1
|
Chang J, Li Y, Wang X, Hu S, Wang H, Shi Q, Wang Y, Yang Y. Polyphyllin I suppresses human osteosarcoma growth by inactivation of Wnt/β-catenin pathway in vitro and in vivo. Sci Rep 2017; 7:7605. [PMID: 28790389 PMCID: PMC5548759 DOI: 10.1038/s41598-017-07194-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/27/2017] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and adolescents. In spite of aggressive treatment, osteosarcoma has a high mortality rate with minimal improvements in survival over past few decades. Polyphyllin I (PPI), a component in the traditional Chinese medicinal herb Paris polyphylla Smith, has been shown to have anti-tumor properties. However, its mechanism as an anti-osteosarcoma agent has not been well elucidated. In this study, we found that PPI suppressed osteosarcoma cell viability, arrested cell cycle in G2/M phase, induced apoptosis and inhibited invasion and migration of osteosarcoma cells. Moreover, PPI significantly suppressed intratibial primary tumor growth in xenograft orthotopic mouse model without any obvious side effects. These therapeutic efficacies were associated with inactivation of Wnt/β-catenin pathway, as PPI treatment decreased the amount of p-GSK-3β, leading to down-regulated levels of active β-catenin. PPI induced inhibition of osteosarcoma cell viability was abolished upon addition of GSK-3β specific inhibitor, CHIR99021, while PPI induced inhibition of osteosarcoma cell viability and migration were potentiated by β-catenin silencing. These findings suggested that, in vitro and in vivo, PPI treatment inhibited osteosarcoma, at least in part, via the inactivation of Wnt/β-catenin pathway. Thus, PPI could serve a novel therapeutic option for osteosarcoma patients.
Collapse
Affiliation(s)
- Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Yimian Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Xianyang Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Shaopu Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Hongshen Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China. .,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
2
|
Frazier JP, Beirne E, Ditzler SH, Tretyak I, Casalini JR, Thirstrup DJ, Knoblaugh S, Ward JG, Tripp CD, Klinghoffer RA. Establishment and characterization of a canine soft tissue sarcoma patient-derived xenograft model. Vet Comp Oncol 2016; 15:754-763. [PMID: 26991424 DOI: 10.1111/vco.12215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 11/28/2022]
Abstract
Spontaneously occurring soft tissue sarcoma (STS) is relatively common in canine cancer patients. Because of the similarities to human disease, canine STSs are a valuable and readily available resource for the study of new therapeutics. In this study, a canine patient-derived xenograft (PDX) model, CDX-STS2, was established. The CDX-STS2 model was engrafted and expanded for systemic administration studies with chemotherapeutic agents commonly used to treat STS, including doxorubicin, docetaxel and gemcitabine. Immunohistochemistry for drug-specific biomarkers and tumour growth measurement revealed tumour sensitivity to doxorubicin and docetaxel, whereas gemcitabine had no effect on tumour growth. Although many human PDX tumour models have been established, relatively few canine PDX models have been reported to date. CDX-STS2 represents a new STS PDX research model of canine origin that will be useful in bridging preclinical research with clinical studies of STS in pet dogs.
Collapse
Affiliation(s)
| | - E Beirne
- Presage Biosciences, Seattle, WA, USA
| | | | - I Tretyak
- Presage Biosciences, Seattle, WA, USA
| | | | | | - S Knoblaugh
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - J G Ward
- Specialty VetPath, Shoreline, WA, USA
| | - C D Tripp
- Veterinary Cancer Specialty Care, Lynnwood, WA, USA
| | | |
Collapse
|
4
|
Blattmann C, Thiemann M, Stenzinger A, Roth EK, Dittmar A, Witt H, Lehner B, Renker E, Jugold M, Eichwald V, Weichert W, Huber PE, Kulozik AE. Establishment of a patient-derived orthotopic osteosarcoma mouse model. J Transl Med 2015; 13:136. [PMID: 25926029 PMCID: PMC4428092 DOI: 10.1186/s12967-015-0497-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common pediatric primary malignant bone tumor. As the prognosis for patients following standard treatment did not improve for almost three decades, functional preclinical models that closely reflect important clinical cancer characteristics are urgently needed to develop and evaluate new treatment strategies. The objective of this study was to establish an orthotopic xenotransplanted mouse model using patient-derived tumor tissue. Methods Fresh tumor tissue from an adolescent female patient with osteosarcoma after relapse was surgically xenografted into the right tibia of 6 immunodeficient BALB/c Nu/Nu mice as well as cultured into medium. Tumor growth was serially assessed by palpation and with magnetic resonance imaging (MRI). In parallel, a primary cell line of the same tumor was established. Histology and high-resolution array-based comparative genomic hybridization (aCGH) were used to investigate both phenotypic and genotypic characteristics of different passages of human xenografts and the cell line compared to the tissue of origin. Results A primary OS cell line and a primary patient-derived orthotopic xenotranplanted mouse model were established. MRI analyses and histopathology demonstrated an identical architecture in the primary tumor and in the xenografts. Array-CGH analyses of the cell line and all xenografts showed highly comparable patterns of genomic progression. So far, three further primary patient-derived orthotopic xenotranplanted mouse models could be established. Conclusion We report the first orthotopic OS mouse model generated by transplantation of tumor fragments directly harvested from the patient. This model represents the morphologic and genomic identity of the primary tumor and provides a preclinical platform to evaluate new treatment strategies in OS.
Collapse
Affiliation(s)
- Claudia Blattmann
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,Division of Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Markus Thiemann
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,Division of Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | - Eva K Roth
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,Division of Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Anne Dittmar
- Department of Radiotherapy and Radiooncology, University of Heidelberg, Heidelberg, Germany. .,Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | - Hendrik Witt
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Burkhard Lehner
- Department of Orthopedics, University of Heidelberg, Heidelberg, Germany.
| | - Eva Renker
- Department of Orthopedics, University of Heidelberg, Heidelberg, Germany.
| | - Manfred Jugold
- Core Facility, Small Animal Imaging Center, DKFZ, Heidelberg, Germany.
| | - Viktoria Eichwald
- Core Facility, Small Animal Imaging Center, DKFZ, Heidelberg, Germany.
| | - Wilko Weichert
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| | - Peter E Huber
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|