1
|
Han S, Wang S, Li Y, He Y, Ma J, Feng Y. HPV-ferroptosis related genes as biomarkers to predict the prognosis of cervical cancer. Discov Oncol 2024; 15:468. [PMID: 39302544 DOI: 10.1007/s12672-024-01291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Ferroptosis can be used as a powerful predictor of cancer prognosis. HPV persistent infection is the main cause of cervical cancer, so it is very important to improve the prognosis of patients. Therefore, it is necessary to explore the value of HPV-ferroptosis related genes as prognostic biomarkers of cervical cancer patients. METHODS In this study, differentially expressed HPV-ferroptosis related genes were obtained from GSE7410, HPV gene set crossed with iron death genes. Five HPV-ferroptosis related genes with prognostic features were finally identified: CYBB, VEGFA, CKB, EFNA1 and HELLS. Multifactorial Cox regression was applied to establish and validate the prognostic model, and drug susceptibility and immune infiltration analyses were also performed. RESULTS The prognostic model was validated in the training set (TCGA) and validation set (GSE44001). Kaplan-Meier curves reveal significant differences in overall survival (OS) between high-risk and low-risk groups. Receiver operating characteristic (ROC) curve reflects the stability and accuracy of the prognostic model established in this study. In terms of immune function, T cell costimulation was better in the low-risk group than in the high-risk group (P < 0.01). The therapeutic effects of cisplatin, paclitaxel, docetaxel and cyclophosphamide, commonly used chemotherapy drugs for cervical cancer, are better in the high-risk group than in the low-risk group (P < 0.001). CONCLUSION HPV-ferroptosis related gene prognostic model not only has good stability and accuracy in predicting the prognosis of cervical cancer patients, but also has certain guiding value for clinicians in terms of drug sensitivity and immune microenvironment.
Collapse
Affiliation(s)
- Songtao Han
- Clinical Laboratory CenterHospital of Traditional Chinese Medicine, Affiliated to Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Senyu Wang
- Department of Laboratory Medicine, Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Yuxia Li
- Department of Laboratory Medicine, Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - YuJiao He
- Hospital of Traditional Chinese Medicine, Affiliated to Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Ma
- Hospital of Traditional Chinese Medicine, Affiliated to Xinjiang Medical University, Urumqi, 830011, China
| | - Yangchun Feng
- Department of Laboratory Medicine, Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China.
| |
Collapse
|
2
|
Su X, Liu P, Zhao H, Sun L, Wang W, Jin S, Wang H, Liu P, Chen C, Hao M. Impact of HR-HPV infection on oncological outcomes in early cervical cancer. Front Oncol 2023; 13:1264114. [PMID: 37700831 PMCID: PMC10493382 DOI: 10.3389/fonc.2023.1264114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Background This study aimed to investigate the differences in long-term oncological outcomes between high-risk human papillomavirus (HR-HPV) negative and HR-HPV positive early-stage cervical cancers. Methods We retrospectively analysed 2061 cases of early-stage cervical cancer from the Chinese cervical cancer clinical diagnosis and treatment database. Kaplan-Meier curves were used to describe the survival outcomes of different HR-HPV infections. Cox proportional hazard regression model was used to analyze and determine independent risk factors. Results K-M analysis revealed no significant difference in 5-year OS between HR-HPV negative and HR-HPV positive groups (OS: 95.0% vs.95.6%, P=0.900). A significant difference was observed in 5-year DFS between the HR-HPV negative and HR-HPV positive groups (DFS: 87.2% vs.91.9%, P=0.025). Cox proportional hazard regression model indicated that HR-HPV infection (negative vs. positive) was an independent factor influencing 5-year DFS after early cervical cancer surgery (DFS: hazard ratio [HR]=1.862, P=0.022). HR-HPV infection (negative vs positive) was not an independent factor influencing 5-year OS after early cervical cancer surgery (OS: P=0.813). After 1:1 PSM pairing, there was no significant difference in 5-year OS and DFS between HR-HPV negative group and HR-HPV positive group (OS: 91.6% vs.95.0%, P=0.297; DFS: 87.2% vs.85.1%, P=0.758). Cox multivariate analysis indicated that HR-HPV infection was not an independent factor influencing 5-year OS and DFS after early cervical cancer surgery (OS: P=0.806, DFS: P=0.251). Conclusions The tumour results of HR-HPV negative group and HR-HPV positive group were similar, after eliminating the differences in known variables that affect the oncological outcomes of cervical cancer. The treatment plan of HR-HPV positive cervical cancer is suitable for HR-HPV negative cervical cancer.
Collapse
Affiliation(s)
- Xiaoqiang Su
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhao
- Department of Gynecologic Oncology, Shanxi Tumor Hospital, Taiyuan, China
| | - Lixin Sun
- Department of Gynecologic Oncology, Shanxi Tumor Hospital, Taiyuan, China
| | - Wuliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of He’ nan Medical University, Zhengzhou, China
| | - Shuanglin Jin
- Department of Obstetrics and Gynecology, Peace Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Hao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Dai R, Tao R, Li X, Shang T, Zhao S, Ren Q. Expression profiling of mRNA and functional network analyses of genes regulated by human papilloma virus E6 and E7 proteins in HaCaT cells. Front Microbiol 2022; 13:979087. [PMID: 36188003 PMCID: PMC9515614 DOI: 10.3389/fmicb.2022.979087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Human papillomavirus (HPV) oncogenes E6 and E7 are essential for HPV-related cancer development. Here, we developed a cell line model using lentiviruses for transfection of the HPV16 oncogenes E6 and E7 and investigated the differences in mRNA expression during cell adhesion and chemokine secretion. Subsequently, RNA sequencing (RNA-seq) analysis was performed to explore the differences in mRNA expression. Compared to levels in the control group, 2,905 differentially expressed mRNAs (1,261 downregulated and 1,644 upregulated) were identified in the HaCaT-HPV16E6E7 cell line. To predict the functions of these differentially expressed genes (DEGs) the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used. Protein–protein interactions were established, and the hub gene was identified based on this network. Real-time quantitative-PCR (RT-qPCR) was conducted to confirm the levels of 14 hub genes, which were consistent with the RNA-seq data. According to this, we found that these DEGs participate in the extracellular matrix (ECM), cell adhesion, immune control, and cancer-related signaling pathways. Currently, an increasing number of clinicians depend on E6/E7mRNA results to make a comprehensive judgment of cervical precancerous lesions. In this study, 14 hub genes closely related to the expression of cell adhesion ability and chemokines were analyzed in HPV16E6E7-stably expressing cell lines, which will open up new research ideas for targeting E6E7 in the treatment of HPV-related cancers.
Collapse
Affiliation(s)
- Renjinming Dai
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Tao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiu Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Shang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shixian Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingling Ren
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Qingling Ren,
| |
Collapse
|
4
|
Heawchaiyaphum C, Ekalaksananan T, Patarapadungkit N, Worawichawong S, Pientong C. Epstein-Barr Virus Infection Alone or Jointly with Human Papillomavirus Associates with Down-Regulation of miR-145 in Oral Squamous-Cell Carcinoma. Microorganisms 2021; 9:microorganisms9122496. [PMID: 34946098 PMCID: PMC8708579 DOI: 10.3390/microorganisms9122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
Down-regulation of tumor-suppressive miR-145 has been reported in various malignancies, including oral squamous-cell carcinoma (OSCC) that is influenced by several factors, including Epstein-Barr virus (EBV) and human papillomavirus (HPV). Oncoviruses can modulate the expression of cellular microRNAs. Therefore, we sought to investigate the association of miR-145 down-regulation in OSCC with EBV and/or HPV infection, which might be a possible mechanism of these viruses in oral carcinogenesis. Herein, prevalence of EBV, HPV, and their co-infection was significantly higher in tumors than normal tissues of OSCC. EBV infection alone or jointly with HPV was significantly associated with down-regulation of miR-145 in tumors compared with normal adjacent tissues. In cell lines infected with EBV or HPV, miR-145 was also down-regulated. Consistently, methylation of miR-145 was significantly greater in tumors, and well correlated with increased expression of DNMT3B, which was influenced by infection with EBV and HPV. In cell lines, only EBV infection was associated with increased expression of DNMT3B. Moreover, the level of EBV-LMP1 mRNA in tumors was negatively correlated with miR-145 and positively correlated with DNMT3B. Therefore, EBV alone or jointly with HPV is associated with down-regulation of miR-145 and may influence on miR-145 promoter methylation through the induction of DNMT3B in OSCC.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Natcha Patarapadungkit
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suchin Worawichawong
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
5
|
Cobzeanu BM, Cobzeanu MD, Moscalu M, Palade OD, Rădulescu L, Negru D, Moisii LG, Cobzeanu LM, Ungureanu LB, Vonica P, Matei DV, Rusu DC, Volovaț C, Costan VV. Predictive Value of HPV, p53, and p16 in the Post-Treatment Evolution of Malignant Tumors of the Oropharynx and Retromolar Trigone-Oropharynx Junction. ACTA ACUST UNITED AC 2020; 56:medicina56100542. [PMID: 33076537 PMCID: PMC7602815 DOI: 10.3390/medicina56100542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
Background and objectives: Knowledge of the interactions and influences of infectious, genetic, and environmental factors on the evolution and treatment response of malignant tumors is essential for improving the management of the disease and increasing patient survival. The objective of this study was to establish the contribution of human papillomavirus (HPV), as well as p53 and p16 tumor markers, alongside associated factors (smoking and alcohol consumption), in the progression of malignancies located in the oropharynx and at the retromolar trigone–oropharyngeal junction. Materials and Methods: We performed a prospective study including 50 patients with malignant tumors of the oropharynx and retromolar trigone–oropharyngeal junction. In all patients, the presence and type of HPV were determined, as well as the status of the tumor markers p53 and p16. The associated risk factors, biopsy results, treatment method, and post-treatment evolution were all documented. Statistical analyses were performed to evaluate the correlations between the determining factors and their influence on the post-treatment evolution. An overall increased survival rate was found in HPV(+) patients. Results: Our study outlined the prevalence of different high-risk subtypes of HPV from the ones presented by other studies, suggesting a possible geographic variation. Correlations between the p53 and p16 statuses and patient survival could be established. The association of smoking and alcohol consumption strongly correlated with an unfavorable evolution. Conclusions: Awareness of the differences in the post-treatment evolution of the patients in relation to the presence of the factors determined in our study could change the future management of such cases for ensuring improved treatment outcomes.
Collapse
|
6
|
Potential role of microRNAs in the treatment and diagnosis of cervical cancer. Cancer Genet 2020; 248-249:25-30. [DOI: 10.1016/j.cancergen.2020.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/01/2020] [Accepted: 09/20/2020] [Indexed: 12/23/2022]
|
7
|
Yang S, Wu Y, Wang S, Xu P, Deng Y, Wang M, Liu K, Tian T, Zhu Y, Li N, Zhou L, Dai Z, Kang H. HPV-related methylation-based reclassification and risk stratification of cervical cancer. Mol Oncol 2020; 14:2124-2141. [PMID: 32408396 PMCID: PMC7463306 DOI: 10.1002/1878-0261.12709] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) is a clear etiology of cervical cancer (CC). However, the associations between HPV infection and DNA methylation have not been thoroughly investigated. Additionally, it remains unknown whether HPV‐related methylation signatures can identify subtypes of CC and stratify the prognosis of CC patients. DNA methylation profiles were obtained from The Cancer Genome Atlas to identify HPV‐related methylation sites. Unsupervised clustering analysis of HPV‐related methylation sites was performed to determine the different CC subtypes. CC patients were categorized into cluster 1 (Methylation‐H), cluster 2 (Methylation‐M), and cluster 3 (Methylation‐L). Compared to Methylation‐M and Methylation‐L, Methylation‐H exhibited a significantly improved overall survival (OS). Gene set enrichment analysis (GSEA) was conducted to investigate the functions that correlated with different CC subtypes. GSEA indicated that the hallmarks of tumors, including KRAS signaling, TNFα signaling via NF‐κB, inflammatory response, epithelial–mesenchymal transition, and interferon‐gamma response, were enriched in Methylation‐M and Methylation‐L. Based on mutation and copy number variation analyses, we found that aberrant mutations, amplifications, and deletions among the MYC, Notch, PI3K‐AKT, and RTK‐RAS pathways were most frequently detected in Methylation‐H. Additionally, mutations, amplifications, and deletions within the Hippo, PI3K‐AKT, and TGF‐β pathways were presented in Methylation‐M. Genes within the cell cycle, Notch, and Hippo pathways possessed aberrant mutations, amplifications, and deletions in Methylation‐L. Moreover, the analysis of tumor microenvironments revealed that Methylation‐H was characterized by a relatively low degree of immune cell infiltration. Finally, a prognostic signature based on six HPV‐related methylation sites was developed and validated. Our study revealed that CC patients could be classified into three heterogeneous clusters based on HPV‐related methylation signatures. Additionally, we derived a prognostic signature using six HPV‐related methylation sites that stratified the OS of patients with CC into high‐ and low‐risk groups.
Collapse
Affiliation(s)
- Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tian Tian
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyao Zhu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Lu X, Jiang L, Zhang L, Zhu Y, Hu W, Wang J, Ruan X, Xu Z, Meng X, Gao J, Su X, Yan F. Immune Signature-Based Subtypes of Cervical Squamous Cell Carcinoma Tightly Associated with Human Papillomavirus Type 16 Expression, Molecular Features, and Clinical Outcome. Neoplasia 2019; 21:591-601. [PMID: 31055200 PMCID: PMC6658934 DOI: 10.1016/j.neo.2019.04.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Substantial heterogeneity exists within cervical cancer that is generally infected by human papillomavirus (HPV). However, the most common histological subtype of cervical cancer, cervical squamous cell carcinoma (CSCC), is poorly characterized regarding the association between its heterogeneity and HPV oncoprotein expression. We filtered out 138 CSCC samples with infection of HPV16 only as the first step; then we compressed HPV16 E6/E7 expression as HPVpca and correlated HPVpca with the immunological profiling of CSCC based on supervised clustering to discover subtypes and to characterize the differences between subgroups in terms of the HPVpca level, pathway activity, epigenetic dysregulation, somatic mutation frequencies, and likelihood of responding to chemo/immunotherapies. Supervised clustering of immune signatures revealed two HPV16 subtypes (namely, HPV16-IMM and HPV16-KRT) that correlated with HPVpca and clinical outcomes. HPV16-KRT is characterized by elevated expression of genes in keratinization, biological oxidation, and Wnt signaling, whereas HPV16-IMM has a strong immune response and mesenchymal features. HPV16-IMM exhibited much more epigenetic silencing and significant mutation at FBXW7, while MUC4 and PIK3CA were mutated frequently for HPV16-KRT. We also imputed that HPV16-IMM is much more sensitive to chemo/immunotherapy than is HPV16-KRT. Our characterization tightly links the expression of HPV16 E6/E7 with biological and clinical outcomes of CSCC, providing valuable molecular-level information that points to decoding heterogeneity. Together, these results shed light on stratifications of CSCC infected by HPV16 and shall help to guide personalized management and treatment of patients.
Collapse
Affiliation(s)
- Xiaofan Lu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Liyun Jiang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Liya Zhang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Yue Zhu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Wenjun Hu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Jiashuo Wang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Xinjia Ruan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Zhengbao Xu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Xiaowei Meng
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Jun Gao
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China.
| |
Collapse
|
9
|
Matarrese P, Abbruzzese C, Mileo AM, Vona R, Ascione B, Visca P, Rollo F, Benevolo M, Malorni W, Paggi MG. Interaction between the human papillomavirus 16 E7 oncoprotein and gelsolin ignites cancer cell motility and invasiveness. Oncotarget 2018; 7:50972-50985. [PMID: 27072581 PMCID: PMC5239452 DOI: 10.18632/oncotarget.8646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
The viral oncoprotein E7 from the “high-risk” Human Papillomavirus 16 (HPV16) strain is able, when expressed in human keratinocytes, to physically interact with the actin severing protein gelsolin (GSN). In a previous work it has been suggested that this protein-protein interaction can hinder GSN severing function, thus leading to actin network remodeling. In the present work we investigated the possible implications of this molecular interaction in cancer cell metastatic potential by analyzing two different human CC cell lines characterized by low or high expression levels of HPV16 DNA (SiHa and CaSki, respectively). In addition, a HPV-null CC cell line (C-33A), transfected in order to express the HPV16 E7 oncoprotein as well as two different deletion mutants, was also analyzed. We found that HPV16 E7 expression level was directly related with cervical cancer migration and invasion capabilities and that these HPV16 E7-related features were associated with Epithelial to Mesenchymal Transition (EMT) processes. These effects appeared as strictly attributable to the physical interaction of HPV16 E7 with GSN, since HPV16 E7 deletion mutants unable to bind to GSN were also unable to modify microfilament assembly dynamics and, therefore, cell movements and invasiveness. Altogether, these data profile the importance of the physical interaction between HPV16 E7 and GSN in the acquisition of the metastatic phenotype by CC cells, underscoring the role of HPV16 intracellular load as a risk factor in cancer.
Collapse
Affiliation(s)
- Paola Matarrese
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Abbruzzese
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Anna Maria Mileo
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Immunology and Immunotherapy, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Rosa Vona
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ascione
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Visca
- Unit of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Francesca Rollo
- Unit of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Maria Benevolo
- Unit of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Walter Malorni
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy.,Istituto San Raffaele Pisana, Rome, Italy
| | - Marco G Paggi
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Sen P, Ganguly P, Ganguly N. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncol Lett 2018; 15:11-22. [PMID: 29285184 PMCID: PMC5738689 DOI: 10.3892/ol.2017.7292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are double stranded circular DNA viruses that infect cutaneous and mucosal epithelial cells. Almost 99% of cervical cancer has a HPV infection. The early oncoproteins E6 and E7 are important in this cellular transformation process. Epigenetic mechanisms have long been known to result in decisive alterations in DNA, leading to alterations in DNA-protein interactions, alterations in chromatin structure and compaction and significant alterations in gene expression. The enzymes responsible for these epigenetic modifications are DNA methyl transferases (DNMTs), histone acetylases and deacetylases. Epigenetics has an important role in cancer development by modifying the cellular micro environment. In this review, the authors discuss the role of HPV oncoproteins E6 and E7 in modulating the epigenetic mechanisms inside the host cell. The oncoproteins induce the expression of DNMTs which lead to aberrant DNA methylations and disruption of the normal epigenetic processes. The E7 oncoprotein may additionally directly bind and induce methyl transferase activity of the enzyme. These modulations lead to altered gene expression levels, particularly the genes involved in apoptosis, cell cycle and cell adhesion. In addition, the present review discusses how epigenetic mechanisms may be targeted for possible therapeutic interventions for HPV mediated cervical cancer.
Collapse
Affiliation(s)
- Prakriti Sen
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Pooja Ganguly
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Niladri Ganguly
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
11
|
Wang W, Sun Z, Liu J, Wang G, Lu Z, Zhou W, Qi T, Ruan Q. Increased methylation of human papillomavirus type 16 DNA is associated with the severity of cervical lesions in infected females from northeast China. Oncol Lett 2017; 13:3809-3816. [PMID: 28521481 DOI: 10.3892/ol.2017.5903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/26/2017] [Indexed: 02/03/2023] Open
Abstract
Hypermethylation of the cytosine-phosphate-guanine (CpG) sites located at the 3'-major capsid protein L1 (3'L1) and the long control region (LCR) of the human papillomavirus (HPV) genome may be associated with the progression of cervical cancer (CC). However, the methylation status of the LCR of HPV type 16 DNA remains to be elucidated in an infected Chinese population. The aim of the present study was to investigate the association between methylation of the HPV 16 L1 gene and LCR, and the severity of cervical lesions in infected female patients. Therefore, bisulfite modification, polymerase chain reaction amplification and sequencing were used to analyze 122 HPV 16-positive clinical cervical swabs obtained from patients in northeastern China. The proportion of methylated samples at each of the 7 CpG sites within the 3'-L1/5'-LCR and 5 CpG sites within the promoter region was significantly increased in patients with CC, compared with that observed in high-grade squamous intraepithelial lesions (HSIL) and normal tissue/low-grade intraepithelial lesions (LSIL) (χ2 test, P<0.01). The mean methylation frequencies of the CpG sites 7,089 and 7,143 exhibited an area under the curve value of 0.822 [95% confidence interval (CI)=0.733-0.911] for distinguishing CC from other lesions, 0.787 (95% CI=0.700-0.874) for distinguishing normal/LSIL from HSIL and CC, and 0.763 (95% CI=0.652-0.874) for distinguishing CC from HSIL. These results suggest that the methylation of CpG sites within the HPV 16 3'-L1 and LCR region is correlated with the severity of cervical lesions. Quantification of HPV DNA methylation in the L1 gene and promoter region appears to provide a promising novel marker for distinguishing between normal tissue/LSIL, HSIL and CC in a Chinese population.
Collapse
Affiliation(s)
- Wei Wang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhengrong Sun
- BioBank, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Liu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China.,Department of Clinical Laboratories, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Guili Wang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhitao Lu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Weiqiang Zhou
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Te Qi
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qiang Ruan
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
12
|
Zhang Y, Koneva LA, Virani S, Arthur AE, Virani A, Hall PB, Warden CD, Carey TE, Chepeha DB, Prince ME, McHugh JB, Wolf GT, Rozek LS, Sartor MA. Subtypes of HPV-Positive Head and Neck Cancers Are Associated with HPV Characteristics, Copy Number Alterations, PIK3CA Mutation, and Pathway Signatures. Clin Cancer Res 2016; 22:4735-45. [PMID: 27091409 DOI: 10.1158/1078-0432.ccr-16-0323] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/28/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE There is substantial heterogeneity within human papillomavirus (HPV)-associated head and neck cancer (HNC) tumors that predispose them to different outcomes; however, the molecular heterogeneity in this subgroup is poorly characterized due to various historical reasons. EXPERIMENTAL DESIGN We performed unsupervised gene expression clustering on deeply annotated (transcriptome and genome) HPV(+) HNC samples from two cohorts (84 total primary tumors), including 18 HPV(-) HNC samples, to discover subtypes and characterize the differences between subgroups in terms of their HPV characteristics, pathway activity, whole-genome somatic copy number alterations, and mutation frequencies. RESULTS We identified two distinct HPV(+) subtypes (namely HPV-KRT and HPV-IMU). HPV-KRT is characterized by elevated expression of genes in keratinocyte differentiation and oxidation-reduction process, whereas HPV-IMU has strong immune response and mesenchymal differentiation. The differences in expression are likely connected to the differences in HPV characteristics and genomic changes. HPV-KRT has more genic viral integration, lower E2/E4/E5 expression levels, and higher ratio of spliced to full-length HPV oncogene E6 than HPV-IMU; the subgroups also show differences in copy number alterations and mutations, in particular the loss of chr16q in HPV-IMU and gain of chr3q and PIK3CA mutation in HPV-KRT. CONCLUSIONS Our characterization of two subtypes of HPV(+) HNC tumors provides valuable molecular level information that point to two main carcinogenic paths. Together, these results shed light on stratifications of the HPV(+) HNCs and will help to guide personalized care for HPV(+) HNC patients. Clin Cancer Res; 22(18); 4735-45. ©2016 AACR.
Collapse
Affiliation(s)
- Yanxiao Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Lada A Koneva
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Shama Virani
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan. Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Anna E Arthur
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Alisha Virani
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Pelle B Hall
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Charles D Warden
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Thomas E Carey
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Douglas B Chepeha
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mark E Prince
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Jonathan B McHugh
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Gregory T Wolf
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan.
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
13
|
Abstract
Viral and bacterial infections are involved in the development of human cancers, such as liver, nasopharyngeal, cervical, head and neck, and gastric cancers. Aberrant DNA methylation is frequently present in these cancers, and some of the aberrantly methylated genes are causally involved in cancer development and progression. Notably, aberrant DNA methylation can be present even in non-cancerous or precancerous tissues, and its levels correlate with the risk of cancer development, producing a so-called 'epigenetic field for cancerization'. Mechanistically, most viral or bacterial infections induce DNA methylation indirectly via chronic inflammation, but recent studies have indicated that some viruses have direct effects on the epigenetic machinery of host cells. From a translational viewpoint, a recent multicenter prospective cohort study demonstrated that assessment of the extent of alterations in DNA methylation in non-cancerous tissues can be used to predict cancer risk. Furthermore, suppression of aberrant DNA methylation was shown to be a useful strategy for cancer prevention in an animal model. Here, we review the involvement of aberrant DNA methylation in various types of infection-associated cancers, along with individual induction mechanisms, and we discuss the application of these findings for cancer prevention, diagnosis, and therapy.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
14
|
Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, Brown AS, Marcozzi-Pierce K, Shah D, Slager AM, Sylvester AJ, Khan A, Broderick KE, Juba RJ, Herring TA, Boyer J, Lee J, Sardesai NY, Weiner DB, Bagarazzi ML. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015; 386:2078-2088. [PMID: 26386540 PMCID: PMC4888059 DOI: 10.1016/s0140-6736(15)00239-1] [Citation(s) in RCA: 489] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite preventive vaccines for oncogenic human papillomaviruses (HPVs), cervical intraepithelial neoplasia (CIN) is common, and current treatments are ablative and can lead to long-term reproductive morbidity. We assessed whether VGX-3100, synthetic plasmids targeting HPV-16 and HPV-18 E6 and E7 proteins, delivered by electroporation, would cause histopathological regression in women with CIN2/3. METHODS Efficacy, safety, and immunogenicity of VGX-3100 were assessed in CIN2/3 associated with HPV-16 and HPV-18, in a randomised, double-blind, placebo-controlled phase 2b study. Patients from 36 academic and private gynaecology practices in seven countries were randomised (3:1) to receive 6 mg VGX-3100 or placebo (1 mL), given intramuscularly at 0, 4, and 12 weeks. Randomisation was stratified by age (<25 vs ≥25 years) and CIN2 versus CIN3 by computer-generated allocation sequence (block size 4). Funder and site personnel, participants, and pathologists were masked to treatment. The primary efficacy endpoint was regression to CIN1 or normal pathology 36 weeks after the first dose. Per-protocol and modified intention-to-treat analyses were based on patients receiving three doses without protocol violations, and on patients receiving at least one dose, respectively. The safety population included all patients who received at least one dose. The trial is registered at ClinicalTrials.gov (number NCT01304524) and EudraCT (number 2012-001334-33). FINDINGS Between Oct 19, 2011, and July 30, 2013, 167 patients received either VGX-3100 (n=125) or placebo (n=42). In the per-protocol analysis 53 (49·5%) of 107 VGX-3100 recipients and 11 (30·6%) of 36 placebo recipients had histopathological regression (percentage point difference 19·0 [95% CI 1·4-36·6]; p=0·034). In the modified intention-to-treat analysis 55 (48·2%) of 114 VGX-3100 recipients and 12 (30·0%) of 40 placebo recipients had histopathological regression (percentage point difference 18·2 [95% CI 1·3-34·4]; p=0·034). Injection-site reactions occurred in most patients, but only erythema was significantly more common in the VGX-3100 group (98/125, 78·4%) than in the placebo group (24/42, 57·1%; percentage point difference 21·3 [95% CI 5·3-37·8]; p=0·007). INTERPRETATION VGX-3100 is the first therapeutic vaccine to show efficacy against CIN2/3 associated with HPV-16 and HPV-18. VGX-3100 could present a non-surgical therapeutic option for CIN2/3, changing the treatment outlook for this common disease. FUNDING Inovio Pharmaceuticals.
Collapse
Affiliation(s)
- Cornelia L Trimble
- Departments of Gynecology/Obstetrics, Oncology, and Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | - Xuefei Shen
- Inovio Pharmaceuticals, Inc, San Diego, CA, USA
| | | | - Jian Yan
- Inovio Pharmaceuticals, Inc, Plymouth Meeting, PA, USA
| | - Lance Edwards
- Suffolk Obstetrics & Gynecology, LLP, Port Jefferson, NY, USA
| | - R Lamar Parker
- Lyndhurst Gynecologic Associates, Winston-Salem, NC, USA
| | - Lynette Denny
- Department of Obstetrics & Gynaecology, University of Cape Town, Groote Schuur Hospital, Observatory Cape Town, South Africa
| | - Mary Giffear
- Inovio Pharmaceuticals, Inc, Plymouth Meeting, PA, USA
| | | | | | - Divya Shah
- Inovio Pharmaceuticals, Inc, Plymouth Meeting, PA, USA
| | - Anna M Slager
- Inovio Pharmaceuticals, Inc, Plymouth Meeting, PA, USA
| | | | - Amir Khan
- Inovio Pharmaceuticals, Inc, Plymouth Meeting, PA, USA
| | | | - Robert J Juba
- Inovio Pharmaceuticals, Inc, Plymouth Meeting, PA, USA
| | | | - Jean Boyer
- Inovio Pharmaceuticals, Inc, San Diego, CA, USA
| | - Jessica Lee
- Inovio Pharmaceuticals, Inc, Plymouth Meeting, PA, USA
| | | | - David B Weiner
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
15
|
Selenium Attenuates HPV-18 Associated Apoptosis in Embryo-Derived Trophoblastic Cells but Not Inner Cell Mass In Vitro. Int J Reprod Med 2015; 2015:562567. [PMID: 26345191 PMCID: PMC4539449 DOI: 10.1155/2015/562567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 11/17/2022] Open
Abstract
Objectives. Human papillomaviruses (HPV) are associated with cell cycle arrest. This study focused on antioxidant selenomethionine (SeMet) inhibition of HPV-mediated necrosis. The objectives were to determine HPV-18 effects on embryonic cells and to evaluate SeMet in blocking HPV-18 effects. Methods. Fertilized mouse embryos were cultured for 5 days to implanted trophoblasts and exposed to either control medium (group 1), HPV-18 (group 2), combined HPV-18 and 0.5 µM SeMet (group 3), or combined HPV-18 and 5.0 µM SeMet (group 4). After 48 hrs, trophoblast integrity and, apoptosis/necrosis were assessed using morphometric and dual-stain fluorescence assays, respectively. Results. HPV-18 exposed trophoblasts nuclei (253.8 ± 28.5 sq·µ) were 29% smaller than controls (355.6 ± 35.9 sq·µ). Supplementation with 0.5 and 5.0 µM SeMet prevented nuclear shrinkage after HPV-18 exposure. HPV-18 infected trophoblasts remained larger with SeMet supplementation. HPV-18 decreased cell viability by 44% but SeMet supplementation sustained cell viability. Apoptosis was lower when SeMet was present. HPV-18 decreased inner cell mass (ICM) viability by over 60%. Conclusions. HPV-18 decreased nuclear size and trophoblast viability but these effects were attenuated by the antioxidant SeMet. SeMet blocked HPV-18 associated apoptosis process in trophoblasts but not ICM cells suggesting involvement of different oxidative stress pathways.
Collapse
|
16
|
Siegel EM, Riggs BM, Delmas AL, Koch A, Hakam A, Brown KD. Quantitative DNA methylation analysis of candidate genes in cervical cancer. PLoS One 2015; 10:e0122495. [PMID: 25826459 PMCID: PMC4380427 DOI: 10.1371/journal.pone.0122495] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/22/2015] [Indexed: 11/19/2022] Open
Abstract
Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.
Collapse
Affiliation(s)
- Erin M. Siegel
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States of America
- * E-mail:
| | - Bridget M. Riggs
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States of America
| | - Amber L. Delmas
- Department of Biochemistry and Molecular Biology and UF-Shands Cancer Center, University of Florida College of Medicine, 1200 Newell Drive, Academic Research Building, R3-234, Gainesville, FL 32610, United States of America
| | - Abby Koch
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States of America
| | - Ardeshir Hakam
- Department of Anatomic Pathology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States of America
| | - Kevin D. Brown
- Department of Biochemistry and Molecular Biology and UF-Shands Cancer Center, University of Florida College of Medicine, 1200 Newell Drive, Academic Research Building, R3-234, Gainesville, FL 32610, United States of America
| |
Collapse
|
17
|
Lee HS, Yun JH, Jung J, Yang Y, Kim BJ, Lee SJ, Yoon JH, Moon Y, Kim JM, Kwon YI. Identification of differentially-expressed genes by DNA methylation in cervical cancer. Oncol Lett 2015; 9:1691-1698. [PMID: 25789025 PMCID: PMC4356325 DOI: 10.3892/ol.2015.2917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/08/2014] [Indexed: 01/03/2023] Open
Abstract
To identify novel cervical cancer-related genes that are regulated by DNA methylation, integrated analyses of genome-wide DNA methylation and RNA expression profiles were performed using the normal and tumor regions of tissues from four patients; two with cervical cancer and two with pre-invasive cancer. The present study identified 19 novel cervical cancer-related genes showing differential RNA expression by DNA methylation. A number of the identified genes were novel cervical cancer-related genes and their differential expression was confirmed in a publicly available database. Among the candidate genes, the epigenetic regulation and expression of three genes, CAMK2N1, ALDH1A3 and PPP1R3C, was validated in HeLa cells treated with a demethylating reagent using methylation-specific polymerase chain reaction (PCR) and quantitative PCR, respectively. From these results, the expression of the CAMK2N1, ALDH1A3 and PPP1R3C genes are were shown to be suppressed in cervical cancers by DNA methylation. These genes may be involved in the progression or initiation of cervical cancer.
Collapse
Affiliation(s)
- Heun-Sik Lee
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do 363-951, Republic of Korea
| | - Jun Ho Yun
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do 363-951, Republic of Korea
| | | | - Young Yang
- Center for Women's Disease, Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Bong-Jo Kim
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do 363-951, Republic of Korea
| | - Sung-Jong Lee
- Department of Obstetrics and Gynecology, Saint Vincent's Hospital, the Catholic University, Suwon, Gyeonggi-do 442-723, Republic of Korea
| | - Joo Hee Yoon
- Department of Obstetrics and Gynecology, Saint Vincent's Hospital, the Catholic University, Suwon, Gyeonggi-do 442-723, Republic of Korea
| | - Yong Moon
- Department of Public Health Administration, Namseoul University, Cheonan, Chungcheongnam-do 331-707, Republic of Korea
| | - Jeong-Min Kim
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk-do 363-951, Republic of Korea
| | - Yong-Il Kwon
- Department of Obstetrics and Gynecology, Kangdong Sacred Heart Hospital, Hallym University Medical Center, Seoul 134-701, Republic of Korea
| |
Collapse
|
18
|
Trimble CL. HPV Infection-Associated Cancers: Next-Generation Technology for Diagnosis and Treatment. Cancer Immunol Res 2014; 2:937-42. [PMID: 25281321 PMCID: PMC4185412 DOI: 10.1158/2326-6066.cir-14-0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Disease caused by human papillomavirus (HPV) remains common, despite preventive vaccines and screening strategies. Globally, HPVs cause one third of infection-associated cancers. The indolent clinical course of the precursor intraepithelial lesions provides an opportunity to understand immunologic obstacles posed by the microenvironment of incipient disease, and how they might be overcome. Results from recent therapeutic HPV vaccine clinical trials suggest that relevant immune responses may be sequestered at the lesion site and are difficult to detect in the circulation. In this Cancer Immunology at the Crossroads article, we outline the current understanding of the risk, diagnosis, and treatment of HPV infection-associated cancers and suggest that quantitative tissue-based endpoints should be included whenever possible in the evaluation of immune-based therapies.
Collapse
|
19
|
Durzyńska J. IGF axis and other factors in HPV-related and HPV-unrelated carcinogenesis (review). Oncol Rep 2014; 32:2295-306. [PMID: 25333772 PMCID: PMC4240475 DOI: 10.3892/or.2014.3505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
The insulin-like growth factor (IGF) axis promotes the growth of cells, tissues and organs. IGF-1 is mainly produced in the liver but is also secreted from local tissues. In the circulation, IGF-1 is bound to insulin-like binding proteins (IGFBPs), and when released it activates the insulin-like growth factor receptor (IGF-1R). The signal is further transmitted by intracellular signaling pathways leading to gene expression that regulates, among others, cell proliferation and survival. This review presents the IGF axis in the context of cell transformation and cancer development. Aspects involving IGF-1 deficiency and protection from cancer are also briefly described. Furthermore, human papillomaviruses (HPVs) interplaying with IGF axis components in cervical cancer development are described. These small dsDNA viruses are divided into low-risk and high-risk HPVs with regard to the potency of their oncogenic actions; they mainly infect epithelial or mucosal cells. Special attention is drawn to expression of two major HPV oncogenes (E6 and E7) initiating and maintaining cervical carcinogenesis, which is a multistep and multifactorial process; therefore, involvement of additional factors such as mitochondrial DNA changes, sex hormones, retinoic and folic acids are also discussed. Finally, IGF axis components and HPV oncogenes as targets in anticancer treatment are presented which include IGF-1R downregulation, RNA interference and anti-HPV therapeutic vaccines. The review concludes that despite an enormous advancement in research on IGF and HPV-related cancers, more molecular studies and clinical trials are needed before commercialized therapies are widely available for oncology patients.
Collapse
Affiliation(s)
- Julia Durzyńska
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland
| |
Collapse
|
20
|
Chen SS, Block BS, Chan PJ. Pentoxifylline attenuates HPV-16 associated necrosis in placental trophoblasts. Arch Gynecol Obstet 2014; 291:647-52. [DOI: 10.1007/s00404-014-3471-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
21
|
Jiménez-Wences H, Peralta-Zaragoza O, Fernández-Tilapa G. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep 2014; 31:2467-76. [PMID: 24737381 PMCID: PMC4055305 DOI: 10.3892/or.2014.3142] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53.
Collapse
Affiliation(s)
- Hilda Jiménez-Wences
- Clinical Research Laboratory, Academic Unit of Biological Chemical Sciences, Guerrero Autonomous University, Colonia Haciendita, Chilpancingo, Guerrero 39070, Mexico
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center for Infectious Diseases, National Institute of Public Health, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca, Morelos 62100, Mexico
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Academic Unit of Biological Chemical Sciences, Guerrero Autonomous University, Colonia Haciendita, Chilpancingo, Guerrero 39070, Mexico
| |
Collapse
|
22
|
Xie L, Li J, Zhang Y, Liu B, Peng X, Lin Y, Xu W, Hu L. Inhibitors of differentiation-1 promotes nitrosopyrrolidine-induced transformation of HPV 16-immortalized cervical epithelial cell. Cancer Sci 2014; 105:506-11. [PMID: 24628854 PMCID: PMC4317834 DOI: 10.1111/cas.12398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 11/30/2022] Open
Abstract
Our previous study implied a correlation between inhibitors of differentiation-1 (Id-1) and cervical cancer development. However, how Id-1 contributes to cervical carcinogenesis is unknown. In the present study, we used an in vitro transformation model to investigate the role of Id-1 in the transformation of cervical cells. Human papillomavirus (HPV)-immortalized cervical epithelial cells (H8) were successfully transformed by exposure to the carcinogen N-nitrosopyrrolidine (NPYR). The expression of both Id-1 RNA and protein was significantly increased in transformed H8 cells, suggesting a possible role of Id-1 in cervical cell transformation. Ectopic expression of Id-1 in H8 cells potentiated NPYR-induced cell transformation. In contrast, silencing of Id-1 suppressed NPYR-induced H8 cell transformation. In addition, the expression of HPV E6 and E7 oncoproteins was upregulated while that of the tumor suppressors p53 and pRb was suppressed after H8 cell transformation. Our results suggest that Id-1 plays an oncogenic role in HPV-related cervical carcinogenesis, which sheds light on cervical cancer development mechanisms and implies that Id-1 is a potential target for cervical cancer prevention and therapy.
Collapse
Affiliation(s)
- Lingxia Xie
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China; Laboratory of Biomedical Ultrasonics/Gynecological Oncology Laboratory, West China Second Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mattarocci S, Abbruzzese C, Mileo AM, Carosi M, Pescarmona E, Vico C, Federico A, Vizza E, Corrado G, Arisi I, Felsani A, Paggi MG. Identification of pivotal cellular factors involved in HPV-induced dysplastic and neoplastic cervical pathologies. J Cell Physiol 2014; 229:463-70. [PMID: 24105779 DOI: 10.1002/jcp.24465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/29/2013] [Indexed: 12/12/2022]
Abstract
Cervical carcinoma represents the paradigm of virus-induced cancers, where virtually all cervical cancers come from previous "high-risk" HPV infection. The persistent expression of the HPV viral oncoproteins E6 and E7 is responsible for the reprogramming of fundamental cellular functions in the host cell, thus generating a noticeable, yet only partially explored, imbalance in protein molecular networks and cell signaling pathways. Eighty-eight cellular factors, identified as HPV direct or surrogate targets, were chosen and monitored in a retrospective analysis for their mRNA expression in HPV-induced cervical lesions, from dysplasia to cancer. Real-time quantitative PCR (qPCR) was performed by using formalin-fixed, paraffin embedded archival samples. Gene expression analysis identified 40 genes significantly modulated in LSIL, HSIL, and squamous cervical carcinoma. Interestingly, among these, the expression level of a panel of four genes, TOP2A, CTNNB1, PFKM, and GSN, was able to distinguish between normal tissues and cervical carcinomas. Immunohistochemistry was also done to assess protein expression of two genes among those up-regulated during the transition between dysplasia and carcinoma, namely E2F1 and CDC25A, and their correlation with clinical parameters. Besides the possibility of significantly enhancing the use of some of these factors in diagnostic or prognostic procedures, these data clearly outline specific pathways, and thus key biological processes, altered in cervical dysplasia and carcinoma. Deeper insight on how these molecular mechanisms work may help widen the spectrum of novel innovative approaches to these virus-induced cell pathologies.
Collapse
Affiliation(s)
- Stefano Mattarocci
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Farkas SA, Milutin-Gašperov N, Grce M, Nilsson TK. Genome-wide DNA methylation assay reveals novel candidate biomarker genes in cervical cancer. Epigenetics 2013; 8:1213-25. [PMID: 24030264 DOI: 10.4161/epi.26346] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oncogenic human papilloma viruses (HPVs) are associated with precancerous cervical lesions and development of cervical cancer. The DNA methylation signatures of the host genome in normal, precancerous and cervical cancer tissue may indicate tissue-specific perturbation in carcinogenesis. The aim of this study was to identify new candidate genes that are differentially methylated in squamous cell carcinoma compared with DNA samples from cervical intraepithelial neoplasia grade 3 (CIN3) and normal cervical scrapes. The Illumina Infinium HumanMethylation450 BeadChip method identifies genome-wide DNA methylation changes in CpG islands, CpG shores and shelves. Our findings showed an extensive differential methylation signature in cervical cancer compared with the CIN3 or normal cervical tissues. The identified candidate biomarker genes for cervical cancer represent several types of mechanisms in the cellular machinery that are epigenetically deregulated by hypermethylation, such as membrane receptors, intracellular signaling and gene transcription. The results also confirm extensive hypomethylation of genes in the immune system in cancer tissues. These insights into the functional role of DNA methylome alterations in cervical cancer could be clinically applicable in diagnostics and prognostics, and may guide the development of new epigenetic therapies.
Collapse
Affiliation(s)
- Sanja A Farkas
- Department of Laboratory Medicine; Örebro University Hospital; Örebro, Sweden
| | | | - Magdalena Grce
- Department of Molecular Medicine; Rudjer Boskovic Institute; Zagreb, Croatia
| | - Torbjörn K Nilsson
- Department of Laboratory Medicine; Örebro University Hospital; Örebro, Sweden; School of Health and Medical Sciences; Örebro University; Örebro, Sweden
| |
Collapse
|
25
|
Expression of the h19 oncofetal gene in premalignant lesions of cervical cancer: a potential targeting approach for development of nonsurgical treatment of high-risk lesions. ISRN OBSTETRICS AND GYNECOLOGY 2013; 2013:137509. [PMID: 23984081 PMCID: PMC3747480 DOI: 10.1155/2013/137509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 12/27/2022]
Abstract
Background. Recent data suggest a role for H19 gene in promoting cancer transformation and progression. Cervical cancer, progresses from high-grade lesions (CIN3). At present, it is unclear if CIN lesions express H19. Objectives. To determine H19 expression in patient samples of CIN3 as well as the ability of a construct in which the promoter from the H19 gene drives expression of the diphtheria toxin A chain (DTA) to inhibit cervical cancer cell growth in vitro. Methods. H19 transcript levels were evaluated on 10 biopsies of CIN3 using in situ hybridization. PCR was used to examine H19 expression in cervical cancer cell lines and in two samples from a patient with cervical carcinoma. Cell lines were transfected with H19-DTA to determine its impact on cell number. Results. H19 gene was expressed in the area of CIN3 in 9 out of 10 samples. RT-PCR indicated expression of H19 in cervical cancer samples and in one of the three cell lines examined. Transfection of all cell lines with H19-DTA vector resulted in inhibited cell growth. Conclusions. H19 is expressed in the majority of CIN3 samples. These results suggest that most CIN3 lesions could be targeted by H19-DTA. Further in vivo preclinical studies are thus warranted.
Collapse
|
26
|
Mileo AM, Abbruzzese C, Vico C, Bellacchio E, Matarrese P, Ascione B, Federico A, Della Bianca S, Mattarocci S, Malorni W, Paggi MG. The human papillomavirus-16 E7 oncoprotein exerts antiapoptotic effects via its physical interaction with the actin-binding protein gelsolin. Carcinogenesis 2013; 34:2424-33. [PMID: 23729654 DOI: 10.1093/carcin/bgt192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The oncoprotein E7 from human papillomavirus-16 (HPV-16 E7) plays a pivotal role in HPV postinfective carcinogenesis, and its physical interaction with host cell targets is essential to its activity. We identified a novel cellular partner for the viral oncoprotein: the actin-binding protein gelsolin (GSN), a key regulator of actin filament assembly and disassembly. In fact, biochemical analyses, generation of a 3D molecular interaction model and the use of specific HPV-16 E7 mutants provided clear cut evidence supporting the crucial role of HPV-16 E7 in affecting GSN integrity and function in human immortalized keratinocytes. Accordingly, functional analyses clearly suggested that stable HPV-16 E7 expression induced an imbalance between polymeric and monomeric actin in favor of the former. These events also lead to changes of cell cycle (increased S phase), to the inhibition of apoptosis and to the increase of cell survival. These results provide support to the hypotheses generated from the 3D molecular interaction model and encourage the design of small molecules hindering HPV-induced host cell reprogramming by specifically targeting HPV-16 E7-expressing cells.
Collapse
Affiliation(s)
- Anna M Mileo
- Department of Development of Therapeutic Programs, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
HPV-16 exposed mouse embryos: a potential model for pregnancy wastage. Arch Gynecol Obstet 2013; 287:1093-7. [PMID: 23307167 DOI: 10.1007/s00404-013-2711-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE Placentas from spontaneous abortions and preterm deliveries have a higher prevalence of Human papillomavirus (HPV) compared to placentas from elective abortions and term births. The objective was to determine the effects of HPV-16 on the adhesion and implantation properties of early embryo trophoblasts. METHODS Two-cell mouse embryos were cultured (medium G2, 5 % CO2, 37 °C) for 72-96 h and exposed to either HPV-16 rich SiHa cell lysates which were refrigerated after mechanical lysis, thawed lysates which had been frozen for freeze/thaw lysis method, or control medium, incubated (4-5 days) and evaluated by microscopy (N = 96 embryos, 3 repeated experiments). Trophoblasts were stained and images were digitized. Adhesion and dimension data were analyzed by Chi-square and t test, respectively. RESULTS HPV-16 exposed embryos exhibited less adhesion through reduced implantation compared with the control (combined lysates 53.8 vs. 85.7 %, P < 0.05). Refrigerated and thawed lysate groups had similar reduced implantations (58.3 vs. 50.0 %). Of the embryos with implantation, 100 % in the refrigerated lysates were noted to have loose or abnormal adhesion. This was measured when embryos were noted to be lost after washes with HTF. There was no difference in trophoblast viability among the groups. Total trophoblast area was greater in the HPV-16 exposed frozen lysate group (1,881.8 ± 605.3 vs. control 848.8 ± 298.0 square units, mean ± SEM). CONCLUSIONS HPV-16 inhibited trophoblasts adhesion needed for normal implantation, but not embryo development. Total trophoblast spread was increased after HPV-16 exposure suggesting that HPV-16 altered trophoblast migration. These results suggest that HPV-16 may induce abnormal placental growth resulting in pregnancy wastage.
Collapse
|
28
|
Hernandez JM, Siegel EM, Riggs B, Eschrich S, Elahi A, Qu X, Ajidahun A, Berglund A, Coppola D, Grady WM, Giuliano AR, Shibata D. DNA methylation profiling across the spectrum of HPV-associated anal squamous neoplasia. PLoS One 2012; 7:e50533. [PMID: 23226306 PMCID: PMC3511539 DOI: 10.1371/journal.pone.0050533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/27/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Changes in host tumor genome DNA methylation patterns are among the molecular alterations associated with HPV-related carcinogenesis. However, there is little known about the epigenetic changes associated specifically with the development of anal squamous cell cancer (SCC). We sought to characterize broad methylation profiles across the spectrum of anal squamous neoplasia. METHODOLOGY/PRINCIPAL FINDINGS Twenty-nine formalin-fixed paraffin embedded samples from 24 patients were evaluated and included adjacent histologically normal anal mucosa (NM; n = 3), SCC-in situ (SCC-IS; n = 11) and invasive SCC (n = 15). Thirteen women and 11 men with a median age of 44 years (range 26-81) were included in the study. Using the SFP(10) LiPA HPV-typing system, HPV was detected in at least one tissue from all patients with 93% (27/29) being positive for high-risk HPV types and 14 (93%) of 15 invasive SCC tissues testing positive for HPV 16. Bisulfite-modified DNA was interrogated for methylation at 1,505 CpG loci representing 807 genes using the Illumina GoldenGate Methylation Array. When comparing the progression from normal anal mucosa and SCC-IS to invasive SCC, 22 CpG loci representing 20 genes demonstrated significant differential methylation (p<0.01). The majority of differentially methylated gene targets occurred at or close to specific chromosomal locations such as previously described HPV methylation "hotspots" and viral integration sites. CONCLUSIONS We have identified a panel of differentially methlylated CpG loci across the spectrum of HPV-associated squamous neoplasia of the anus. To our knowledge, this is the first reported application of large-scale high throughput methylation analysis for the study of anal neoplasia. Our findings support further investigations into the role of host-genome methylation in HPV-associated anal carcinogenesis with implications towards enhanced diagnosis and screening strategies.
Collapse
Affiliation(s)
- Jonathan M. Hernandez
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Erin M. Siegel
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Bridget Riggs
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Steven Eschrich
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Abul Elahi
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Xiaotao Qu
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Abidemi Ajidahun
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Anders Berglund
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - William M. Grady
- Division of Gastroenterology, University of Washington, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Anna R. Giuliano
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - David Shibata
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
29
|
D'Costa ZJ, Jolly C, Androphy EJ, Mercer A, Matthews CM, Hibma MH. Transcriptional repression of E-cadherin by human papillomavirus type 16 E6. PLoS One 2012; 7:e48954. [PMID: 23189137 PMCID: PMC3506579 DOI: 10.1371/journal.pone.0048954] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/03/2012] [Indexed: 02/01/2023] Open
Abstract
There is increasing evidence supporting DNA virus regulation of the cell adhesion and tumour suppressor protein, E-cadherin. We previously reported that loss of E-cadherin in human papillomavirus (HPV) type 16-infected epidermis is contributed to by the major viral proto-oncogene E6 and is associated with reduced Langerhans cells density, potentially regulating the immune response. The focus of this study is determining how the HPV16 E6 protein mediates E-cadherin repression. We found that the E-cadherin promoter is repressed in cells expressing E6, resulting in fewer E-cadherin transcripts. On exploring the mechanism for this, repression by increased histone deacetylase activity or by increased binding of trans-repressors to the E-cadherin promoter Epal element was discounted. In contrast, DNA methyltransferase (DNMT) activity was increased in E6 expressing cells. Upon inhibiting DNMT activity using 5-Aza-2'-deoxycytidine, E-cadherin transcription was restored in the presence of HPV16 E6. The E-cadherin promoter was not directly methylated, however a mutational analysis showed general promoter repression and reduced binding of the transactivators Sp1 and AML1 and the repressor Slug. Expression of E7 with E6 resulted in a further reduction in surface E-cadherin levels. This is the first report of HPV16 E6-mediated transcriptional repression of this adhesion molecule and tumour suppressor protein.
Collapse
Affiliation(s)
- Zarina J. D'Costa
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Carol Jolly
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Andrew Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Charles M. Matthews
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Merilyn H. Hibma
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Jenkins M, Chiriva-Internati M, Mirandola L, Tonroy C, Tedjarati SS, Davis N, D'Cunha N, Tijani L, Hardwick F, Nguyen D, Kast WM, Cobos E. Perspective for prophylaxis and treatment of cervical cancer: an immunological approach. Int Rev Immunol 2012; 31:3-21. [PMID: 22251005 DOI: 10.3109/08830185.2011.637254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
As the second most common cause of cancer-related death in women, human papilloma virus (HPV) vaccines have been a major step in decreasing the morbidity and mortality associated with cervical cancer. An estimated 490,000 women are diagnosed with cervical cancer each year. Increasing knowledge of the HPV role in the etiology of cervical cancer has led to the development and introduction of HPV-based vaccines for active immunotherapy of cervical cancer. Immunotherapies directed at preventing HPV-persistent infections. These vaccines are already accessible for prophylaxis and in the near future, they will be available for the treatment of preexisting HPV-related neoplastic lesions.
Collapse
Affiliation(s)
- Marjorie Jenkins
- Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhou Z, Sturgis EM, Liu Z, Wang LE, Wei Q, Li G. Genetic variants of NOXA and MCL1 modify the risk of HPV16-associated squamous cell carcinoma of the head and neck. BMC Cancer 2012; 12:159. [PMID: 22548841 PMCID: PMC3428689 DOI: 10.1186/1471-2407-12-159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 05/01/2012] [Indexed: 11/10/2022] Open
Abstract
Abstracts
Collapse
Affiliation(s)
- Ziyuan Zhou
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ushijima T, Hattori N. Molecular pathways: involvement of Helicobacter pylori-triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers. Clin Cancer Res 2011; 18:923-9. [PMID: 22205689 DOI: 10.1158/1078-0432.ccr-11-2011] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infection-associated cancers account for a large proportion of human cancers, and gastric cancer, the vast majority of which is associated with Helicobacter pylori infection, is a typical example of such cancers. Epigenetic alterations are known to occur frequently in gastric cancers, and H. pylori infection has now been shown to induce aberrant DNA methylation in gastric mucosae. Accumulation of aberrant methylation in gastric mucosae produces a field for cancerization, and methylation levels correlate with gastric cancer risk. H. pylori infection induces methylation of specific genes, and such specificity is determined by the epigenetic status in normal cells, including the presence of H3K27me3 and RNA polymerase II (active or stalled). Specific types of inflammation, such as that induced by H. pylori infection, are important for methylation induction, and infiltration of monocytes appears to be involved. The presence of an epigenetic field defect is not limited to gastric cancers and is observed in various types of cancers. It provides translational opportunities for cancer risk diagnosis incorporating life history, assessment of past exposure to carcinogenic factors, and cancer prevention.
Collapse
Affiliation(s)
- Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
| | | |
Collapse
|
33
|
Zhou Z, Sturgis EM, Liu Z, Wang LE, Wei Q, Li G. Genetic variants of a BH3-only pro-apoptotic gene, PUMA, and risk of HPV16-associated squamous cell carcinoma of the head and neck. Mol Carcinog 2011; 51 Suppl 1:E54-64. [PMID: 22086558 DOI: 10.1002/mc.21838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/13/2011] [Accepted: 10/19/2011] [Indexed: 11/11/2022]
Abstract
P53 up-regulated modulator of apoptosis (PUMA) is a critical factor in the intrinsic apoptotic pathway. Through PUMA-dependent mechanisms, human papillomavirus 16 (HPV16) oncoprotein may affect apoptosis by E6-mediated p53 degradation. To examine whether the PUMA variants modify the association between HPV16 serology and risk of squamous cell carcinoma of the head and neck (SCCHN), we genotyped two polymorphisms in the PUMA promoter (rs3810294 and rs2032809) in 380 cases and 335 cancer-free controls of non-Hispanic Whites, who were frequency-matched by age (±5 yr), sex, smoking, and drinking status. We found that each individual polymorphism had only a modest impact on risk of SCCHN, particularly in oropharyngeal cancer for rs3810294 and non-oropharyngeal cancer for rs2032809. After we stratified the individuals by HPV16 serology, and used those with the corresponding common homozygous genotype and HPV16 seronegativity as the reference group, for each polymorphism we found that the risk of SCCHN associated with HPV16 seropositivity was higher among those with variant genotypes than those with the corresponding common homozygous genotype. Notably, this effect modification was particularly pronounced in several subgroups including never smokers, never drinkers, younger patients, and patients with oropharyngeal cancer. Furthermore, we also characterized the functional relevance of the two polymorphisms to explore the genotype-phenotype correlation. Our results suggested that the PUMA promoter polymorphisms may be a biomarker for risk of HPV16-associated SCCHN, particularly in never smokers, never drinkers, younger patients, and patients with oropharyngeal cancer. Larger studies are needed to validate our findings.
Collapse
Affiliation(s)
- Ziyuan Zhou
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
34
|
Spinocellular carcinoma from warts in a HPV infection natural history lasting 49 years. Virus strategy or host choice? Implications for researches and therapeutic vaccines. Med Hypotheses 2011; 77:777-81. [PMID: 21840649 DOI: 10.1016/j.mehy.2011.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/16/2011] [Indexed: 11/21/2022]
Abstract
There is a very strong evidence that progression (also to cancer) in variable percentages of cases infected by HPV, HBV, HCV, and HIV depends on host immune response. A large number of observations demonstrate that virus set up a postulated "active strategy" to modify host reactions or to avoid it. But in all those infections it also seems that antigen load (viral RNA or DNA), chronic activation of immune response and time elapsing from the primary infection play a pivotal role in determining clearing or persisting outcomes. My wife's HPV and cancer natural history, lasting 49 years, started at the age of 10 years with facial warts and progressed to CIN 2/3, cervical in situ carcinoma, perineal warts, perianal carcinoma, inguinal lymph nodes, and invasion of bones and muscular structures, until death is paradigmatic: a progressive immune failure was detected in her scaling up all those clinical features, ending in a massive apoptosis of her lymphocytes collected by leukapheresis and cultured with HPV antigens E6/E7, with the aim of obtaining antigen presenting cells and CD8+ specific T lymphocytes. From this experience, a concept of "host choice to reach a tolerance (mainly by a Tregs mediated anergy) or symbiotic-like state" arises, underlining all the affected host's immune-responses to virus persistence (and to consequent tumors). It might be then postulated as the hallmark of a long-term host/parasites co-evolution, and considered a "normal" reaction when the host faces overwhelming numbers of non-self cancer cells (high antigen loads) preceded by persistent virus infections (chronic activation). This happens in patients who do not clear HPV or other viruses soon enough after infection. These observations may lead to a better understanding of many phenomena that are actually difficult to explain or still are open questions. The auto-limiting host's immune-responses are likely to be aimed to avoid risks arising mainly in the protection of "self" (autoimmunity), to prolong its own survival (balance with the virus), to avoid the risk of producing uncontrolled cells (dangerous outcomes). Finally, the postulated negative implications for therapeutic vaccines in cervical cancer, as they really seem to not work till now might be ascribed just to the cited host immune-specific state itself, through an activation induced cell death, elicited by recall antigens (E6/E7 in the case of my wife). Also this latter hypothesis, as well as the previous ones may be of some value to better account for clinical behaviors and researches.
Collapse
|
35
|
Association between hMLH1 hypermethylation and JC virus (JCV) infection in human colorectal cancer (CRC). Clin Epigenetics 2010; 2:1-5. [PMID: 22704265 PMCID: PMC3365371 DOI: 10.1007/s13148-010-0013-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/11/2010] [Indexed: 12/31/2022] Open
Abstract
Incorporation of viral DNA may interfere with the normal sequence of human DNA bases on the genetic level or cause secondary epigenetic changes such as gene promoter methylation or histone acetylation. Colorectal cancer (CRC) is the second leading cause of cancer mortality in the USA. Chromosomal instability (CIN) was established as the key mechanism in cancer development. Later, it was found that CRC results not only from the progressive accumulation of genetic alterations but also from epigenetic changes. JC virus (JCV) is a candidate etiologic factor in sporadic CRC. It may act by stabilizing β-catenin, facilitating its entrance to the cell nucleus, initialing proliferation and cancer development. Diploid CRC cell lines transfected with JCV-containing plasmids developed CIN. This result provides direct experimental evidence for the ability of JCV T-Ag to induce CIN in the genome of colonic epithelial cells. The association of CRC hMLH1 methylation and tumor positivity for JCV was recently documented. JC virus T-Ag DNA sequences were found in 77% of CRCs and are associated with promoter methylation of multiple genes. hMLH1 was methylated in 25 out of 80 CRC patients positive for T-Ag (31%) in comparison with only one out of 11 T-Ag negative cases (9%). Thus, JCV can mediate both CIN and aberrant methylation in CRC. Like other viruses, chronic infection with JCV may induce CRC by different mechanisms which should be further investigated. Thus, gene promoter methylation induced by JCV may be an important process in CRC and the polyp-carcinoma sequence.
Collapse
|
36
|
Paggi MG, Vona R, Abbruzzese C, Malorni W. Gender-related disparities in non-small cell lung cancer. Cancer Lett 2010; 298:1-8. [PMID: 20826048 DOI: 10.1016/j.canlet.2010.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/10/2010] [Accepted: 08/13/2010] [Indexed: 02/08/2023]
Abstract
Epidemiological studies clearly outline some disparities in cancer onset, progression as well as prognosis and therapeutic response between sexes. In particular, in lung cancer, the leading cause of cancer death, at least in Western countries, a gender disparity appears now to emerge, especially for non-small cell lung cancer (NSCLC). Such a disparity is apparently due to a variety of mechanisms, ranging from genetic and epigenetic differences to gender-specific lifestyle as well as to behavioral causes and, clearly, to sex hormones activity. Here we briefly recapitulate gender differences in terms of risk factors, histopathological features and pathogenetic mechanisms in NSCLC, and hypothesize that a gender-oriented pharmacology could beneficially impact on innovative therapeutic strategies.
Collapse
Affiliation(s)
- Marco G Paggi
- Department of Development of Therapeutic Programs, National Cancer Institute "Regina Elena", Via Elio Chianesi 53, 00144 Rome, Italy
| | | | | | | |
Collapse
|
37
|
Zhang Y, Shu YM, Wang SF, Da BH, Wang ZH, Li HB. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3beta is implicated in the treatment of cervical carcinoma. BMC Cancer 2010; 10:58. [PMID: 20178594 PMCID: PMC2843672 DOI: 10.1186/1471-2407-10-58] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 02/23/2010] [Indexed: 11/24/2022] Open
Abstract
Background PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. Methods We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. Results We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Conclusions Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Viruses are associated with 15-20% of human cancers worldwide. In the last century, many studies were directed towards elucidating the molecular mechanisms and genetic alterations by which viruses cause cancer. The importance of epigenetics in the regulation of gene expression has prompted the investigation of virus and host interactions not only at the genetic level but also at the epigenetic level. In this study, we summarize the published epigenetic information relating to the genomes of viruses directly or indirectly associated with the establishment of tumorigenic processes. We also review aspects such as viral replication and latency associated with epigenetic changes and summarize what is known about epigenetic alterations in host genomes and the implications of these for the tumoral process. The advances made in characterizing epigenetic features in cancer-causing viruses have improved our understanding of their functional mechanisms. Knowledge of the epigenetic changes that occur in the genome of these viruses should provide us with markers for following cancer progression, as well as new tools for cancer therapy.
Collapse
Affiliation(s)
- A F Fernandez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08907 Barcelona, Catalonia, Spain
| | | |
Collapse
|
39
|
Boulenouar S, Weyn C, Van Noppen M, Moussa Ali M, Favre M, Delvenne PO, Bex F, Noël A, Englert Y, Fontaine V. Effects of HPV-16 E5, E6 and E7 proteins on survival, adhesion, migration and invasion of trophoblastic cells. Carcinogenesis 2009; 31:473-80. [PMID: 19917629 DOI: 10.1093/carcin/bgp281] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among high-risk human papillomaviruses (HPV), HPV-16 infection is the most prevalent causative factor for cervical cancer. Beside other mucosal targets, HPV-16 was reported to infect the placenta and to replicate in trophoblastic cells. Since these cells share invasive properties of tumoral cells, they represent an ideal model to investigate several oncogenic processes. In the present work, we analyzed the impacts of HPV-16 E5, E6 and E7 oncoproteins on the trophoblastic model. Our results showed that E5 impaired the viability of trophoblastic and cervical cell lines but E6 and E7, favoring cell growth, neutralized the E5 cytotoxic effect. In addition, E5 decreased the adhesiveness of trophoblastic cells to the tissue culture plastic and to endometrial cells similarly as described previously for E6 and E7. E5 and E6 plus E7 increased also their migration and their invasive properties. Cells expressing HPV-16 early proteins under the control of the long control region endogenous promoter displayed growth advantage and were also more motile and invasive compared with control cells. Interestingly, the E-cadherin was downregulated in trophoblastic cells expressing E5, E6 and E7. Nuclear factor-kappaB and activator protein-1 activities were also enhanced. In conclusion, HPV-16 early proteins enhanced trophoblastic growth and intensify the malignant phenotype by impairing cell adhesion leading to increased cellular motile and invasive properties. HPV-16 E5 participated, with E6 and E7, in these changes by impairing E-cadherin expression, a hallmark of malignant progression.
Collapse
Affiliation(s)
- Selma Boulenouar
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Route de Lennik 808, CP636, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mileo AM, Abbruzzese C, Mattarocci S, Bellacchio E, Pisano P, Federico A, Maresca V, Picardo M, Giorgi A, Maras B, Schininà ME, Paggi MG. Human papillomavirus-16 E7 interacts with glutathione S-transferase P1 and enhances its role in cell survival. PLoS One 2009; 4:e7254. [PMID: 19826491 PMCID: PMC2758704 DOI: 10.1371/journal.pone.0007254] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022] Open
Abstract
Background Human Papillomavirus (HPV)-16 is a paradigm for “high-risk” HPVs, the causative agents of virtually all cervical carcinomas. HPV E6 and E7 viral genes are usually expressed in these tumors, suggesting key roles for their gene products, the E6 and E7 oncoproteins, in inducing malignant transformation. Methodology/Principal Findings By protein-protein interaction analysis, using mass spectrometry, we identified glutathione S-transferase P1-1 (GSTP1) as a novel cellular partner of the HPV-16 E7 oncoprotein. Following mapping of the region in the HPV-16 E7 sequence that is involved in the interaction, we generated a three-dimensional molecular model of the complex between HPV-16 E7 and GSTP1, and used this to engineer a mutant molecule of HPV-16 E7 with strongly reduced affinity for GSTP1.When expressed in HaCaT human keratinocytes, HPV-16 E7 modified the equilibrium between the oxidized and reduced forms of GSTP1, thereby inhibiting JNK phosphorylation and its ability to induce apoptosis. Using GSTP1-deficient MCF-7 cancer cells and siRNA interference targeting GSTP1 in HaCaT keratinocytes expressing either wild-type or mutant HPV-16 E7, we uncovered a pivotal role for GSTP1 in the pro-survival program elicited by its binding with HPV-16 E7. Conclusions/Significance This study provides further evidence of the transforming abilities of this oncoprotein, setting the groundwork for devising unique molecular tools that can both interfere with the interaction between HPV-16 E7 and GSTP1 and minimize the survival of HPV-16 E7-expressing cancer cells.
Collapse
Affiliation(s)
- Anna M. Mileo
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | - Claudia Abbruzzese
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | - Stefano Mattarocci
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | | | - Paola Pisano
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | - Antonio Federico
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
| | | | | | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - M. Eugenia Schininà
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco G. Paggi
- Department of Development of Therapeutic Programs, CRS, Regina Elena Cancer Institute, Rome, Italy
- * E-mail:
| |
Collapse
|
41
|
Wilting SM, Smeets SJ, Snijders PJF, van Wieringen WN, van de Wiel MA, Meijer GA, Ylstra B, Leemans CR, Meijer CJLM, Brakenhoff RH, Braakhuis BJM, Steenbergen RDM. Genomic profiling identifies common HPV-associated chromosomal alterations in squamous cell carcinomas of cervix and head and neck. BMC Med Genomics 2009; 2:32. [PMID: 19486517 PMCID: PMC2698908 DOI: 10.1186/1755-8794-2-32] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 06/01/2009] [Indexed: 12/17/2022] Open
Abstract
Background It is well known that a persistent infection with high-risk human papillomavirus (hrHPV) is causally involved in the development of squamous cell carcinomas of the uterine cervix (CxSCCs) and a subset of SCCs of the head and neck (HNSCCs). The latter differ from hrHPV-negative HNSCCs at the clinical and molecular level. Methods To determine whether hrHPV-associated SCCs arising from different organs have specific chromosomal alterations in common, we compared genome-wide chromosomal profiles of 10 CxSCCs (all hrHPV-positive) with 12 hrHPV-positive HNSCCs and 30 hrHPV-negative HNSCCs. Potential organ-specific alterations and alterations shared by SCCs in general were investigated as well. Results Unsupervised hierarchical clustering resulted in one mainly hrHPV-positive and one mainly hrHPV-negative cluster. Interestingly, loss at 13q and gain at 20q were frequent in HPV-positive carcinomas of both origins, but uncommon in hrHPV-negative HNSCCs, indicating that these alterations are associated with hrHPV-mediated carcinogenesis. Within the group of hrHPV-positive carcinomas, HNSCCs more frequently showed gains of multiple regions at 8q whereas CxSCCs more often showed loss at 17p. Finally, gains at 3q24-29 and losses at 11q22.3-25 were frequent (>50%) in all sample groups. Conclusion In this study hrHPV-specific, organ-specific, and pan-SCC chromosomal alterations were identified. The existence of hrHPV-specific alterations in SCCs of different anatomical origin, suggests that these alterations are crucial for hrHPV-mediated carcinogenesis.
Collapse
Affiliation(s)
- Saskia M Wilting
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|