1
|
Mahadevan A, Yazdanpanah O, Patel V, Benjamin DJ, Kalebasty AR. Ophthalmologic toxicities of antineoplastic agents in genitourinary cancers: Mechanisms, management, and clinical implications. Curr Probl Cancer 2025; 54:101171. [PMID: 39708456 DOI: 10.1016/j.currproblcancer.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
Genitourinary cancers affect over 480,000 patients in the United States annually. While promising therapeutic modalities continue to emerge, notably immune checkpoint inhibitors, molecular targeted therapies, antibody-drug conjugates, and radioligand therapies, these treatments are associated with a spectrum of adverse side-effects, including ophthalmologic toxicities. In this review, we cover the most commonly used antineoplastic agents for the kidneys, bladder, urinary tracts, prostate, testis, and penis, detailing mechanism, indication, and recent trials supporting their use. For each category of antineoplastic therapy, we describe the epidemiology, management, and clinical presentation, of common ophthalmologic toxicities stemming from these agents. This review serves to augment awareness and recognition of possible ophthalmologic manifestations resulting from the use of antineoplastic agents in genitourinary malignancy. Early identification of these side effects can hasten ophthalmology referral and ultimately improve visual outcomes in patients experiencing medication-induced ocular toxicities.
Collapse
Affiliation(s)
- Aditya Mahadevan
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Omid Yazdanpanah
- Division of Hematology/Oncology, University of California Irvine Health, Orange, CA, USA.
| | - Vivek Patel
- Department of Ophthalmology, University of California Irvine Health, Orange, CA, USA.
| | | | | |
Collapse
|
2
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
3
|
Picher EA, Wahajuddin M, Barth S, Chisholm J, Shipley J, Pors K. The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma. Cancers (Basel) 2024; 16:1012. [PMID: 38473371 DOI: 10.3390/cancers16051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Rhabdomyosarcoma (RMS) is a rare soft tissue sarcoma (STS) that predominantly affects children and teenagers. It is the most common STS in children (40%) and accounts for 5-8% of total childhood malignancies. Apart from surgery and radiotherapy in eligible patients, standard chemotherapy is the only therapeutic option clinically available for RMS patients. While survival rates for this childhood cancer have considerably improved over the last few decades for low-risk and intermediate-risk cases, the mortality rate remains exceptionally high in high-risk RMS patients with recurrent and/or metastatic disease. The intensification of chemotherapeutic protocols in advanced-stage RMS has historically induced aggravated toxicity with only very modest therapeutic gain. In this review, we critically analyse what has been achieved so far in RMS therapy and provide insight into how a diverse group of drug-metabolising enzymes (DMEs) possess the capacity to modify the clinical efficacy of chemotherapy. We provide suggestions for new therapeutic strategies that exploit the presence of DMEs for prodrug activation, targeted chemotherapy that does not rely on DMEs, and RMS-molecular-subtype-targeted therapies that have the potential to enter clinical evaluation.
Collapse
Affiliation(s)
- Enric Arasanz Picher
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Julia Chisholm
- Children and Young People's Unit, Royal Marsden Hospital, Institute of Cancer Research, Sutton SM2 5PR, UK
| | - Janet Shipley
- Sarcoma Molecular Pathology Group, Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
4
|
Shabani M, Bayrami D, Moghadam AA, Jamali Z, Salimi A. Pretreatment of ellagic acid protects ifosfamide-induced acute nephrotoxicity in rat kidneys: A mitochondrial, histopathological and oxidative stress approaches. Toxicol Rep 2023; 10:441-447. [PMID: 37125148 PMCID: PMC10133406 DOI: 10.1016/j.toxrep.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
Ifosfamide (IFO) kidney damage is an important organ toxicity in children and adults undergoing chemotherapy. Previous evidence has shown that IFO toxic metabolites such as acrolein and are associated with mitochondrial dysfunction, depletion of antioxidants, oxidative stress and may predispose the kidney to IFO toxicity. Bioactive food compounds such as ellagic acid (EA) found in fruits has been described as antioxidant and mitochondrial protective agents against toxicity-related mitochondrial damage and oxidative stress. In current study, the protective effects of EA on IFO-induced nephrotoxicity in male Wistar rats were investigated with histopathological, biochemical, and mitochondrial methods. The rats were randomly divided into four groups, control, IFO, IFO + EA, and EA groups. EA (25 mg/kg, i.p. daily) were administered to animals for 2 consecutive days and IFO (500 mg/kg, i.p.) was administered on third day. The results showed that pretreatment EA significantly increased mitochondrial succinate dehydrogenases (SDH) activity, and protected mitochondrial swelling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) formation, lipid peroxidation (LPO) and depletion glutathione (GSH). Histopathological findings demonstrated that EA had protective effects and reduced histopathological abnormalities caused by IFO. These results showed that EA administration protects the kidneys against mitochondrial dysfunction, oxidative stress and histopathological abnormality induced by IFO. Taken together, our results demonstrated that EA played a protective role against IFO-induced nephrotoxicity through mitochondrial protection and antioxidant properties.
Collapse
Affiliation(s)
- Mohammad Shabani
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Deniz Bayrami
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Ashena Moghadam
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Correspondence to: Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
5
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|
6
|
Stipp MC, Acco A. Involvement of cytochrome P450 enzymes in inflammation and cancer: a review. Cancer Chemother Pharmacol 2020; 87:295-309. [PMID: 33112969 DOI: 10.1007/s00280-020-04181-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of drugs, xenobiotics, and endogenous substances. This enzymatic activity can be modulated by intrinsic and extrinsic factors, modifying the organism's response to medications. Among the factors that are responsible for enzyme inhibition or induction is the release of proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, tumor necrosis factor α (TNF-α), and interferon-γ (IFN-γ), from macrophages, lymphocytes, and neutrophils. These cells are also present in the tumor microenvironment, participating in the development of cancer, a disease that is characterized by cellular mutations that favor cell survival and proliferation. Mutations also occur in CYP enzymes, resulting in enzymatic polymorphisms and modulation of their activity. Therefore, the inhibition or induction of CYP enzymes by proinflammatory cytokines in the tumor microenvironment can promote carcinogenesis and affect chemotherapy, resulting in adverse effects, toxicity, or therapeutic failure. This review discusses the relevance of CYPs in hepatocarcinoma, breast cancer, lung cancer, and chemotherapy by reviewing in vitro, in vivo, and clinical studies. We also discuss the importance of elucidating the relationships between inflammation, CYPs, and cancer to predict drug interactions and therapeutic efficacy.
Collapse
Affiliation(s)
- Maria Carolina Stipp
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, CuritibaCuritiba, PR, 81531-980, Brazil.
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, CuritibaCuritiba, PR, 81531-980, Brazil.
| |
Collapse
|
7
|
Madrigal-Bujaidar E, Pérez-Montoya E, García-Medina S, Cristóbal-Luna JM, Morales-González JA, Madrigal-Santillán EO, Paniagua-Pérez R, Álvarez-González I. Pharmacokinetic parameters of ifosfamide in mouse pre-administered with grapefruit juice or naringin. Sci Rep 2019; 9:16621. [PMID: 31719649 PMCID: PMC6851181 DOI: 10.1038/s41598-019-53204-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Grapefruit juice (GFJ) and naringin when consumed previously or together with medications may alter their bioavailavility and consequently the clinical effect. Ifosfamide (IF) is an antitumoral agent prescribed against various types of cancer. Nevertheless, there is no information regarding its interaction with the ingestion of GFJ or naringin. The aims of the present report were validating a method for the quantitation of IF in the plasma of mouse, and determine if mice pretreated with GFJ or naringin may modify the IF pharmacokinetics. Our HPLC results to quantify IF showed adequate intra and inter-day precision (RSD < 15%) and accuracy (RE < 15%) indicating reliability. Also, the administration of GFJ or naringin increased Cmax of IF 22.9% and 17.8%, respectively, and decreased Tmax of IF 19.2 and 53.8%, respectively. The concentration of IF was higher when GFJ (71.35 ± 3.5 µg/mL) was administered with respect to that obtained in the combination naringin with IF (64.12 ± µg/mL); however, the time required to reach such concentration was significantly lower when naringin was administered (p < 0.5). We concluded that pre-administering GFJ and naringin to mice increased the Tmax and decreased the Cmax of IF.
Collapse
Affiliation(s)
- Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Edilberto Pérez-Montoya
- Laboratorio de Biofarmacia, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Sandra García-Medina
- Laboratorio de Biofarmacia, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - José Melesio Cristóbal-Luna
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - José A Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México, 11340, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México, 11340, Mexico
| | - Rogelio Paniagua-Pérez
- Instituto Nacional de Rehabilitación, Servicio de Bioquímica. Av. México-Xochimilco 289, Ciudad de México, 14389, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| |
Collapse
|
8
|
Imai H, Saijo K, Komine K, Otsuki Y, Ohuchi K, Sato Y, Okita A, Takahashi M, Takahashi S, Shirota H, Takahashi M, Ishioka C. Antibiotic therapy augments the efficacy of gemcitabine-containing regimens for advanced cancer: a retrospective study. Cancer Manag Res 2019; 11:7953-7965. [PMID: 31686910 PMCID: PMC6709792 DOI: 10.2147/cmar.s215697] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The addition of antibiotics reportedly augments the efficacy of gemcitabine (GEM) in tumor-bearing mice. However, whether this phenomenon is also observed in cancer patients remains unclear. In the present study, we aimed to assess whether antibiotics for treatment or prevention of infection augments treatment efficacies of GEM-containing regimens in patients with any type of cancer. METHODS Medical records of patients diagnosed with cancer histopathologically and treated with GEM-containing regimens (n=169) were retrospectively reviewed. Patients were assigned into two groups: antibiotics-untreated group (patients who were treated with GEM-containing regimens but without antibiotics) and antibiotics-treated group (patients who were treated with GEM-containing regimens plus antibiotics). Response rates, progression-free survival (PFS) time, and overall survival (OS) time were analyzed for each group. RESULTS The response rates of the antibiotics-untreated and antibiotics-treated groups with GEM-containing regimens were 15.1% and 27.6%, respectively. The median PFS times of the antibiotics-untreated and antibiotics-treated groups were 2.5 (95% CI: 1.86-3.73) and 4.9 (95% CI: 3.47-6.0) months, respectively. The median OS times of the antibiotics-untreated and antibiotics-treated groups were 7.53 (95% CI: 5.63-9.57) months and 13.83 (95% CI: 10.83-16.43) months, respectively. CONCLUSION The addition of antibiotics augments the treatment efficacies of GEM-containing regimens, and it may be a potential therapeutic option to improve treatment efficacies of GEM-containing regimens in patients with advanced cancer.
Collapse
Affiliation(s)
- Hiroo Imai
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Ken Saijo
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Keigo Komine
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Yasufumi Otsuki
- Department of Clinical Oncology, Institute of Developing, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kota Ohuchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Yuko Sato
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Akira Okita
- Department of Clinical Oncology, Institute of Developing, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Masahiro Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Shin Takahashi
- Department of Clinical Oncology, Institute of Developing, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Masanobu Takahashi
- Department of Clinical Oncology, Institute of Developing, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Developing, Aging and Cancer, Tohoku University, Sendai, Japan
- Correspondence: Chikashi IshiokaDepartment of Medical Oncology, Tohoku University Hospital, 4-1, Seiryo-machi, Aobaku, Sendai980-8575, JapanTel +81 22 717 8543Fax +81 22 717 8548Email
| |
Collapse
|
9
|
Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B 2016; 6:413-425. [PMID: 27709010 PMCID: PMC5045548 DOI: 10.1016/j.apsb.2016.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.
Collapse
Key Words
- 4-OH-CPA, 4-hydroxycyclophosphamide
- C/EBP, CCAAT/enhancer-binding protein
- CAR
- CAR, constitutive androstane receptor
- CHOP, cyclophosphamide–doxorubicin–vincristine–prednisone
- CITCO, (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime)
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CPA, cyclophosphamide
- CYP, cytochrome P450
- CYP2B6
- Cyclophosphamide
- DDI, drug–drug interaction
- DEX, dexamethasone
- Drug–drug interaction
- E2, estradiol
- EFV, efavirenz
- ERE, estrogen responsive element
- Efavirenz
- GR, glucocorticoid receptor
- GRE, glucocorticoid responsive element
- HAART, highly active antiretroviral therapy
- HNF, hepatocyte nuclear factor
- IFA, Ifosfamide
- MAOI, monoamine oxidase inhibitor
- NNRTI, non-nucleotide reverse-transcriptase inhibitor
- NR1/2, nuclear receptor binding site 1/2
- NVP, nevirapine
- PB, phenobarbital
- PBREM, phenobarbital-responsive enhancer module
- PCN, pregnenolone 16 alpha-carbonitrile
- PXR
- PXR, pregnane X receptor
- Polymorphism
- RIF, rifampin
- SNP, single nucleotide polymorphism
- TCPOBOP, 1,4-bis[3,5-dichloropyridyloxy]benzene
- UGT, UDP-glucuronosyl transferase
Collapse
Affiliation(s)
| | | | - Hongbing Wang
- Corresponding author at: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA. Tel.: +1 410 706 1280; fax: +1 410 706 5017.
| |
Collapse
|
10
|
Fernandes LL, Murray S, Taylor JMG. Multivariate Markov models for the conditional probability of toxicity in phase II trials. Biom J 2015; 58:186-205. [PMID: 26250444 DOI: 10.1002/bimj.201400047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 01/21/2015] [Accepted: 03/24/2015] [Indexed: 11/06/2022]
Abstract
In addition to getting a preliminary assessment of efficacy, phase II trials can also help to determine dose(s) that have an acceptable toxicity profile over repeated cycles as well as identify subgroups with particularly poor toxicity profiles. Correct modeling of the dose-toxicity relationship in patients receiving multiple cycles of the same dose in oncology trials is crucial. A major challenge lies in taking advantage of the conditional nature of data collection, that is each cycle is observed conditional on having no previous toxicities on earlier cycles. We develop a novel and parsimonious model for the probability of toxicity during a kth cycle of therapy, conditional on not seeing toxicity in any of the k-1 previous cycles using a Markov model, hereafter we refer to these probabilities as conditional probabilities of toxicity. Our model allows the conditional probability of toxicity to depend on randomized dose group, cumulative dose from prior cycles, a measure of how consistently a patient responds to the same dose exposure and individual risk factors influencing the ability to tolerate the treatment regimen. Simulations studying finite sample properties of the model are given. Finally, the approach is demonstrated in a phase II trial studying two dose levels of ifosfamide plus doxorubicin and granulocyte colony-stimulating factor in soft tissue sarcoma patients over four cycles. The Markov model provides correct estimates of the probabilities of toxicity in finite sample simulations. It also correctly models the data from the phase II clinical trial, and identifies particularly high cumulative toxicity in females.
Collapse
Affiliation(s)
- Laura L Fernandes
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Susan Murray
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| | - Jeremy M G Taylor
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
11
|
Abstract
Cytochrome 450 (CYP450) designates a group of enzymes abundant in smooth endoplasmic reticulum of hepatocytes and epithelial cells of small intestines. The main function of CYP450 is oxidative catalysis of various endogenous and exogenous substances. CYP450 are implicated in phase I metabolism of 80% of drugs currently in use, including anticancer drugs. They are also involved in synthesis of various hormones and influence hormone-related cancers. CYP450 genes are highly polymorphic and their variants play an important role in cancer risk and treatment. Association studies and meta-analyses have been performed to decipher the role of CYP450 polymorphisms in cancer susceptibility. Cancer treatment involves multimodal therapies and evaluation of CYP450 polymorphisms is necessary for pharmacogenetic assessment of anticancer therapy outcomes. In addition, CYP450 inhibitors are being evaluated for improved pharmacokinetics and oral formulation of several anticancer drugs.
Collapse
|
12
|
Pawłowska M, Augustin E, Mazerska Z. CYP3A4 overexpression enhances apoptosis induced by anticancer agent imidazoacridinone C-1311, but does not change the metabolism of C-1311 in CHO cells. Acta Pharmacol Sin 2014; 35:98-112. [PMID: 24292379 DOI: 10.1038/aps.2013.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022] Open
Abstract
AIM To examine whether CYP3A4 overexpression influences the metabolism of anticancer agent imidazoacridinone C-1311 in CHO cells and the responses of the cells to C-1311. METHODS Wild type CHO cells (CHO-WT), CHO cells overexpressing cytochrome P450 reductase (CPR) [CHO-HR] and CHO cells coexpressing CPR and CYP3A4 (CHO-HR-3A4) were used. Metabolic transformation of C-1311 and CYP3A4 activity were measured using RP-HPLC. Flow cytometry analyses were used to examine cell cycle, caspase-3 activity and cell apoptosis. The expression of pH 6.0-dependent β-galactosidase (SA-β-gal) was studied to evaluate accelerated senescence. ROS generation was analyzed with CM-H2 DCFDA staining. RESULTS CYP3A4 overexpression did not change the metabolism of C-1311 in CHO cells: the levels of all metabolites of C-1311 increased with the exposure time to a similar extent, and the differences in the peak level of the main metabolite M3 were statistically insignificant among the three CHO cell lines. In CHO-HR-3A4 cells, C-1311 effectively inhibited CYP3A4 activity without affecting CYP3A4 protein level. In the presence of C-1311, CHO-WT cells underwent rather stable G2/M arrest, while the two types of transfected cells only transiently accumulated at this phase. C-1311-induced apoptosis and necrosis in the two types of transfected cells occurred with a significantly faster speed and to a greater extent than in CHO-WT cells. Additionally, C-1311 induced ROS generation in the two types of transfected cells, but not in CHO-WT cells. Moreover, CHO-HR-3A4 cells that did not die underwent accelerated senescence. CONCLUSION CYP3A4 overexpression in CHO cells enhances apoptosis induced by C-1311, whereas the metabolism of C-1311 is minimal and does not depend on CYP3A4 expression.
Collapse
|
13
|
Abstract
Breath tests (BTs) have been investigated as diagnostic tools to phenotype drug disposition in cancer patients in the pursuit to individualize drug treatment. The choice of the right phenotype probe is crucial and depends on the metabolic pathway of the anticancer agent of interest. BTs using orally or intravenously administered selective non-radioactive (13)C-labeled probes to non-invasively evaluate dihydropyrimidine dehydrogenase, cytochrome P450 (CYP) 3A4, and CYP2D6 enzyme activity have been published. Clinically, a (13)C-dextromethorphan BT to predict endoxifen levels in breast cancer patients and a (13)C-uracil BT to predict fluoropyrimidine toxicity in colorectal cancer patients are most promising. However, the clinical benefit and cost effectiveness of these phenotype BTs need to be determined in order to make the transition from an experimental setting to clinical practice as companion diagnostic tests.
Collapse
|
14
|
Phenotyping drug disposition in oncology. Cancer Treat Rev 2012; 38:715-25. [DOI: 10.1016/j.ctrv.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022]
|
15
|
Lancaster CS, Bruun GH, Peer CJ, Mikkelsen TS, Corydon TJ, Gibson AA, Hu S, Orwick SJ, Mathijssen RHJ, Figg WD, Baker SD, Sparreboom A. OATP1B1 polymorphism as a determinant of erythromycin disposition. Clin Pharmacol Ther 2012; 92:642-50. [PMID: 22990751 DOI: 10.1038/clpt.2012.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have demonstrated that the pharmacokinetic profile of erythromycin, a probe for CYP3A4 activity, is affected by inhibitors or inducers of hepatic solute carriers. We hypothesized that these interactions are mediated by OATP1B1 (gene symbol, SLCO1B1), a polypeptide expressed on the basolateral surface of hepatocytes. Using stably transfected Flp-In T-Rex293 cells, erythromycin was found to be a substrate for OATP1B1*1A (wild type) with a Michaelis-Menten constant of ~13 µmol/l, and that its transport was reduced by ~50% in cells expressing OATP1B1*5 (V174A). Deficiency of the ortholog transporter Oatp1b2 in mice was associated with a 52% decrease in the metabolic rate of erythromycin (P = 0.000043). In line with these observations, in humans the c.521T>C variant in SLCO1B1 (rs4149056), encoding OATP1B1*5, was associated with a decline in erythromycin metabolism (P = 0.0072). These results suggest that impairment of OATP1B1 function can alter erythromycin metabolism, independent of changes in CYP3A4 activity.
Collapse
Affiliation(s)
- C S Lancaster
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mir O, Ropert S, Alexandre J, Goldwasser F, Treluyer JM. CYP3A4/5 and pharmacogenetics in patients with sarcoma. Lancet Oncol 2007; 8:667-8; author reply 668-9. [PMID: 17679078 DOI: 10.1016/s1470-2045(07)70215-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|