018; 7:56540-56557. [PMID: 27447744 PMCID: PMC5302933 DOI: 10.18632/oncotarget.10645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
The X-linked inhibitor of apoptosis protein (XIAP) contains three N-terminal BIR domains that mediate anti-apoptosis and one C-terminal RING finger domain whose function(s) are not fully defined. Here we show that the RING domain of XIAP strongly inhibits the expression of p63α, a known tumor suppressor. XIAP knockdown in urothelial cells or RING deletion in knockin mice markedly upregulates p63α expression. This RING-mediated p63α downregulation is critical for the malignant transformation of normal urothelial cells following EGF treatment. We further show that the RING domain promotes Sp1-mediated transcription of miR-4295 which targets the 3′UTR of p63α mRNA and consequently inhibits p63α translation. Our results reveal a previously unknown function of the RING of XIAP in promoting miR-4295 transcription, thereby reducing p63α translation and enhancing urothelial transformation. Our data offer novel insights into the multifunctional effects of the XIAP RING domain on urothelial tumorigenesis and the potential for targeting this frequently overexpressed protein as a therapeutic alternative.
Collapse
|
14
|
Engel K, Rudelius M, Slawska J, Jacobs L, Ahangarian Abhari B, Altmann B, Kurutz J, Rathakrishnan A, Fernández-Sáiz V, Brunner A, Targosz BS, Loewecke F, Gloeckner CJ, Ueffing M, Fulda S, Pfreundschuh M, Trümper L, Klapper W, Keller U, Jost PJ, Rosenwald A, Peschel C, Bassermann F. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med 2016; 8:851-62. [PMID: 27317434 PMCID: PMC4967940 DOI: 10.15252/emmm.201506047] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC‐induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X‐linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B‐cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event‐free survival in patients treated with spindle poison‐containing chemotherapy. Accordingly, aggressive B‐cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ‐Myc lymphoma model. Together, we specify the USP9X–XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B‐cell lymphoma.
Collapse
Affiliation(s)
- Katharina Engel
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Martina Rudelius
- Institute of Pathology and Comprehensive Cancer Center Mainfranken, Universität Würzburg, Würzburg, Germany
| | - Jolanta Slawska
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Laura Jacobs
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Behnaz Ahangarian Abhari
- Institut für Experimentelle Tumorforschung in der Pädiatrie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Bettina Altmann
- Institute for Medical Informatics, Statistics and Epidemiology, Universität Leipzig, Leipzig, Germany
| | - Julia Kurutz
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Abirami Rathakrishnan
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Vanesa Fernández-Sáiz
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrä Brunner
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Bianca-Sabrina Targosz
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Felicia Loewecke
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Christian Johannes Gloeckner
- Eberhard-Karls-Universität Tübingen, Institute for Ophthalmic Research, Medical Proteome Center, Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Marius Ueffing
- Eberhard-Karls-Universität Tübingen, Institute for Ophthalmic Research, Medical Proteome Center, Tübingen, Germany
| | - Simone Fulda
- Institut für Experimentelle Tumorforschung in der Pädiatrie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Pfreundschuh
- Department of Medicine I, Saarland University Medical School, Homburg (Saar), Germany
| | - Lorenz Trümper
- Department of Hematology and Oncology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Wolfram Klapper
- Institute of Pathology, Haematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Ulrich Keller
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp J Jost
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany
| | - Andreas Rosenwald
- Institute of Pathology and Comprehensive Cancer Center Mainfranken, Universität Würzburg, Würzburg, Germany
| | - Christian Peschel
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, München, Germany German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
16
|
Li G, Chang H, Zhai YP, Xu W. Targeted silencing of inhibitors of apoptosis proteins with siRNAs: a potential anti-cancer strategy for hepatocellular carcinoma. Asian Pac J Cancer Prev 2014; 14:4943-52. [PMID: 24175757 DOI: 10.7314/apjcp.2013.14.9.4943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies, with a very poor prognosis. Despite significant improvements in diagnosis and treatment in recent years, the long-term therapeutic efficacy is poor, partially due to tumor metastasis, recurrence, and resistance to chemo- or radio-therapy. Recently, it was found that a major feature of tumors is a combination of unrestrained cell proliferation and impaired apoptosis. There are now 8 recognized members of the IAP-family: NAIP, c-IAP1, c-IAP2, XIAP, Survivin, Bruce, Livin and ILP-2. These proteins all contribute to inhibition of apoptosis, and provide new potential avenues of cancer treatment. As a powerful tool to suppress gene expression in mammalian cells, RNAi species for inhibiting IAP genes can be directed against cancers. This review will provide a brief introduction to recent developments of the application IAP-siRNA in tumor studies, with the aim of inspiring future treatment of HCC.
Collapse
Affiliation(s)
- Gang Li
- Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China E-mail :
| | | | | | | |
Collapse
|
17
|
Seiter MA, Salcher S, Rupp M, Hagenbuchner J, Kiechl-Kohlendorfer U, Mortier J, Wolber G, Rollinger JM, Obexer P, Ausserlechner MJ. Discovery of Sanggenon G as a natural cell-permeable small-molecular weight inhibitor of X-linked inhibitor of apoptosis protein (XIAP). FEBS Open Bio 2014; 4:659-71. [PMID: 25161875 PMCID: PMC4141193 DOI: 10.1016/j.fob.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/10/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023] Open
Abstract
Discovery of a novel XIAP-inhibitory natural compound from Morus root bark (Sanggenon G). Sanggenon G binds specific to the BIR3 domain of XIAP in a low μM range. Sanggenon G interferes with XIAP-BIR3-substrate binding in living cells. Sanggenon G acts as chemosensitizer in tumor cell lines with high XIAP expression.
Defects in the regulation of apoptosis are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as the X-linked inhibitor of apoptosis protein (XIAP). XIAP is frequently overexpressed in human leukemia and prostate and breast tumors. Inhibition of apoptosis by XIAP is mainly coordinated through direct binding to the initiator caspase-9 via its baculovirus-IAP-repeat-3 (BIR3) domain. XIAP inhibits caspases directly making it to an attractive target for anti-cancer therapy. In the search for novel, non-peptidic XIAP inhibitors in this study we focused on the chemical constituents of sāng bái pí (mulberry root bark). Most promising candidates of this plant were tested biochemically in vitro by a fluorescence polarization (FP) assay and in vivo via protein fragment complementation analysis (PCA). We identified the Diels Alder adduct Sanggenon G (SG1) as a novel, small-molecular weight inhibitor of XIAP. As shown by FP and PCA analyses, SG1 binds specifically to the BIR3 domain of XIAP with a binding affinity of 34.26 μM. Treatment of the transgenic leukemia cell line Molt3/XIAP with SG1 enhances caspase-8, -3 and -9 cleavage, displaces caspase-9 from XIAP as determined by immunoprecipitation experiments and sensitizes these cells to etoposide-induced apoptosis. SG1 not only sensitizes the XIAP-overexpressing leukemia cell line Molt3/XIAP to etoposide treatment but also different neuroblastoma cell lines endogenously expressing high XIAP levels. Taken together, Sanggenon G (SG1) is a novel, natural, non-peptidic, small-molecular inhibitor of XIAP that can serve as a starting point to develop a new class of improved XIAP inhibitors.
Collapse
Key Words
- (FP-) assay, fluorescence polarization assay
- ARPF-FAM, ARPF-K(5-Fam)-NH2-peptide
- BIR-3, baculovirus-IAP-repeat-3
- CC, column chromatography
- Cell permeable
- Kd, dissociation constant
- Ki, binding affinity
- MAC, methanol crude extract of mulberry root bark
- Natural
- PCA, protein fragment complementation analysis
- RLU, relative luminescence units
- SG1, sanggenon G
- Sanggenon G
- Small-molecular weight
- XIAP inhibitor
- XIAP, X-linked inhibitor of apoptosis protein
Collapse
Affiliation(s)
- Maximilian A Seiter
- Department of Pediatrics I, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | - Stefan Salcher
- Department of Pediatrics II, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | - Martina Rupp
- Department of Pediatrics II, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | - Judith Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | | | - Jérémie Mortier
- Freie Universität Berlin, Institute of Pharmacy, Department Pharmaceutical & Medicinal Chemistry, Koenigin-Luise-Straße 2, 14195 Berlin, Germany
| | - Gerhard Wolber
- Freie Universität Berlin, Institute of Pharmacy, Department Pharmaceutical & Medicinal Chemistry, Koenigin-Luise-Straße 2, 14195 Berlin, Germany
| | - Judith M Rollinger
- Institutes of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | - Michael J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria ; Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| |
Collapse
|
18
|
Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein - a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol 2014; 4:197. [PMID: 25120954 PMCID: PMC4112792 DOI: 10.3389/fonc.2014.00197] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023] Open
Abstract
Defects in apoptosis regulation are one main cause of cancer development and may result from overexpression of anti-apoptotic proteins such as inhibitor of apoptosis proteins (IAPs). IAPs are cell death regulators that, among other functions, bind caspases, and interfere with apoptotic signaling via death receptors or intrinsic cell death pathways. All IAPs share one to three common structures, the so called baculovirus-IAP-repeat (BIR)-domains that allow them to bind caspases and other proteins. X-linked inhibitor of apoptosis protein (XIAP) is the most potent and best-defined anti-apoptotic IAP family member that directly neutralizes caspase-9 via its BIR3 domain and the effector caspases-3 and -7 via its BIR2 domain. A natural inhibitor of XIAP is SMAC/Diablo, which is released from mitochondria in apoptotic cells and displaces bound caspases from the BIR2/BIR3 domains of XIAP thereby reactivating cell death execution. The central apoptosis-inhibitory function of XIAP and its overexpression in many different types of advanced cancers have led to significant efforts to identify therapeutics that neutralize its anti-apoptotic effect. Most of these drugs are chemical derivatives of the N-terminal part of SMAC/Diablo. These “SMAC-mimetics” either specifically induce apoptosis in cancer cells or act as drug-sensitizers. Several “SMAC-mimetics” are currently tested by the pharmaceutical industry in Phase I and Phase II trials. In this review, we will discuss recent advances in understanding the function of IAPs in normal and malignant cells and focus on approaches to specifically neutralize XIAP in cancer cells.
Collapse
Affiliation(s)
- Petra Obexer
- Department of Pediatrics II, Medical University Innsbruck , Innsbruck , Austria ; Tyrolean Cancer Research Institute , Innsbruck , Austria
| | - Michael J Ausserlechner
- Tyrolean Cancer Research Institute , Innsbruck , Austria ; Department of Pediatrics I, Medical University Innsbruck , Innsbruck , Austria
| |
Collapse
|
19
|
Yin J, Zhu JM, Shen XZ. The role and therapeutic implications of RING-finger E3 ubiquitin ligases in hepatocellular carcinoma. Int J Cancer 2014; 136:249-57. [PMID: 24420637 DOI: 10.1002/ijc.28717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/30/2022]
Abstract
Increasing evidence indicates that deregulation of RING-finger ubiquitin-protein ligases (E3s) involves in the development of hepatocellular carcinoma (HCC). These RING-finger E3s serve as oncoproteins or tumor suppressors in HCC under specific conditions. In this review, we summarize current knowledge about abnormal RING-finger E3s and their clinical significance in the development of HCC, and discuss parts of critical substrates for these RING-finger E3s in detail. Furthermore, in light of success of Bortezomib in treating hematological malignancies, we describe the preclinical and clinical studies of therapeutic approaches targeting aberrant RING-finger E3s in HCC.
Collapse
Affiliation(s)
- Jie Yin
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | | | | |
Collapse
|
20
|
Brinkmann K, Hombach A, Seeger JM, Wagner-Stippich D, Klubertz D, Krönke M, Abken H, Kashkar H. Second mitochondria-derived activator of caspase (SMAC) mimetic potentiates tumor susceptibility toward natural killer cell-mediated killing. Leuk Lymphoma 2013; 55:645-51. [PMID: 23697877 DOI: 10.3109/10428194.2013.807925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resistance to apoptosis is a hallmark of cancer, and represents an important mechanism of how tumor cells resist immune cell destruction. Mitochondria are the central regulators of the apoptotic machinery by releasing pro-apoptotic factors including cytochrome c and second mitochondria-derived activator of caspase (SMAC) upon mitochondrial outer membrane permeabilization (MOMP). Small molecules activating MOMP such as BH3 mimetics or antagonizers of the inhibitor of apoptosis proteins (IAPs) such as SMAC mimetics have recently engendered new optimism for a more individualized and effective cancer therapy. Here we show that a SMAC mimetic potentiates cancer cell killing by natural killer (NK) cells through reactivation of tumor cell apoptosis. Specifically, the SMAC mimetic enhances the susceptibility of tumor cells toward NK cell-mediated effector mechanisms involving death receptors and cytolytic granules containing perforin and granzymes by relieving caspase activity. Our data highlight for the first time the specific use of SMAC mimetics for boosting immune cell-mediated immunotherapy, representing a novel and promising approach in the treatment of cancer.
Collapse
Affiliation(s)
- Kerstin Brinkmann
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne , Cologne , Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cao Z, Zhang R, Li J, Huang H, Zhang D, Zhang J, Gao J, Chen J, Huang C. X-linked inhibitor of apoptosis protein (XIAP) regulation of cyclin D1 protein expression and cancer cell anchorage-independent growth via its E3 ligase-mediated protein phosphatase 2A/c-Jun axis. J Biol Chem 2013; 288:20238-47. [PMID: 23720779 DOI: 10.1074/jbc.m112.448365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The X-linked inhibitor of apoptosis protein (XIAP) is a well known potent inhibitor of apoptosis; however, it is also involved in other cancer cell biological behavior. In the current study, we discovered that XIAP and its E3 ligase played a crucial role in regulation of cyclin D1 expression in cancer cells. We found that deficiency of XIAP expression resulted in a marked reduction in cyclin D1 expression. Consistently, cell cycle transition and anchorage-independent cell growth were also attenuated in XIAP-deficient cancer cells compared with those of the parental wild-type cells. Subsequent studies demonstrated that E3 ligase activity within the RING domain of XIAP is crucial for its ability to regulate cyclin D1 transcription, cell cycle transition, and anchorage-independent cell growth by up-regulating transactivation of c-Jun/AP-1. Moreover, we found that E3 ligase within RING domain was required for XIAP inhibition of phosphatase PP2A activity by up-regulation of PP2A phosphorylation at Tyr-307 in its catalytic subunit. Such PP2A phosphorylation and inactivation resulted in phosphorylation and activation of its downstream target c-Jun in turn leading to cyclin D1 expression. Collectively, our studies uncovered a novel function of E3 ligase activity of XIAP in the up-regulation of cyclin D1 expression, providing significant insight into the understanding of the biomedical significance of overexpressed XIAP in cancer development, further offering a new molecular basis for utilizing XIAP E3 ligase as a cancer therapeutic target.
Collapse
Affiliation(s)
- Zipeng Cao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Faccion RS, Rezende LMM, Romano SDO, Bigni RDS, Mendes GLQ, Maia RC. Centroblastic diffuse large B cell lymphoma displays distinct expression pattern and prognostic role of apoptosis resistance related proteins. Cancer Invest 2012; 30:404-14. [PMID: 22571341 DOI: 10.3109/07357907.2012.672844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Centroblastic diffuse large B cell lymphoma (DLBCL) samples were analyzed by immunohistochemistry to evaluate the expression of p53, Bcl-2, Survivin, XIAP, and Ki-67. Survivin was the only protein which expression exhibited a trend for impact in progression-free (p = .077) and overall survival (p = .054). In the Mann-Whitney test, Survivin expression correlated with a negative overall survival (p = .045). These results appeared to be intimately related to Survivin cytoplasmic localization. Moreover, the anti-apoptotic proteins Bcl-2 and Survivin were less frequent in centroblastic DLBCL. Our results indicate that centroblastic DLBCL may be a disease with characteristic biology and clinical course and, therefore, specific prognostic factors.
Collapse
Affiliation(s)
- Roberta Soares Faccion
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação Geral Técnico-Científica, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Ramachandiran S, Cain J, Liao A, He Y, Guo X, Boise LH, Fu H, Ratner L, Khoury HJ, Bernal-Mizrachi L. The Smac mimetic RMT5265.2HCL induces apoptosis in EBV and HTLV-I associated lymphoma cells by inhibiting XIAP and promoting the mitochondrial release of cytochrome C and Smac. Leuk Res 2012; 36:784-90. [PMID: 22325366 PMCID: PMC3331941 DOI: 10.1016/j.leukres.2011.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 12/14/2022]
Abstract
The inhibitors of apoptosis (IAP) are important regulators of apoptosis. However, little is known about the capacity of Smac mimetics (IAP inhibitor) to overcome virally associated-lymphoma's (VAL) resistance to apoptosis. Here, we explored the pro-apoptotic effect of a novel Smac mimetic, RMT5265.2HCL (RMT) in VAL cells. RMT improved the sensitivity to apoptosis in EBV- and to some extend in HTLV-1- but not in HHV-8-VAL. Furthermore, we identified that RMT promotes caspase 3 and 9 cleavage by inhibiting XIAP and inducing the mitochondrial efflux of Smac and cytochrome C. This investigation further support exploring the use of Smac inhibitors in VAL.
Collapse
Affiliation(s)
- Sampath Ramachandiran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Joan Cain
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Albert Liao
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yanjuan He
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Xiangxue Guo
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Lee Ratner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hanna Jean Khoury
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Chen H, Hao Y, Wang L, Jia D, Ruan Y, Gu J. Sodium arsenite down-regulates the expression of X-linked inhibitor of apoptosis protein via translational and post-translational mechanisms in hepatocellular carcinoma. Biochem Biophys Res Commun 2012; 422:721-6. [PMID: 22627131 DOI: 10.1016/j.bbrc.2012.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 12/17/2022]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitors of apoptosis protein (IAP) family, and has been reported to exhibit elevated expression levels in hepatocellular carcinoma (HCC) and promote cell survival, metastasis and tumor recurrence. Targeting XIAP has proven effective for the inhibition of cancer cell proliferation and restoration of cancer cell chemosensitivity. Arsenic (or sodium arsenite) is a potent anti-tumor agent used to treat patients with acute promyelocytic leukemia (APL). Additionally, arsenic induces cell growth inhibition, cell cycle arrest and apoptosis in human HCC cells. In this study, we identified XIAP as a target for sodium arsenite-induced cytotoxicity in HCC. The exposure of HCC cell lines to sodium arsenite resulted in inhibition of XIAP expression in both a dose- and time-dependent manner. Sodium arsenite blocked the de novo XIAP synthesis and the activity of its internal ribosome entry site (IRES) element. Moreover, treatment with sodium arsenite decreased the protein stability of XIAP and induced its ubiquitin-proteasomal degradation. Overexpression of XIAP attenuated the pro-apoptotic effect of sodium arsenite in HCC. Taken together, our data demonstrate that sodium arsenite suppresses XIAP expression via translational and post-translational mechanisms in HCC.
Collapse
Affiliation(s)
- Hong Chen
- Gene Research Center, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Liu J, Zhang D, Luo W, Yu J, Li J, Yu Y, Zhang X, Chen J, Wu XR, Huang C. E3 ligase activity of XIAP RING domain is required for XIAP-mediated cancer cell migration, but not for its RhoGDI binding activity. PLoS One 2012; 7:e35682. [PMID: 22532870 PMCID: PMC3330820 DOI: 10.1371/journal.pone.0035682] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 03/20/2012] [Indexed: 12/16/2022] Open
Abstract
Although an increased expression level of XIAP is associated with cancer cell metastasis, the underlying molecular mechanisms remain largely unexplored. To verify the specific structural basis of XIAP for regulation of cancer cell migration, we introduced different XIAP domains into XIAP−/− HCT116 cells, and found that reconstitutive expression of full length HA-XIAP and HA-XIAP ΔBIR, both of which have intact RING domain, restored β-Actin expression, actin polymerization and cancer cell motility. Whereas introduction of HA-XIAP ΔRING or H467A mutant, which abolished its E3 ligase function, did not show obvious restoration, demonstrating that E3 ligase activity of XIAP RING domain played a crucial role of XIAP in regulation of cancer cell motility. Moreover, RING domain rather than BIR domain was required for interaction with RhoGDI independent on its E3 ligase activity. To sum up, our present studies found that role of XIAP in regulating cellular motility was uncoupled from its caspase-inhibitory properties, but related to physical interaction between RhoGDI and its RING domain. Although E3 ligase activity of RING domain contributed to cell migration, it was not involved in RhoGDI binding nor its ubiquitinational modification.
Collapse
Affiliation(s)
- Jinyi Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ren K, Lu J, Porollo A, Du C. Tumor-suppressing function of caspase-2 requires catalytic site Cys-320 and site Ser-139 in mice. J Biol Chem 2012; 287:14792-802. [PMID: 22396545 DOI: 10.1074/jbc.m112.347625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The multifunctional caspase-2 protein is involved in apoptosis, NF-κB regulation, and tumor suppression in mice. However, the mechanisms of caspase-2 responsible for tumor suppression remain unclear. Here we identified two sites of caspase-2, the catalytic Cys-320 site and the Ser-139 site, to be important for suppression of cellular transformation and tumorigenesis. Using SV40- and K-Ras-transformed caspase-2 KO mouse embryonic fibroblast cells reconstituted with expression of wild-type, catalytic dead (C320A), or Ser-139 (S139A) mutant caspase-2, we demonstrated that similar to caspase-2 deficiency, when Cys-320 and Ser-139 were mutated, caspase-2 lost its ability to inhibit cellular transformation and tumorigenesis. These mutant cells exhibited enhanced cell proliferation, elevated clonogenic activity, accelerated anchorage-independent growth, and transformation and were highly tumorigenic, rapidly producing large tumors in athymic nude mice. Investigation into the underlying mechanism showed that these two residues are needed for caspase-2 to suppress NF-κB activity, promote apoptosis, and sustain the G(2)/M checkpoint following DNA damage induction. In addition, tumors in nude mice derived from the two mutant cell lines had higher constitutive NF-κB activity and elevated expression of NF-κB targets of antiapoptotic proteins Bcl-xL, XIAP, and cIAP2. A reduction in caspase-2 mRNA was associated with multiple types of cancers in patients. Together, these observations suggest the combined functions of caspase-2 in suppressing NF-κB activation, promoting apoptosis, and sustaining G(2)/M checkpoint contribute to caspase-2 tumor-suppressing function and that caspase-2 may also impact tumor suppression in humans. These findings provide insight into tumor suppression at the cross-roads of apoptosis, cell cycle checkpoint, and NF-κB pathways.
Collapse
Affiliation(s)
- Keqin Ren
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
27
|
Wang HY, Lin CY, Chien CC, Kan WC, Tian YF, Liao PC, Wu HY, Su SB. Impact of uremic environment on peritoneum: a proteomic view. J Proteomics 2012; 75:2053-63. [PMID: 22266485 DOI: 10.1016/j.jprot.2012.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 11/14/2011] [Accepted: 01/07/2012] [Indexed: 01/29/2023]
Abstract
Peritoneal morphology and function are abnormal in uremia patients, but the contributing mechanisms are unclear. Here we attempted to characterize the protein targets that may be related to peritoneal change in patients with uremia and have not exposed to peritoneal dialysis fluid. Protein profiles of peritoneal fluids collected from patients with uremia and patients with normal renal function receiving laparoscopic cholecystectomy were displayed by two-dimensional gel electrophoresis (2-DE). Altered protein spots were excised and subjected to tryptic digestion followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Sixteen 2-DE protein spots were altered between two groups. Western blots confirmed that kininogen-1, apoptosis inhibitor 2, cat eye syndrome critical region protein 1, and apolipoprotein A-I had higher expression levels in the uremia samples. In contrast, synaptic vesicle 2-related protein, glial fibrillary acidic protein, and envelope glycoprotein (C2-V5 region) showed lower levels. The increased expression may result from a change in the permeability of the peritoneal membrane to middle-sized proteins or peritoneal inflammation with proteins sloughing off. All the identified proteins may provide a novel understanding of peritoneal changes caused by uremic toxins and may function as biomarkers or drug targets.
Collapse
Affiliation(s)
- Hsien-Yi Wang
- Department of Nephrology, Chi-Mei Medical Center, Tainan 710, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Giaisi M, Köhler R, Fulda S, Krammer PH, Li-Weber M. Rocaglamide and a XIAP inhibitor cooperatively sensitize TRAIL-mediated apoptosis in Hodgkin's lymphomas. Int J Cancer 2011; 131:1003-8. [PMID: 21952919 DOI: 10.1002/ijc.26458] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/09/2011] [Indexed: 02/01/2023]
Abstract
Although most of the patients with Hodgkin's lymphoma (HL) can be cured by the current regimen of high-dose multiagent chemotherapy, the treatment causes high risks of later toxicities including secondary malignancies. Therefore, new rational strategies are needed for HL treatment. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent due to its tumor selectivity and its lack of toxicity for normal cells. Unfortunately, many cancers remain resistant to TRAIL including HL. HL is characterized by enhanced expression of cellular caspase-8 (FLICE)-inhibitory protein (c-FLIP) and X-linked inhibitor of apoptosis (XIAP), which block receptor-mediated apoptosis by inhibiting caspase-8 and caspase-3, respectively. We have recently discovered the herbal compound Rocaglamide, which breaks TRAIL-resistance in acute T cell leukemia through inhibition of c-FLIP expression. We have also shown that small molecule XIAP inhibitors can sensitize TRAIL-mediated apoptosis in several resistant tumors. However, whether targeting XIAP or c-FLIP is also a suitable strategy to prime HL cells for TRAIL-induced apoptosis has not yet been investigated. In our study, we show that Rocaglamide suppresses c-FLIP expression in HL cells in a dose- and time-dependent manner. However, downregulation of c-FLIP alone was not sufficient to sensitize TRAIL-induced apoptosis in HL cells. Similarly, treatment of HL cells with a small molecule XIAP inhibitor resulted in a moderate induction of apoptosis. However, inhibition of XIAP alone was also not sufficient to enhance TRAIL-induced cell death. Synergistic increase in TRAIL-mediated killing of HL cells was only obtained by combination of Rocaglamide and XIAP inhibitors. Our study demonstrates that targeting both c-FLIP and XIAP are necessary for an efficient treatment of HL.
Collapse
Affiliation(s)
- Marco Giaisi
- German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Li S, Wan M, Cao X, Ren Y. Expression of AIF and HtrA2/Omi in small lymphocytic lymphoma and diffuse large B-cell lymphoma. Arch Pathol Lab Med 2011; 135:903-8. [PMID: 21732781 DOI: 10.5858/2010-0003-oar1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The pathogenesis of non-Hodgkin lymphoma may involve deregulation of apoptosis. In response to apoptotic stimuli, several proapoptotic proteins are released into the cytoplasm from the mitochondria, including second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein binding protein with low p I (Smac/DIABLO), apoptosis-inducing factor (AIF), and high temperature requirement protein A2 (HtrA2/Omi). Apoptosis-inducing factor promotes apoptosis through a caspase-independent pathway, while Smac/DIABLO and HtrA2/Omi do so through both caspase-dependent and caspase-independent pathways. Smac/DIABLO was reported to be strongly positive in diffuse large B-cell lymphoma (DLBCL) and virtually absent in small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL). Little is known about the expression of AIF and HtrA2/Omi in lymphomas. OBJECTIVE To evaluate the expression of AIF and HtrA2/Omi in SLL and DLBCL. DESIGN Twenty-three DLBCLs, 20 SLLs/CLLs, and 10 benign lymph nodes were evaluated for AIF and HtrA2/Omi expression by immunohistochemical staining. RESULTS Apoptosis-inducing factor was strongly and diffusely expressed in 19 of 23 (83%) cases of DLBCL with comparable expression pattern between germinal center-like and non-germinal center-like subgroups. Apoptosis-inducing factor was weakly positive in 15 of 20 (75%) cases of SLL/CLL with increased intensity in pseudofollicles. In contrast, HtrA2/Omi was weakly expressed in SLL/CLL (17 of 20; 85%) and DLBCL (18 of 23; 78%). CONCLUSIONS The different expression level and pattern of AIF and HtrA2/Omi in SLL/CLL and DLBCL may suggest different apoptotic mechanisms involved in the pathogenesis and prognosis of these diseases. HtrA2/Omi does not appear to be a major player in the regulation of apoptosis of DLBCL and SLL/CLL.
Collapse
Affiliation(s)
- Shaoying Li
- Department of Pathology, University of Alabama at Birmingham Health System, Birmingham, USA.
| | | | | | | |
Collapse
|
30
|
Liu J, Zhang D, Luo W, Yu Y, Yu J, Li J, Zhang X, Zhang B, Chen J, Wu XR, Rosas-Acosta G, Huang C. X-linked inhibitor of apoptosis protein (XIAP) mediates cancer cell motility via Rho GDP dissociation inhibitor (RhoGDI)-dependent regulation of the cytoskeleton. J Biol Chem 2011; 286:15630-40. [PMID: 21402697 DOI: 10.1074/jbc.m110.176982] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) overexpression has been found to be associated with malignant cancer progression and aggression in individuals with many types of cancers. However, the molecular basis of XIAP in the regulation of cancer cell biological behavior remains largely unknown. In this study, we found that a deficiency of XIAP expression in human cancer cells by either knock-out or knockdown leads to a marked reduction in β-actin polymerization and cytoskeleton formation. Consistently, cell migration and invasion were also decreased in XIAP-deficient cells compared with parental wild-type cells. Subsequent studies demonstrated that the regulation of cell motility by XIAP depends on its interaction with the Rho GDP dissociation inhibitor (RhoGDI) via the XIAP RING domain. Furthermore, XIAP was found to negatively regulate RhoGDI SUMOylation, which might affect its activity in controlling cell motility. Collectively, our studies provide novel insights into the molecular mechanisms by which XIAP regulates cancer invasion and offer a further theoretical basis for setting XIAP as a potential prognostic marker and specific target for treatment of cancers with metastatic properties.
Collapse
Affiliation(s)
- Jinyi Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The enigmatic roles of caspases in tumor development. Cancers (Basel) 2010; 2:1952-79. [PMID: 24281211 PMCID: PMC3840446 DOI: 10.3390/cancers2041952] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 12/25/2022] Open
Abstract
One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may even promote tumor development. Moreover, experimental evidence suggests that caspases might play non-apoptotic roles in processes that are crucial for tumorigenesis, such as cell proliferation, migration, or invasion. We thus propose a model wherein caspases are preserved in tumor cells due to their functional contributions to development and progression of tumors.
Collapse
|
32
|
Cillessen SAGM, Meijer CJLM, Notoya M, Ossenkoppele GJ, Oudejans JJ. Molecular targeted therapies for diffuse large B-cell lymphoma based on apoptosis profiles. J Pathol 2010; 220:509-20. [PMID: 20087881 DOI: 10.1002/path.2670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of adult non-Hodgkin lymphoma and is treated with chemotherapy in combination with rituximab. Despite this aggressive therapy, the disease is fatal in 30-40% of patients. Inhibition of the apoptosis signalling pathways is strongly related to response to chemotherapy and eventual clinical outcome. In order to survive, lymphoma cells depend on disruption of the apoptosis pathway by mutations in apoptosis inducing genes or by continuous expression of anti-apoptotic proteins. The development of molecules targeting these apoptosis inhibitors provides a very promising opportunity to specifically target tumour cells without toxicity to non-malignant cells in DLBCL patients. Sensitivity for most of these antagonists can be predicted based on biological markers, suggesting the possibility of pre-defining patients who will most likely benefit from these targeted therapies. Experimental therapies aimed at restoring the upstream apoptosis pathway or targeting apoptosis inhibitors are currently being tested in clinical trials and are expected to be effective particularly in chemotherapy-refractory DLBCL, providing hope for patients who are refractory to current therapies.
Collapse
Affiliation(s)
- Saskia A G M Cillessen
- Department of Clinical Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Grzybowska-Izydorczyk O, Cebula B, Robak T, Smolewski P. Expression and prognostic significance of the inhibitor of apoptosis protein (IAP) family and its antagonists in chronic lymphocytic leukaemia. Eur J Cancer 2010; 46:800-10. [PMID: 20045309 DOI: 10.1016/j.ejca.2009.11.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 09/22/2009] [Accepted: 11/25/2009] [Indexed: 11/19/2022]
Abstract
Impaired apoptosis is still considered to be an important event in the development and progression of chronic lymphocytic leukaemia (CLL). However, mechanisms of this defect have not been fully elucidated. In this study, expression of inhibitor of apoptosis proteins, IAPs (cIAP1, cIAP2, XIAP and survivin), and their antagonists (Smac/DIABLO and HtrA2/Omi) was comprehensively analysed in 100 untreated CLL patients, using flow cytometry and Western blot techniques. Expression of anti-apoptotic cIAP1 and cIAP2 in leukaemic cells was significantly higher than in non-tumour lymphocytes (p=0.000001 and p=0.014, respectively), whereas the IAP-antagonist, Smac/DIABLO, was decreased in CLL (p=0.010). Higher expression of all analysed IAPs (cIAP1, p=0.002; cIAP2, p=0.026; XIAP, p=0.002; survivin, p=0.00006) and lower levels of Smac/DIABLO (p=0.006) were found in patients with progressive disease, compared to those with stable CLL. High baseline expression of cIAP1 and survivin correlated with worse response to treatment. Co-expression of these proteins was associated with shorter overall survival of CLL patients (p=0.005). In conclusion, CLL cells show the apoptosis-resistant profile of IAPs/IAP-antagonist expression. Upregulation of IAPs is associated with a progressive course of the disease. Co-expression of cIAP1 and survivin seems to be an unfavourable prognostic factor in CLL patients. Further studies with longer follow up are warranted to confirm and expand these findings.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Apoptosis Regulatory Proteins
- Biomarkers, Tumor/blood
- Disease Progression
- Epidemiologic Methods
- Female
- High-Temperature Requirement A Serine Peptidase 2
- Humans
- Immunophenotyping
- Inhibitor of Apoptosis Proteins/blood
- Intracellular Signaling Peptides and Proteins/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Mitochondrial Proteins/blood
- Neoplasm Proteins/blood
- Prognosis
- Serine Endopeptidases/blood
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Olga Grzybowska-Izydorczyk
- Department of Experimental Haematology, Medical University of Lodz, Copernicus Memorial Hospital, Ciolkowskiego 2, 93-510 Lodz, Poland
| | | | | | | |
Collapse
|
34
|
Ge J, Guo X, Ma ZG, Gu L, Li Q. Arsenic trioxide induces apoptosis of glucocorticoid-resistant acute lymphoblastic leukemia CEM-C1 cells. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-009-0217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Mani H, Jaffe ES. Hodgkin lymphoma: an update on its biology with new insights into classification. ACTA ACUST UNITED AC 2009; 9:206-16. [PMID: 19525189 DOI: 10.3816/clm.2009.n.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past few years, there has been a greater understanding of the spectrum and biology of Hodgkin lymphoma (HL). In standard texts, HL is classified as 2 distinct entities, namely nodular lymphocyte-predominant HL and classical HL (CHL). However, recent evidence suggests that CHL is not a single disease. Although the mixed cellularity and lymphocyte-depleted subtypes might be part of a biologic continuum, the nodular sclerosis subtype has a distinct epidemiology, clinical presentation, and histology. Nodular sclerosis HL might also be related to primary mediastinal B-cell lymphoma and mediastinal gray-zone lymphomas. We present an update on the pathobiology of HL and discuss these biologic and clinical differences in this review.
Collapse
Affiliation(s)
- Haresh Mani
- Laboratory of Pathology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Identification of ARIA regulating endothelial apoptosis and angiogenesis by modulating proteasomal degradation of cIAP-1 and cIAP-2. Proc Natl Acad Sci U S A 2009; 106:8227-32. [PMID: 19416853 DOI: 10.1073/pnas.0806780106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Endothelial apoptosis is a pivotal process for angiogenesis during embryogenesis as well as postnatal life. By using a retrovirus-mediated signal sequence trap method, we identified a previously undescribed gene, termed ARIA (apoptosis regulator through modulating IAP expression), which regulates endothelial apoptosis and angiogenesis. ARIA was expressed in blood vessels during mouse embryogenesis, as well as in endothelial cells both in vitro and in vivo. ARIA is a unique protein with no homology to previously reported conserved domain structures. Knockdown of ARIA in HUVECs by using small interfering RNA significantly reduced endothelial apoptosis without affecting either cell migration or proliferation. ARIA knockdown significantly increased inhibitor of apoptosis (cIAP)-1 and cIAP-2 protein expression, although their mRNA expression was not changed. Simultaneous knockdown of cIAP-1 and cIAP-2 abolished the antiapoptotic effect of ARIA knockdown. Using yeast 2-hybrid screening, we identified the interaction of ARIA with 20S proteasome subunit alpha-7. Thereafter, we found that cIAP-1 and cIAP-2 were degraded by proteasomes in endothelial cells under normal condition. Overexpression of ARIA significantly reduced cIAP-1 expression, and this reduction was abolished by proteasomal inhibition in BAECs. Also, knockdown of ARIA demonstrated an effect similar to proteasomal inhibition with respect to not only expression but also subcellular localization of cIAP-1 and cIAP-2. In vivo angiogenesis studied by Matrigel-plug assay, mouse ischemic retinopathy model, and tumor xenograft model was significantly enhanced by ARIA knockdown. Together, our data indicate that ARIA is a unique factor regulating endothelial apoptosis, as well as angiogenesis, presumably through modulating proteasomal degradation of cIAP-1 and cIAP-2 in endothelial cells.
Collapse
|
37
|
Ma O, Cai WW, Zender L, Dayaram T, Shen J, Herron AJ, Lowe SW, Man TK, Lau CC, Donehower LA. MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res 2009; 69:2559-67. [PMID: 19276372 DOI: 10.1158/0008-5472.can-08-2929] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteosarcoma is the primary malignant cancer of bone and particularly affects adolescents and young adults, causing debilitation and sometimes death. As a model for human osteosarcoma, we have been studying p53(+/-) mice, which develop osteosarcoma at high frequency. To discover genes that cooperate with p53 deficiency in osteosarcoma formation, we have integrated array comparative genomic hybridization, microarray expression analyses in mouse and human osteosarcomas, and functional assays. In this study, we found seven frequent regions of copy number gain and loss in the mouse p53(+/-) osteosarcomas but have focused on a recurrent amplification event on mouse chromosome 9A1. This amplicon is syntenic with a similar chromosome 11q22 amplicon identified in several human tumor types. Three genes on this amplicon, the matrix metalloproteinase gene MMP13 and the antiapoptotic genes Birc2 (cIAP1) and Birc3 (cIAP2), show elevated expression in mouse and human osteosarcomas. We developed a functional assay using clonal osteosarcoma cell lines transduced with lentiviral short hairpin RNA vectors to show that down-regulation of MMP13, Birc2, or Birc3 resulted in reduced tumor growth when transplanted into immunodeficient recipient mice. These experiments revealed that high MMP13 expression enhances osteosarcoma cell survival and that Birc2 and Birc3 also enhance cell survival but only in osteosarcoma cells with the chromosome 9A1 amplicon. We conclude that the antiapoptotic genes Birc2 and Birc3 are potential oncogenic drivers in the chromosome 9A1 amplicon.
Collapse
Affiliation(s)
- Ou Ma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Increased X-linked inhibitor of apoptosis protein (XIAP) expression exacerbates experimental autoimmune encephalomyelitis (EAE). J Neuroimmunol 2009; 203:79-93. [PMID: 18687476 DOI: 10.1016/j.jneuroim.2008.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/17/2008] [Accepted: 06/19/2008] [Indexed: 01/27/2023]
Abstract
Dysregulated apoptotic signaling has been implicated in most forms of cancer and many autoimmune diseases, such as multiple sclerosis (MS). We have previously shown that the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP) is elevated in T cells from mice with experimental autoimmune encephalomyelitis (EAE). In MS and EAE, the failure of autoimmune cells to undergo apoptosis is thought to exacerbate clinical symptoms and contribute to disease progression and CNS tissue damage. Antisense-mediated knockdown of XIAP, in vivo, increases the susceptibility of effector T cells to apoptosis, thus attenuating CNS inflammation and thereby alleviating the clinical signs of EAE. We report for the first time, generation of transgenic mice whereby the ubiquitin promoter drives expression of XIAP (ubXIAP), resulting in increased XIAP expression in a variety of tissues, including cells comprising the immune system. Transgenic ubXIAP mice and wild-type (WT) littermates were immunized with myelin oligodendrocyte glycoprotein (MOG35-55) in complete Freund's adjuvant and monitored daily for clinical symptoms of EAE over a 21-day period. The severity of EAE was increased in ubXIAP mice relative to WT-littermates, suggesting that XIAP overexpression enhanced the resistance of T cells to apoptosis. Consistent with this finding, T cells derived from MOG35-55-immunized ubXIAP mice and cultured in the presence of antigen were more resistant to etoposide-mediated apoptosis compared to WT-littermates. This work identifies XIAP is an important apoptotic regulator in EAE and a potential pharmacological target for treating autoimmune diseases such as MS.
Collapse
|
39
|
Schwaenen C, Viardot A, Berger H, Barth TFE, Bentink S, Döhner H, Enz M, Feller AC, Hansmann ML, Hummel M, Kestler HA, Klapper W, Kreuz M, Lenze D, Loeffler M, Möller P, Müller-Hermelink HK, Ott G, Rosolowski M, Rosenwald A, Ruf S, Siebert R, Spang R, Stein H, Truemper L, Lichter P, Bentz M, Wessendorf S. Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status. Genes Chromosomes Cancer 2009; 48:39-54. [DOI: 10.1002/gcc.20617] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
40
|
Liao Y, Zeng H, Wang X, Huang Y, Chen N, Ge B, Tang L, Luo Q. Expression patterns and prognostic significance of inhibitor of apoptosis proteins in adenoid cystic carcinoma and pleomorphic adenoma of lachrymal gland. Exp Eye Res 2008; 88:4-11. [PMID: 18955046 DOI: 10.1016/j.exer.2008.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 08/27/2008] [Accepted: 09/08/2008] [Indexed: 02/05/2023]
Abstract
It has been widely reported that IAPs family are overexpressed in various malignancies, and their expression patterns are associated with clinical outcome of these diseases. Adenoid cystic carcinoma (ACC) of lachrymal gland is a malignant tumor with a poor prognosis, while, pleomorphic adenoma (PA) is the benign tumor of lachrymal gland epithelia. It was the first time that we investigated the expression profile of IAPs in tissues from ACC and PA, and evaluated the prognostic significance of IAPs. Paraffin-embedded tissues with 27 cases of ACC and 33 cases of PA were enrolled, and another 17 fresh frozen tissues were also collected. Expression of cIAP1, cIAP2, XIAP, Survivin and Livin in embedded tissues was analyzed by immunohistochemistry, and expression of five IAPs in fresh tissues was evaluated by semiquantitive RT-PCR and Western blot. Prognostic significance of IAPs with clinicopathological variables and outcome was then investigated with univariate and multivariate analysis. Survivin and cIAP2 expression in ACC were significantly higher than that of in PA (p < 0.05). cIAP1 and XIAP tended to show stronger expression in ACC than in PA, although the differences were not statistically significant. Livin expression was almost undetectable in both malignancy and benign lesion of lachrymal gland. Survivin expression in lachrymal tumors was localized in cytoplasm exclusively, and its expression was related to T staging and proliferative index in ACC, multivariate analysis demonstrated that Survivin was the only factor that could independently predict poor prognosis of ACC (RR = 3.681, 95%CI: 1.068-12.688, p = 0.039). Furthermore, Survivin expression was associated with progression of PA. Expression of cIAP1, cIAP2, XIAP and Survivin was higher in ACC than in PA tissues, however, only differential expression of Survivin and cIAP2 between ACC and PA was significant. Different prognosis between ACC and PA might be attributable to the different expression profiles of IAPs. Overexpression of Survivin in ACC was associated with poorer survival, which may have clinical impact on diagnosis and therapeutic considerations of this malignancy.
Collapse
Affiliation(s)
- Yongchuan Liao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shi YH, Ding WX, Zhou J, He JY, Xu Y, Gambotto A, Rabinowich H, Fan J, Yin XM. Expression of X-linked inhibitor-of-apoptosis protein in hepatocellular carcinoma promotes metastasis and tumor recurrence. Hepatology 2008; 48:497-507. [PMID: 18666224 PMCID: PMC2768766 DOI: 10.1002/hep.22393] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Despite significantly improved diagnosis and treatment in recent years, the long-term therapeutic effect is compromised by the frequent recurrence and metastasis, of which the molecular mechanisms are not fully understood. Our initial studies in established HCC cell lines with different metastatic capabilities indicated a correlation of metastasis with the resistance to apoptosis and therefore the ability to survive in stressed conditions. Subsequent investigation revealed that increased expression of X-linked inhibitor-of-apoptosis protein (XIAP) was correlated with the resistance to apoptosis and enhanced invasiveness in vitro, which could contribute to increased metastatic foci in vivo. Furthermore, we found that nearly 90% of clinical samples from advanced HCC patients expressed high levels of XIAP. Patients with XIAP-positive tumors had a significantly increased risk of relapse, which resulted from metastasis after total liver resection and orthotopic liver transplantation. Indeed, XIAP expression could be an independent prognostic factor for predicting disease-free survival rate and overall survival rate of these patients. XIAP expression was also highly correlated with advanced cases that exceeded the Milan criteria and could be a prognostic factor for disease-free survival in these patients as well. CONCLUSION Our studies have shown an important molecule in controlling HCC metastasis, defined a biomarker that can be used to predict HCC recurrence and patient survival after treatment, and suggest that XIAP can be a molecular target subject to intervention to reduce metastasis and recurrence.
Collapse
Affiliation(s)
- Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wen-Xing Ding
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun-Yi He
- Department of Liver Surgery, Liver Cancer Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Andrew Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| | - Hannah Rabinowich
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Ming Yin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| |
Collapse
|
42
|
Kashkar H, Deggerich A, Seeger JM, Yazdanpanah B, Wiegmann K, Haubert D, Pongratz C, Krönke M. NF-κB–independent down-regulation of XIAP by bortezomib sensitizes HL B cells against cytotoxic drugs. Blood 2006; 109:3982-8. [PMID: 17185461 DOI: 10.1182/blood-2006-10-053959] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe proteasome inhibitor bortezomib has been shown to possess promising antitumor activity and significant efficacy against a variety of malignancies. Different studies demonstrated that bortezomib breaks the chemoresistance in different tumor cells basically by altering nuclear factor–κB (NF-κB) activity. NF-κB has been shown to be constitutively active in most primary Hodgkin-Reed-Sternberg (H-RS) cells in lymph node sections and in Hodgkin lymphoma (HL) cell lines and was suggested to be a central molecular switch in apoptosis resistance in HL. Here we report a bimodal effect of bortezomib in HL cells. Whereas high-dose bortezomib induced direct cytotoxicity that correlated with decreased NF-κB activity, low-dose bortezomib sensitized HL cells against a variety of cytotoxic drugs without altering NF-κB action. Strikingly, bortezomib induced marked XIAP down-regulation at the posttranslational level that was independent of the NF-κB status. Similarly, RNA interference (RNAi)–mediated XIAP down-regulation generated susceptibility to cytostatic agents. The results identify XIAP as an NF-κB–independent target of bortezomib action that controls the chemoresistant phenotype of HL cells.
Collapse
Affiliation(s)
- Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|