1
|
Liu J, Yang T, Luo Y, Ma Z, Yu Z, Zhang L, Liu G, Wen J, Lu G, Zhang G, Zhao Y, Luo W, Li Y, Yang N, Zhou J, Lu Y, Chen S, Zeng X. DEAD-box helicase 1 inhibited CD8 + T cell antitumor activity by inducing PD-L1 expression in hepatocellular carcinoma. Cancer Sci 2024; 115:763-776. [PMID: 38243657 PMCID: PMC10921000 DOI: 10.1111/cas.16076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) does not respond well to current treatments, even immune checkpoint inhibitors. PD-L1 (programmed cell death ligand 1 or CD274 molecule)-mediated immune escape of tumor cells may be a key factor affecting the efficacy of immune checkpoint inhibitor (ICI) therapy. However, the regulatory mechanisms of PD-L1 expression and immune escape require further exploration. Here, we observed that DDX1 (DEAD-box helicase 1) was overexpressed in HCC tissues and associated with poor prognosis in patients with HCC. Additionally, DDX1 expression correlated negatively with CD8+ T cell frequency. DDX1 overexpression significantly increased interferon gamma (IFN-γ)-mediated PD-L1 expression in HCC cell lines. DDX1 overexpression decreased IFN-γ and granzyme B production in CD8+ T cells and inhibited CD8+ T cell cytotoxic function in vitro and in vivo. In conclusion, DDX1 plays an essential role in developing the immune escape microenvironment, rendering it a potential predictor of ICI therapy efficacy in HCC.
Collapse
Affiliation(s)
- Junhao Liu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Ti Yang
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yurong Luo
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zengxin Ma
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhitao Yu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Lei Zhang
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Gai Liu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Jianfan Wen
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Guankun Lu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Guowei Zhang
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Yujun Zhao
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Wang Luo
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Yanan Li
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nengjia Yang
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Jiawei Zhou
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yuhui Lu
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
- The Affiliated Guangdong Second Provincial General Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Siliang Chen
- Department of Interventional RadiologyGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Xiancheng Zeng
- Department of Hepatobiliary‐Pancreatic & Hernia SurgeryGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| |
Collapse
|
2
|
Yang Q, Xu P, Liu Q, Hu F, Xie X, Jiang L, Bi R, Wang L, Ding F, Xiao H. Depleting DDX1 sensitizes non-small cell lung cancer cells to chemotherapy by attenuating cancer stem cell traits. Life Sci 2023; 323:121592. [PMID: 36934972 DOI: 10.1016/j.lfs.2023.121592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
AIMS DEAD-box helicase 1 (DDX1) has oncogenic properties in several human cancers. However, the clinical significance and biological role of DDX1 in non-small cell lung cancer (NSCLC) remain elusive. Here, we examined the chemotherapeutic relevance of DDX1 in NSCLC. MAIN METHODS We used the UALCAN database, Western blot analysis, and immunohistochemical and RT-qPCR assays to assess DDX1 expression in NSCLC cell lines (H1650 and A549) and patient tissues. The role of DDX1 in the chemosensitivity of NSCLC cells and the underlying mechanisms were determined using colony formation, CCK-8, flow cytometry, wound healing, Transwell, tumor sphere formation, and immunostaining assays, together with a xenograft tumor model in nude mice. KEY FINDINGS Our study revealed that DDX1 was overexpressed in NSCLC cell lines and tissues. We further found that depleting DDX1 increased the sensitivity of NSCLC cells to the chemotherapy drug cisplatin, increased cell apoptosis, and inhibited cell migration and invasion. Co-immunoprecipitation assays revealed that DDX1 bound to ADAR1, and increased ADAR1 protein expression. Furthermore, we found that ADAR1 mediated cancer-promoting effects, independent of deaminase activity, by binding to RAC3 mRNA. Our findings not only show that DDX1 mediates chemosensitivity to cisplatin via the ADAR1/RAC3 axis but also highlight the importance of ADARs as essential RNA-binding proteins for cell homeostasis, as well as cancer progression. SIGNIFICANCE Our results suggest that DDX1 plays an important role in the development and progression of human NSCLC and that DDX1 may serve as a therapeutic target in NSCLC patients.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Pei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Qingtao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Xiao Xie
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Rui Bi
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China.
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China.
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China.
| |
Collapse
|
3
|
Yuan M, Xu J, Cao S, Sun S. DDX1 is a prognostic biomarker and correlates with immune infiltrations in hepatocellular carcinoma. BMC Immunol 2022; 23:59. [PMID: 36451087 PMCID: PMC9710136 DOI: 10.1186/s12865-022-00533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading lethal malignant tumors worldwide. DEAD-box (DDX) family helicases are implicated in numerous human cancers. However, the role of DDX1 in HCC has not yet been fully elucidated. We downloaded gene expression data and clinical information data of HCC from The Cancer Genome Atlas and International Cancer Genome Consortium (ICGC) database and conducted subsequent analyses using the R package and online portal. The results revealed that HCC tissues had higher DDX1 expression compared with either paired or unpaired normal tissues. The increased DDX1 expression was closely related to the advanced pathological grade and histologic grade of HCC. Further analysis suggested that patients with high DDX1 expression contributed to poor prognosis The Cox regression analysis revealed that the expression level of DDX1 was an independent prognostic factor for HCC. In addition, an ICGC cohort was used for external validation. The cBio-Portal, MethSurv, and UALCAN database were used for evaluating the genomic mechanism. Moreover, the Tumor Immune Estimation Resource dataset and QUANTISEQ algorithm revealed that DDX1 expression positively correlates with immune infiltrating cells. We also identified the DDX1-related differentially expressed genes (DEGs) and explored their biological functions by GO, KEGG, and GSEA analyses, which indicated that DDX1 may regulate the progression of HCC. In general, increased DDX1 expression predicts a poor prognosis and drives the progression of HCC.
Collapse
Affiliation(s)
- Mengping Yuan
- grid.417384.d0000 0004 1764 2632Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Jinyong Xu
- Department of Pathology, Shenzhen Hyzen Hospital, Shenzhen, 518038 People’s Republic of China
| | - Shuguang Cao
- grid.417384.d0000 0004 1764 2632Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Shuangshuang Sun
- grid.417384.d0000 0004 1764 2632Department of Oncology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| |
Collapse
|
4
|
Wei Q, Geng J, Chen Y, Lin H, Wang J, Fang Z, Wang F, Zhang Z. Structure and function of DEAH-box helicase 32 and its role in cancer. Oncol Lett 2021; 21:382. [PMID: 33777205 PMCID: PMC7988694 DOI: 10.3892/ol.2021.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/23/2020] [Indexed: 11/06/2022] Open
Abstract
DEAH-box helicase 32 (DHX32) is an RNA helicase with unique structural characteristics that is involved in numerous biological processes associated with RNA, including ribosome biosynthesis, transcription, mRNA splicing and translation. Increasing evidence suggests that abnormal DHX32 expression contributes to cancer initiation and development, due to dysregulated cell proliferation, differentiation, apoptosis and other processes. In the current review, the discovery, structure and function of DHX32, as well as the association between abnormal DHX32 expression and tumors are discussed. DHX32 expression is downregulated in acute lymphoblastic leukemia, but upregulated in solid tumors, including colorectal and breast cancer. Furthermore, DHX32 expression levels are associated with the pathological and clinical features of the cancer. Therefore, DHX32 may serve as a novel liquid biopsy marker for auxiliary diagnosis and prognosis screening, as well as a possible target for cancer therapy. The molecular mechanism underlying the contribution of DHX32 towards the initiation and development of cancer requires further investigation for the development of anticancer treatments based on manipulating DHX32 expression and function.
Collapse
Affiliation(s)
- Qingchun Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Jinting Geng
- Xiamen Key Laboratory of Biomarker Translational Medicine, Center of Medical Laboratory of Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Yongquan Chen
- Xiamen Key Laboratory of Biomarker Translational Medicine, Center of Medical Laboratory of Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Huayue Lin
- Center of Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian 361104, P.R. China
| | - Jiajia Wang
- Center of Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian 361104, P.R. China
| | - Zanxi Fang
- Center of Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian 361104, P.R. China
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Zhongying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
- Xiamen Key Laboratory of Biomarker Translational Medicine, Center of Medical Laboratory of Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
5
|
The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis. Int J Clin Oncol 2021; 26:795-825. [PMID: 33656655 DOI: 10.1007/s10147-021-01892-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
DEAD-box RNA helicases comprise a family within helicase superfamily 2 and make up the largest group of RNA helicases. They are a profoundly conserved family of RNA-binding proteins, carrying a generic Asp-Glu-Ala-Asp (D-E-A-D) motif that gives the family its name. Members of the DEAD-box family of RNA helicases are engaged in all facets of RNA metabolism from biogenesis to decay. DEAD-box proteins ordinarily function as constituents of enormous multi-protein complexes and it is believed that interactions with other components in the complexes might be answerable for the various capacities ascribed to these proteins. Therefore, their exact function is probably impacted by their interacting partners and to be profoundly context dependent. This may give a clarification to the occasionally inconsistent reports proposing that DEAD-box proteins have both pro- and anti-proliferative functions in cancer. There is emerging evidence that DEAD-box family of RNA helicases play pivotal functions in various cellular processes and in numerous cases have been embroiled in cellular proliferation and/or neoplastic transformation. In various malignancy types, DEAD-box RNA helicases have been reported to possess pro-proliferation or even oncogenic roles as well as anti-proliferative or tumor suppressor functions. Clarifying the exact function of DEAD-box helicases in cancer is probably intricate, and relies upon the cellular milieu and interacting factors. This review aims to summarize the current data on the numerous capacities that have been ascribed to DEAD-box RNA helicases. It also highlights their diverse actions upon malignant transformation in the various tumor types.
Collapse
|
6
|
Asberger J, Erbes T, Jaeger M, Rücker G, Nöthling C, Ritter A, Berner K, Juhasz-Böss I, Hirschfeld M. Endoxifen and fulvestrant regulate estrogen-receptor α and related DEADbox proteins. Endocr Connect 2020; 9:1156-1167. [PMID: 33112831 PMCID: PMC7774761 DOI: 10.1530/ec-20-0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) represents the most common type of cancer in females worldwide. Endocrine therapy evolved as one of the main concepts in treatment of hormone-receptor positive BC. Current research focuses on the elucidation of tumour resistance mechanisms against endocrine therapy. In a translational in vitro approach, potential regulatory effects of clinically implemented BC anti-oestrogens on ERα, its coactivators DDX5, DDX17 and other DEADbox proteins as well as on the proliferation markers cyclin D1 and Ki67 were investigated on both the RNA and protein level. BC in vitro models for hormone-receptor positive (MCF-7, T-47D) and hormone-receptor negative cells (BT-20) were subjected to endocrine therapy. Anti-oestrogen-dependent expression regulation of target genes on the transcriptional and translational level was quantified and statistically assessed. Endocrine therapy decreases the expression levels of Ki67, cyclin D1 and ERα in hormone-receptor positive cells. In the hormone-receptor negative cells, the three parameters remained stable after endocrine therapy. Endoxifen triggers a downregulation of DDX5 and DDX23 in MCF-7 cells. Fulvestrant treatment downregulates the expression levels of all investigated DEADbox proteins in MCF-7 cells. In T-47D cells, endoxifen and fulvestrant lead to a decrease of all target gene expression levels. Interestingly, endocrine therapy affects DEADbox RNA expression levels in BT-20 cells, too. However, this result could only be confirmed for DDX1, immunocytologically. The investigated DEADbox proteins appear to correlate with the oestrogen-dependent tumourigenesis in hormone-receptor positive BC and show expression alterations after endocrine treatment.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Correspondence should be addressed to J Asberger:
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jaeger
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| |
Collapse
|
7
|
Jin Y, Shi J, Wang H, Lu J, Chen C, Yu Y, Wang Y, Yang Y, Ren D, Zeng Q, Ni X, Guo Y. MYC-associated protein X binding with the variant rs72780850 in RNA helicase DEAD box 1 for susceptibility to neuroblastoma. SCIENCE CHINA-LIFE SCIENCES 2020; 64:991-999. [PMID: 32915406 DOI: 10.1007/s11427-020-1784-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022]
Abstract
Neuroblastoma (NB) is one of the most common malignant tumors in children, with variable clinical behaviors and a 15% death rate of all malignancies in childhood. However, genetic susceptibility to sporadic NB in Han Chinese patients is largely unknown. To identify genetic risk factors for NB, we performed an association study on 357 NB patients and 738 control subjects among Han Chinese children. We focused on DEAD box 1 (DDX1), a putative RNA helicase, which is involved in NB carcinogenesis. The potential association of DDX1 polymorphisms with NB has not been discovered. Our results demonstrate that rs72780850 (NM_004939.2:c.-1555T>C) located in the DDX1 promoter region is significantly associated with higher expression of DDX1 transcript and increased NB risk (odds ratio=1.64, 95% confidence interval=1.03%-2.60%, P=0.004), especially in aggressive NB compared with ganglioneuroma and ganglioneuroblastoma in a dominant model (TC+CC vs. TT). Furthermore, the MYC-associated protein X (MAX) transcription factor showed stronger binding affinity to the DDX1 rs 72780850 CC allele compared with the TT allele, explaining the molecular mechanism of the increased NB risk caused by the rs72780850 polymorphism. Our results highlight the involvement of regulatory genetic variants of DDX1 in NB.
Collapse
Affiliation(s)
- Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jin Shi
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chenghao Chen
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yaru Wang
- Department of Allergy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qi Zeng
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China. .,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
8
|
Low Expression of DDX60 Gene Might Associate with the Radiosensitivity for Patients with Breast Cancer. JOURNAL OF ONCOLOGY 2020; 2020:8309492. [PMID: 32765606 PMCID: PMC7387961 DOI: 10.1155/2020/8309492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
DEXD/H box helicase 60 (DDX60) is a new type of DEAD-box RNA helicase, which is induced to express after virus infection. It might involve in antiviral immunity by promoting RIG-I-like receptor-mediated signal transduction. In addition, previous studies had shown that the expression of DDX60 is related to cancer, but there was still a lack of relevant research in breast cancer. In this study, we used the information of patients with breast cancer in the TCGA database for statistical analysis and found that the breast cancer patients with low expression of DDX60 exhibited radiosensitivity. Comparing the radiotherapy groups with the nonradiotherapy groups, for patients with low expression of DDX60, the adjusted hazard ratio (HR) values for radiotherapy were 0.244 (0.064–0.921) and 0.199 (0.062–0.646) in the training and validation datasets, with the p values 0.040 and 0.007, respectively. However, for patients with high expression of DDX60, the adjusted hazard ratio (HR) values were 3.582 (0.627–20.467) and 2.421 (0.460–12.773), with the p values 0.054 and 0.297, respectively. These results suggested that the expression of DDX60 might strongly associate with individualized radiosensitivity in patients with breast cancer.
Collapse
|
9
|
Hou S, Hao Q, Zhu Z, Xu D, Liu W, Lyu L, Li P. Unraveling proteome changes and potential regulatory proteins of bovine follicular Granulosa cells by mass spectrometry and multi-omics analysis. Proteome Sci 2019; 17:4. [PMID: 31673248 PMCID: PMC6815045 DOI: 10.1186/s12953-019-0152-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background In previous study, we performed next-gene sequencing to investigate the differentially expressed transcripts of bovine follicular granulosa cells (GCs) at dominant follicle (DF) and subordinate follicle (SF) stages during first follicular wave. Present study is designed to further identify the key regulatory proteins and signaling pathways associated with follicular development using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) and multi-omics data analysis approach. Methods DF and SF from three cattle were collected by daily ultrasonography. The GCs were isolated from each follicle, total proteins were digested by trypsin, and then proteomic analyzed via LC-MS/MS, respectively. Proteins identified were retrieved from Uniprot-COW fasta database, and differentially expressed proteins were used to functional enrichment and KEGG pathway analysis. Proteome data and transcriptome data obtained from previous studies were integrated. Results Total 3409 proteins were identified from 30,321 peptides (FDR ≤0.01) obtained from LC-MS/MS analysis and 259 of them were found to be differentially expressed at different stage of follicular development (fold Change > 2, P < 0.05). KEGG pathway analysis of proteome data revealed important signaling pathways associated with follicular development, multi-omics data analysis results showed 13 proteins were identified as being differentially expressed in DF versus SF. Conclusions This study represents the first investigation of transcriptome and proteome of bovine follicles and offers essential information for future investigation of DF and SF in cattle. It also will enrich the theory of animal follicular development. Electronic supplementary material The online version of this article (10.1186/s12953-019-0152-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuning Hou
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Qingling Hao
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Zhiwei Zhu
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Dongmei Xu
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Wenzhong Liu
- 2College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Lihua Lyu
- 2College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Pengfei Li
- 1College of Life Science, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| |
Collapse
|
10
|
Fu TY, Wu CN, Sie HC, Cheng JT, Lin YS, Liou HH, Tseng YK, Shu CW, Tsai KW, Yen LM, Tseng HW, Tseng CJ, Ger LP, Liu PF. Subsite-specific association of DEAD box RNA helicase DDX60 with the development and prognosis of oral squamous cell carcinoma. Oncotarget 2018; 7:85097-85108. [PMID: 27835882 PMCID: PMC5356722 DOI: 10.18632/oncotarget.13197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/28/2016] [Indexed: 01/05/2023] Open
Abstract
The clinical significance and biological function of DEXD/H box helicase 60 (DDX60) in oral cancer remains unknown. Herein, we evaluated the association of DDX60 expression with tumorigenesis and the prognosis of oral squamous cell carcinoma (OSCC). DDX60 expression was examined by immunohistochemistry on tissue microarray slides of 494 OSCC patients, including 180 buccal mucosal SCC (BMSCC), 241 tongue SCC (TSCC), and 73 lip SCC (LSCC) patients. DDX60 expression was significantly increased in all three subsites of OSCC compared to its expression in tumor adjacent normal tissues. However, its association with tumorigenesis was specific to the oral cavity subsite after the stratification of betel quid chewing, smoking, and drinking. Among OSCC patients, higher levels of DDX60 expression were associated with the male gender, a well-differentiated tumor, advanced stage of disease, and a large tumor size with subsite specific features. LSCC patients with high DDX60 expression levels showed shorter disease-specific survival, particularly those with moderately or poorly differentiated tumors. Additionally, TSCC or OSCC patients with high DDX60 expression showed a poor disease-free survival (DFS), particularly those with moderately or poorly differentiated tumors. Therefore, DDX60 is a novel and unfavorable biomarker for tumorigenesis and prognosis of OSCC in a subsite-specific manner.
Collapse
Affiliation(s)
- Ting-Ying Fu
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chao-Nan Wu
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Huei-Cin Sie
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yaoh-Shiang Lin
- Department of Otorhinolaryngology-Head & Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Kai Tseng
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Chemical Biology, National Pingtung University of Education, Pingtung, Taiwan
| | - Leing-Ming Yen
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hui-Wen Tseng
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Wang M, Zhang G, Wang Y, Ma R, Zhang L, Lv H, Fang F, Kang X. DHX32 expression is an indicator of poor breast cancer prognosis. Oncol Lett 2016; 13:942-948. [PMID: 28356982 DOI: 10.3892/ol.2016.5503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that DEAH-box polypeptide 32 (DHX32) serves an important role in the progression and metastasis of cancer. However, the role of DHX32 in breast cancer remains to be completely elucidated. The aim of the present study was to evaluate the expression and clinical significance of DHX32 in breast cancer. The reverse transcription-quantitative polymerase chain reaction was performed to analyze DHX32 messenger (m)RNA expression, and western blotting and immunohistochemistry were performed to examine DHX32 protein expression in breast cancer and adjacent non-cancerous tissues. The association in breast cancer between DHX32 expression, clinicopathological features and prognosis was analyzed using 193 breast cancer tissue samples. The results of the present study demonstrated that breast cancer tissues exhibited increased DHX32 mRNA and protein expression compared with adjacent non-cancerous tissues (P<0.001). In addition, DHX32 expression was significantly associated with breast cancer clinical stage (P=0.006), histological grade (P=0.029), lymph node metastasis (P<0.001) and expression of the proliferation marker Ki-67 (P=0.004). Kaplan-Meier estimator analysis indicated that increased DHX32 expression is associated with poor prognosis in patients with breast cancer. Furthermore, the Cox proportional hazards model indicated that DHX32 expression is an independent prognostic factor for decreased overall survival and disease-free survival in patients with breast cancer. In conclusion, the results of the present study suggest that DHX32 overexpression is an unfavorable prognostic biomarker in breast cancer and a potential therapeutic target of future breast cancer treatments.
Collapse
Affiliation(s)
- Meng Wang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Guojun Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents and Clinical Research, Beijing 100050, P.R. China
| | - Yajie Wang
- Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ruimin Ma
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Limin Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hong Lv
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Fang Fang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xixiong Kang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China; Beijing Engineering Research Center of Immunological Reagents and Clinical Research, Beijing 100050, P.R. China
| |
Collapse
|
12
|
Gai M, Bo Q, Qi L. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer. Biochem Biophys Res Commun 2015; 469:1000-5. [PMID: 26713367 DOI: 10.1016/j.bbrc.2015.12.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022]
Abstract
Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment.
Collapse
Affiliation(s)
- Muhuizi Gai
- Department of Gynaecology and Obstetrics, Dongying People's Hospital, No.317, East City South 1st Road, Dongying, Shandong, 257091, China
| | - Qifang Bo
- Department of Gynaecology and Obstetrics, Dongying People's Hospital, No.317, East City South 1st Road, Dongying, Shandong, 257091, China
| | - Lixia Qi
- Department of Gynaecology and Obstetrics, Dongying People's Hospital, No.317, East City South 1st Road, Dongying, Shandong, 257091, China.
| |
Collapse
|
13
|
Rosner A, Moiseeva E, Rabinowitz C, Rinkevich B. Germ lineage properties in the urochordate Botryllus schlosseri - from markers to temporal niches. Dev Biol 2013; 384:356-74. [PMID: 24120376 DOI: 10.1016/j.ydbio.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 08/25/2013] [Accepted: 10/03/2013] [Indexed: 01/28/2023]
Abstract
The primordial germ cells (PGCs) in the colonial urochordate Botryllus schlosseri are sequestered in late embryonic stage. PGC-like populations, located at any blastogenic stage in specific niches, inside modules with curtailed lifespan, survive throughout the life of the colony by repeated weekly migration to newly formed buds. This cyclical migration and the lack of specific markers for PGC-like populations are obstacles to the study on PGCs. For that purpose, we isolated the Botryllus DDX1 (BS-DDX1) and characterized it by normal expression patterns and by specific siRNA knockdown experiments. Expression of BS-DDX1 concurrent with BS-Vasa, γ-H2AX, BS-cadherin and phospho-Smad1/5/8, demarcate PGC cells from soma cells and from more differentiated germ cells lineages, which enabled the detection of additional putative transient niches in zooids. Employing BS-cadherin siRNA knockdown, retinoic acid (RA) administration or β-estradiol administration affirmed the BS-Vasa(+)BS-DDX1(+)BS-cadherin(+)γ-H2AX(+)phospho-Smad1/5/8(+) population as the B. schlosseri PGC-like cells. By striving to understand the PGC-like cells trafficking between transient niches along blastogenic cycles, CM-DiI-stained PGC-like enriched populations from late blastogenic stage D zooids were injected into genetically matched colonial ramets at blastogenic stages A or C and their fates were observed for 9 days. Based on the accumulated data, we conceived a novel network of several transient and short lived 'germ line niches' that preserve PGCs homeostasis, protecting these cells from the weekly astogenic senescence processes, thus enabling the survival of the PGCs throughout the organism's life.
Collapse
Affiliation(s)
- Amalia Rosner
- National Institute of Oceanography, Israel Oceanography & Limnological Research, Tel Shikmona, P.O. Box 8030, Haifa 31080, Israel.
| | | | | | | |
Collapse
|
14
|
Robert F, Pelletier J. Perturbations of RNA helicases in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:333-49. [PMID: 23658027 DOI: 10.1002/wrna.1163] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helicases are implicated in most stages of the gene expression pathway, ranging from DNA replication, RNA transcription, splicing, RNA transport, ribosome biogenesis, mRNA translation, RNA storage and decay. These enzymes utilize energy derived from nucleotide triphosphate hydrolysis to remodel ribonucleoprotein complexes, RNA, or DNA and in this manner affect the information content or output of RNA. Several RNA helicases have been implicated in the oncogenic process--either through altered expression levels, mutations, or due to their role in pathways required for tumor initiation, progression, maintenance, or chemosensitivity. The purpose of this review is to highlight those RNA helicases for which there is significant evidence implicating them in cancer biology.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
15
|
Tamborero D, Lopez-Bigas N, Gonzalez-Perez A. Oncodrive-CIS: a method to reveal likely driver genes based on the impact of their copy number changes on expression. PLoS One 2013; 8:e55489. [PMID: 23408991 PMCID: PMC3568145 DOI: 10.1371/journal.pone.0055489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/23/2012] [Indexed: 01/04/2023] Open
Abstract
A well-established approach for detecting genes involved in tumorigenesis due to copy number alterations (CNAs) is to assess the recurrence of the alteration across multiple samples. Expression data can be used to filter this list of candidates by assessing whether the gene expression significantly differs between tumors depending on the copy number status. A drawback of this approach is that it may fail to detect low-recurrent drivers. Furthermore, this analysis does not provide information about expression changes for each gene as compared to the whole data set and does not take into consideration the expression of normal samples. Here we describe a novel method (Oncodrive-CIS) aimed at ranking genes according to the expression impact caused by the CNAs. The rationale of Oncodrive-CIS is based on the hypothesis that genes involved in cancer due to copy number changes are more biased towards misregulation than are bystanders. Moreover, to gain insight into the expression changes caused by gene dosage, the expression of samples with CNAs is compared to that of tumor samples with diploid genotype and also to that of normal samples. Oncodrive-CIS demonstrated better performance in detecting putative associations between copy-number and expression in simulated data sets as compared to other methods aimed to this purpose, and picked up genes likely to be related with tumorigenesis when applied to real cancer samples. In summary, Oncodrive-CIS provides a statistical framework to evaluate the in cis effect of CNAs that may be useful to elucidate the role of these aberrations in driving oncogenesis. An implementation of this method and the corresponding user guide are freely available at http://bg.upf.edu/oncodrivecis.
Collapse
Affiliation(s)
- David Tamborero
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Nuria Lopez-Bigas
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (NL-B); (AG-P)
| | - Abel Gonzalez-Perez
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- * E-mail: (NL-B); (AG-P)
| |
Collapse
|
16
|
Abstract
Members of the DEAD box family of RNA helicases are known to be involved in most cellular processes that require manipulation of RNA structure and, in many cases, exhibit other functions in addition to their established ATP-dependent RNA helicase activities. They thus play critical roles in cellular metabolism and in many cases have been implicated in cellular proliferation and/or neoplastic transformation. These proteins generally act as components of multi-protein complexes; therefore their precise role is likely to be influenced by their interacting partners and to be highly context-dependent. This may also provide an explanation for the sometimes conflicting reports suggesting that DEAD box proteins have both pro- and anti-proliferative roles in cancer.
Collapse
Affiliation(s)
- Frances V Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland.
| |
Collapse
|