1
|
Fasala A, Carr M, Surjan Y, Daghigh P, de Leon J, Burns A, Batumalai V. Intrafraction motion and impact of margin reduction for MR-Linac online adaptive radiotherapy for pancreatic cancer treatments. J Med Radiat Sci 2024. [PMID: 39397350 DOI: 10.1002/jmrs.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Online adaptive radiotherapy is well suited for stereotactic ablative radiotherapy (SABR) in pancreatic cancer due to considerable intrafractional tumour motion. This study aimed to assess intrafraction motion and generate adjusted planning target volume (PTV) margins required for online adaptive radiotherapy in pancreatic cancer treatment using abdominal compression on the magnetic resonance linear accelerator (MR-Linac). METHODS Motion monitoring images obtained from 67 fractions for 15 previously treated pancreatic cancer patients were analysed. All patients received SABR (50 Gy in five fractions) on the MR-Linac using abdominal compression. The analysis included quantification of intrafraction motion, leading to the development of adjusted PTV margins. The dosimetric impact of implementing the adjusted PTV was then evaluated in a cohort of 20 patients. RESULTS Intrafraction motion indicated an average target displacement of 1-3 mm, resulting in an adjusted PTV margin of 2 mm in the right-left and superior-inferior directions, and 3 mm in the anterior-posterior direction. Plans incorporating these adjusted margins consistently demonstrated improved dose to target volumes, with improvements averaging 1.5 Gy in CTV D99%, 4.9 Gy in PTV D99% and 1.2 Gy in PTV-high D90%, and better sparing of the organs at risk (OAR). CONCLUSIONS The improved target volume coverage and reduced OAR dose suggest potential for reducing current clinical margins for MR-Linac treatment. However, it is important to note that decreasing margins may reduce safeguards against geographical misses. Nonetheless, the continued integration of gating systems on MR-Linacs could provide confidence in adopting reduced margins.
Collapse
Affiliation(s)
- Ashleigh Fasala
- GenesisCare, Sydney, New South Wales, Australia
- College of Health, Medicine and Wellbeing, School of Health Sciences, Global Centre for Research and Training in Radiation Oncology, The University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Yolanda Surjan
- College of Health, Medicine and Wellbeing, School of Health Sciences, Global Centre for Research and Training in Radiation Oncology, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Parmoun Daghigh
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | | | - Abbey Burns
- GenesisCare, Sydney, New South Wales, Australia
| | - Vikneswary Batumalai
- GenesisCare, Sydney, New South Wales, Australia
- The George Institute for Global Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Kaur J, Kaur P. A systematic literature analysis of multi-organ cancer diagnosis using deep learning techniques. Comput Biol Med 2024; 179:108910. [PMID: 39032244 DOI: 10.1016/j.compbiomed.2024.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Cancer is becoming the most toxic ailment identified among individuals worldwide. The mortality rate has been increasing rapidly every year, which causes progression in the various diagnostic technologies to handle this illness. The manual procedure for segmentation and classification with a large set of data modalities can be a challenging task. Therefore, a crucial requirement is to significantly develop the computer-assisted diagnostic system intended for the initial cancer identification. This article offers a systematic review of Deep Learning approaches using various image modalities to detect multi-organ cancers from 2012 to 2023. It emphasizes the detection of five supreme predominant tumors, i.e., breast, brain, lung, skin, and liver. Extensive review has been carried out by collecting research and conference articles and book chapters from reputed international databases, i.e., Springer Link, IEEE Xplore, Science Direct, PubMed, and Wiley that fulfill the criteria for quality evaluation. This systematic review summarizes the overview of convolutional neural network model architectures and datasets used for identifying and classifying the diverse categories of cancer. This study accomplishes an inclusive idea of ensemble deep learning models that have achieved better evaluation results for classifying the different images into cancer or healthy cases. This paper will provide a broad understanding to the research scientists within the domain of medical imaging procedures of which deep learning technique perform best over which type of dataset, extraction of features, different confrontations, and their anticipated solutions for the complex problems. Lastly, some challenges and issues which control the health emergency have been discussed.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Prabhpreet Kaur
- Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
3
|
Liu IC, Hrinivich WT, Lee JN, Narang AK, Meyer J. Characterizing Compromised Target Coverage With Hypofractionated Radiation Therapy for Pancreatic Cancer. Cureus 2024; 16:e66882. [PMID: 39280556 PMCID: PMC11398855 DOI: 10.7759/cureus.66882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Proximity of organs at risk (OAR) hinders radiation dose escalation for the treatment of pancreatic cancer. To address this limitation, there is interest in protracted-fractionation (PF: 15 to 25 fractions) courses employing moderate hypofractionation (MHF: 3-4 Gy/fraction). However, there persists underdosing where tumor interfaces with OAR. The significance of compromised tumor coverage and dose heterogeneity on tumor control remains unknown. Here, we report our initial planning experience with PF-MHF in pancreatic cancer. Methods We retrospectively reviewed radiation courses for locally advanced or recurrent pancreatic cancer with a PF-MHF approach: 45 Gy in 25 fractions (1.8 Gy/fraction) to PTV with 75 Gy (3 Gy/fraction) as an integrated boost to the GTV. We reviewed dosimetric parameters for the GTV: percentage overlap with planning OAR volume (PRV-GTV overlap), D99.9%, D0.1cc, Dmean, V75Gy, and V60Gy. We also calculated the GTV's generalized equivalent uniform dose (gEUD) value using two different a values (-5 and -15). Lastly, we reoptimized two plans with two approaches: increasing gEUD or relaxing the maximum dose constraint. Results A total of 26 plans were included in our analysis: 14 locally advanced and 12 locally recurrent pancreatic cancer cases. While the D0.1cc median value was 81.7 Gy, target volume coverage was relatively low (V75Gy median 71%). Median gEUD were 71 Gy (a = -5) and 62.8 Gy (a = -15) and inversely correlated with PRV-GTV overlap. On reoptimized plans, both approaches yielded similar results, but an increase in target coverage and gEUD were seen only when there was limited PRV-GTV overlap. Conclusion Although radiation dose can be escalated within the GTV, there continues to be low coverage by the prescription dose, especially with high PRV-GTV overlap. Relaxing the maximum dose constraint in planning allows for meaningful improvement in tumor coverage in limited PRV overlap scenarios. Continued refinement of the PF-MHF approach is needed.
Collapse
Affiliation(s)
- I-Chia Liu
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - William T Hrinivich
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ji N Lee
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Amol K Narang
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeffrey Meyer
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
4
|
Liang J, Wen T, Zhang X, Luo X. Chlorogenic Acid as a Potential Therapeutic Agent for Cholangiocarcinoma. Pharmaceuticals (Basel) 2024; 17:794. [PMID: 38931461 PMCID: PMC11206998 DOI: 10.3390/ph17060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Chlorogenic acid (CGA) has demonstrated anti-tumor effects across various cancers, but its role in cholangiocarcinoma (CCA) remains unclear. Our study revealed CGA's potent anti-tumor effects on CCA, significantly suppressing cell proliferation, migration, colony formation, and invasion while inhibiting the epithelial-mesenchymal transition. CGA induced apoptosis, modulated cell cycle progression, and exhibited a stable binding affinity to AKR1B10 in CCA. AKR1B10 was highly expressed in RBE cells, and CGA treatment reduced AKR1B10 expression. Knocking out AKR1B10 inhibited the proliferation of RBE cells, whereas the overexpression of AKR1B10 promoted their proliferation. Additionally, CGA suppressed the proliferation of RBE cells with AKR1B10 overexpression. Mechanistically, AKR1B10 activated AKT, and CGA exerted its inhibitory effect by reducing AKR1B10 levels, thereby suppressing AKT activation. Furthermore, CGA facilitated the polarization of tumor-associated macrophages towards an anti-tumor phenotype and enhanced T-cell cytotoxicity. These findings underscore CGA's potential as a promising therapeutic agent for CCA treatment.
Collapse
Affiliation(s)
- Jiabao Liang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (J.L.)
| | - Tong Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (J.L.)
| | - Xiaojian Zhang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (J.L.)
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
5
|
Bonù ML, Nicosia L, Turkaj A, Pastorello E, Vitali P, Frassine F, Toraci C, Spiazzi L, Lechiara M, Frittoli B, Grazioli L, Ghirardelli P, Costantino G, Barbera F, Borghetti P, Triggiani L, Portolani N, Buglione M, Dionisi F, Giacomelli I, Lancia A, Magrini SM, Tomasini D. High dose proton and photon-based radiation therapy for 213 liver lesions: a multi-institutional dosimetric comparison with a clinical perspective. LA RADIOLOGIA MEDICA 2024; 129:497-506. [PMID: 38345714 PMCID: PMC10942931 DOI: 10.1007/s11547-024-01788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/15/2024] [Indexed: 03/16/2024]
Abstract
BACKGROUND Stereotactic radiotherapy (SRT) and Proton therapy (PT) are both options in the management of liver lesions. Limited clinical-dosimetric comparison are available. Moreover, dose-constraint routinely used in liver PT and SRT considers only the liver spared, while optimization strategies to limit the liver damaged are poorly reported. METHODS Primary endpoint was to assess and compare liver sparing of four contemporary RT techniques. Secondary endpoints were freedom from local recurrence (FFLR), overall survival (OS), acute and late toxicity. We hypothesize that Focal Liver Reaction (FLR) is determined by a similar biologic dose. FLR was delineated on follow-up MRI. Mean C.I. was computed for all the schedules used. A so-called Fall-off Volume (FOV) was defined as the area of healthy liver (liver-PTV) receiving more than the isotoxic dose. Fall-off Volume Ratio (FOVR) was defined as ratio between FOV and PTV. RESULTS 213 lesions were identified. Mean best fitting isodose (isotoxic doses) for FLR were 18Gy, 21.5 Gy and 28.5 Gy for 3, 5 and 15 fractions. Among photons, an advantage in terms of healthy liver sparing was found for Vmat FFF with 5mm jaws (p = 0.013) and Cyberknife (p = 0.03). FOV and FOVR resulted lower for PT (p < 0.001). Three years FFLR resulted 83%. Classic Radiation induced liver disease (RILD, any grade) affected 2 patients. CONCLUSIONS Cyberknife and V-MAT FFF with 5mm jaws spare more liver than V-MAT FF with 10 mm jaws. PT spare more liver compared to photons. FOV and FOVR allows a quantitative analysis of healthy tissue sparing performance showing also the quality of plan in terms of dose fall-off.
Collapse
Affiliation(s)
- Marco Lorenzo Bonù
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy.
| | - Luca Nicosia
- Department of Radiation Oncology, Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | | | - Edoardo Pastorello
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Paola Vitali
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Francesco Frassine
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Cristian Toraci
- Department of Medical Physics, Spedali Civili di Brescia, Brescia, Italy
| | - Luigi Spiazzi
- Department of Medical Physics, Spedali Civili di Brescia, Brescia, Italy
| | - Marco Lechiara
- Department of Radiology, Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Frittoli
- Department of Radiology, Spedali Civili di Brescia, Brescia, Italy
| | - Luigi Grazioli
- Department of Radiology, Spedali Civili di Brescia, Brescia, Italy
| | - Paolo Ghirardelli
- Department of Radiation Oncology, Humanitas Gavazzeni Hospital, Bergamo, Italy
| | - Gianluca Costantino
- Department of Radiation Oncology, Humanitas Gavazzeni Hospital, Bergamo, Italy
| | - Fernando Barbera
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Paolo Borghetti
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | | | - Michela Buglione
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | | | | | - Andrea Lancia
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Davide Tomasini
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| |
Collapse
|
6
|
Abualnil AY, Kumar R, George MA, Lalos A, Shah MM, Deek MP, Jabbour SK. Role of Stereotactic Body Radiation Therapy in Hepatocellular Carcinoma. Surg Oncol Clin N Am 2024; 33:173-195. [PMID: 37945142 DOI: 10.1016/j.soc.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Hepatocellular carcinoma (HCC)is a common type of liver cancer with a poor prognosis, especially in patients with advanced stages or underlying liver disease. While surgical resection, liver transplantation, and ablation therapies have traditionally been the mainstay of treatment for HCC, radiation therapy has become increasingly recognized as an effective alternative, particularly for those who are not surgical candidates. Stereotactic Body Radiation Therapy (SBRT) is a highly precise form of radiation therapy that delivers very high doses of radiation to the tumor while sparing surrounding healthy tissue. Several studies have reported favorable outcomes with SBRT in HCC treatment. Moreover, SBRT can be used to treat recurrent HCC after prior treatment, offering a potentially curative approach in select cases. While SBRT has demonstrated its efficacy and safety in treating HCC, future studies are needed to further investigate the potential role of SBRT in combination with other treatments for HCC.
Collapse
Affiliation(s)
- Aseel Y Abualnil
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mridula A George
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alexander Lalos
- Division of Gasteroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mihir M Shah
- Division of Surgical Oncology, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30342, USA
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
7
|
Knäusl B, Belotti G, Bertholet J, Daartz J, Flampouri S, Hoogeman M, Knopf AC, Lin H, Moerman A, Paganelli C, Rucinski A, Schulte R, Shimizu S, Stützer K, Zhang X, Zhang Y, Czerska K. A review of the clinical introduction of 4D particle therapy research concepts. Phys Imaging Radiat Oncol 2024; 29:100535. [PMID: 38298885 PMCID: PMC10828898 DOI: 10.1016/j.phro.2024.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mischa Hoogeman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Antje C Knopf
- Institut für Medizintechnik und Medizininformatik Hochschule für Life Sciences FHNW, Muttenz, Switzerland
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | - Astrid Moerman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University
| | - Shing Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Katarzyna Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
8
|
Chami P, Diab Y, Khalil DN, Azhari H, Jarnagin WR, Abou-Alfa GK, Harding JJ, Hajj J, Ma J, El Homsi M, Reyngold M, Crane C, Hajj C. Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16773. [PMID: 38069095 PMCID: PMC10706661 DOI: 10.3390/ijms242316773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The liver tumor immune microenvironment has been thought to possess a critical role in the development and progression of hepatocellular carcinoma (HCC). Despite the approval of immune checkpoint inhibitors (ICIs), such as programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) inhibitors, for several types of cancers, including HCC, liver metastases have shown evidence of resistance or poor response to immunotherapies. Radiation therapy (RT) has displayed evidence of immunosuppressive effects through the upregulation of immune checkpoint molecules post-treatment. However, it was revealed that the limitations of ICIs can be overcome through the use of RT, as it can reshape the liver immune microenvironment. Moreover, ICIs are able to overcome the RT-induced inhibitory signals, effectively restoring anti-tumor activity. Owing to the synergetic effect believed to arise from the combination of ICIs with RT, several clinical trials are currently ongoing to assess the efficacy and safety of this treatment for patients with HCC.
Collapse
Affiliation(s)
- Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Youssef Diab
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Danny N. Khalil
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Hassan Azhari
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - William R. Jarnagin
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Surgery, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - James J. Harding
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Jennifer Ma
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Maria El Homsi
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Marsha Reyngold
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | | | - Carla Hajj
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- New York Proton Center, New York, NY 10035, USA
| |
Collapse
|
9
|
Koay EJ, Javle M, Belknap M, Derasari S, Roach M, Ludmir EB. What Role Does Radiotherapy Play in the Molecular Era for Intrahepatic Cholangiocarcinoma? Cancer J 2023; 29:272-278. [PMID: 37796645 DOI: 10.1097/ppo.0000000000000685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
ABSTRACT Intrahepatic cholangiocarcinoma is a rare disease, yet with rising incidence globally. Most patients are not eligible for potentially curative surgical resection, and many patients with unresectable disease die within 12 months of diagnosis, primarily due to liver failure from the primary tumor. Recent prospective and retrospective studies indicate that local control of the primary tumor can be achieved with hypofractionated radiotherapy in patients with unresectable disease, translating into prolonged survival of these patients. During the time that these encouraging reports for radiotherapy have been published, numerous concurrent studies have also shown that intrahepatic cholangiocarcinoma is a molecularly diverse disease with multiple targetable genetic alterations and a complex tumor microenvironment. These biological insights have translated into new drug approvals for subsets of patients. We review the current knowledge about the biology and targeted treatment of intrahepatic cholangiocarcinoma and describe these developments in the context of modern radiotherapy.
Collapse
Affiliation(s)
- Eugene J Koay
- From the University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | |
Collapse
|
10
|
De B, Upadhyay R, Liao K, Kumala T, Shi C, Dodoo G, Abi Jaoude J, Corrigan KL, Manzar GS, Marqueen KE, Bernard V, Lee SS, Raghav KPS, Vauthey JN, Tzeng CWD, Tran Cao HS, Lee G, Wo JY, Hong TS, Crane CH, Minsky BD, Smith GL, Holliday EB, Taniguchi CM, Koong AC, Das P, Javle M, Ludmir EB, Koay EJ. Definitive Liver Radiotherapy for Intrahepatic Cholangiocarcinoma with Extrahepatic Metastases. Liver Cancer 2023; 12:198-208. [PMID: 37593365 PMCID: PMC10427952 DOI: 10.1159/000530134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/06/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Tumor-related liver failure (TRLF) is the most common cause of death in patients with intrahepatic cholangiocarcinoma (ICC). Though we previously showed that liver radiotherapy (L-RT) for locally advanced ICC is associated with less frequent TRLF and longer overall survival (OS), the role of L-RT for patients with extrahepatic metastatic disease (M1) remains undefined. We sought to compare outcomes for M1 ICC patients treated with and without L-RT. Methods We reviewed ICC patients that found to have M1 disease at initial diagnosis at a single institution between 2010 and 2021 who received L-RT, matching them with an institutional cohort by propensity score and a National Cancer Database (NCDB) cohort by frequency technique. The median biologically effective dose was 97.5 Gy (interquartile range 80.5-97.9 Gy) for L-RT. Patients treated with other local therapies or supportive care alone were excluded. We analyzed survival with Cox proportional hazard modeling. Results We identified 61 patients who received L-RT and 220 who received chemotherapy alone. At median follow-up of 11 months after diagnosis, median OS was 9 months (95% confidence interval [CI] 8-11) and 21 months (CI: 17-26) for patients receiving chemotherapy alone and L-RT, respectively. TRLF was the cause of death more often in the patients who received chemotherapy alone compared to those who received L-RT (82% vs. 47%; p = 0.001). On multivariable propensity score-matched analysis, associations with lower risk of death included duration of upfront chemotherapy (hazard ratio [HR] 0.82; p = 0.005) and receipt of L-RT (HR: 0.40; p = 0.002). The median OS from diagnosis for NCDB chemotherapy alone cohort was shorter than that of the institutional L-RT cohort (9 vs. 22 months; p < 0.001). Conclusion For M1 ICC, L-RT associated with a lower rate of death due to TRLF and longer OS versus those treated with chemotherapy alone. Prospective studies of L-RT in this setting are warranted.
Collapse
Affiliation(s)
- Brian De
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rituraj Upadhyay
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kaiping Liao
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tiffany Kumala
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Shi
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace Dodoo
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph Abi Jaoude
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelsey L Corrigan
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gohar S Manzar
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn E Marqueen
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent Bernard
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanwal P S Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hop S Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace Lee
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bruce D Minsky
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace L Smith
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emma B Holliday
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cullen M Taniguchi
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert C Koong
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prajnan Das
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Milind Javle
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ethan B Ludmir
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J Koay
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Chami P, Jarnagin W, Abou-Alfa GK, Harding J, Kim N, Lin H, El Homsi M, Crane C, Hajj C. Non-Surgical Locoregional Therapies Alone or in Combination with Systemic Therapy in Patients with Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:1748. [PMID: 36980634 PMCID: PMC10046599 DOI: 10.3390/cancers15061748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, representing the third-leading cause of cancer-related deaths worldwide. Curative intent treatment options for patients with HCC include liver transplantation, resection and ablation of small lesions. Other potentially curative therapies include cryoablation, microwave ablation and percutaneous alcohol injection. For locally advanced disease, different arterially directed therapies including transarterial chemoembolization and selective internal radiation therapy, plus external beam radiation including three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, stereotactic body radiation therapy and proton beam therapy, are available or studied. Systemic therapies based on checkpoint inhibitors and tyrosine kinase inhibitors are available for the management of metastatic HCC and sometimes for locally advanced disease. Combinations of locoregional therapies with systemic drugs are currently the subject of several clinical trials.
Collapse
Affiliation(s)
- Perla Chami
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107, Lebanon
| | - William Jarnagin
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Surgery, Weill Medical College at Cornell University, New York, NY 10021, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, NY 10021, USA
| | - James Harding
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, NY 10021, USA
| | - Neal Kim
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA
| | - Maria El Homsi
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | | | - Carla Hajj
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- New York Proton Center, New York, NY 10035, USA
| |
Collapse
|
12
|
Hajj C, Crane CH. HCC: We Prefer Fractionation Versus Dose Reduction. Int J Radiat Oncol Biol Phys 2023; 115:277. [PMID: 36621228 DOI: 10.1016/j.ijrobp.2022.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Carla Hajj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
13
|
Zaki P, Chuong MD, Schaub SK, Lo SS, Ibrahim M, Apisarnthanarax S. Proton Beam Therapy and Photon-Based Magnetic Resonance Image-Guided Radiation Therapy: The Next Frontiers of Radiation Therapy for Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231206335. [PMID: 37908130 PMCID: PMC10621304 DOI: 10.1177/15330338231206335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
External beam radiation therapy (EBRT) has increasingly been utilized in the treatment of hepatocellular carcinoma (HCC) due to technological advances with positive clinical outcomes. Innovations in EBRT include improved image guidance, motion management, treatment planning, and highly conformal techniques such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT). Moreover, proton beam therapy (PBT) and magnetic resonance image-guided radiation therapy (MRgRT) have expanded the capabilities of EBRT. PBT offers the advantage of minimizing low- and moderate-dose radiation to the surrounding normal tissue, thereby preserving uninvolved liver and allowing for dose escalation. MRgRT provides the advantage of improved soft tissue delineation compared to computerized tomography (CT) guidance. Additionally, MRgRT with online adaptive therapy is particularly useful for addressing motion not otherwise managed and reducing high-dose radiation to the normal tissue such as the stomach and bowel. PBT and online adaptive MRgRT are emerging technological advancements in EBRT that may provide a significant clinical benefit for patients with HCC.
Collapse
Affiliation(s)
- Peter Zaki
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, USA
| | - Stephanie K. Schaub
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Mariam Ibrahim
- School of Medicine, St. George's University, St. George's, Grenada
| | | |
Collapse
|
14
|
Li H, Ger R, Narang AK, Chen H, Meyer J. Challenges and opportunities in stereotactic body proton radiotherapy of liver malignancies. JOURNAL OF RADIOSURGERY AND SBRT 2023; 9:83-90. [PMID: 38029013 PMCID: PMC10681149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023]
Abstract
Stereotactic body proton radiotherapy (SBPT) has the potential to be an effective tool for treating liver malignancies. While proton therapy enables near-zero exit dose and could improve normal tissue sparing, including liver and other surrounding structures, there are challenges in implementing the SBPT technique for proton therapy, including respiratory motion, range uncertainties, dose regimen, treatment planning, and image guidance. This article summarizes the technical and clinical challenges facing SBPT, along with the potential benefits of SBPT for liver malignancies. The clinical implementation of the technique is also described for the first six patients treated at the Johns Hopkins Proton Therapy Center using liver SBPT.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rachel Ger
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Amol Kumar Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Hao Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey Meyer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Wu D, Xu N, Xie Y, Shen Y, Fu Y, Liu L, Chi Z, Lu R, Xiang R, Wen Y, Yang J, Jiang H. Noninvasive optoacoustic imaging of breast tumor microvasculature in response to radiotherapy. Front Physiol 2022; 13:1044308. [PMID: 36324309 PMCID: PMC9618817 DOI: 10.3389/fphys.2022.1044308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Detailed insight into the radiation-induced changes in tumor microvasculature is crucial to maximize the efficacy of radiotherapy against breast cancer. Recent advances in imaging have enabled precise targeting of solid lesions. However, intratumoral heterogeneity makes treatment planning and monitoring more challenging. Conventional imaging cannot provide high-resolution observation and longitudinal monitoring of large-scale microvascular in response to radiotherapy directly in deep tissues. Herein, we report on an emerging non-invasive imaging assessment method of morphological and functional tumor microvasculature responses with high spatio-temporal resolution by means of optoacoustic imaging (OAI). In vivo imaging of 4T1 breast tumor response to a conventional fractionated radiotherapy at varying dose (14 × 2 Gy and 3 × 8 Gy) has been performed after 2 weeks following treatment. Remarkably, optoacoustic images can generate richful contrast for the tumor microvascular architecture. Besides, the functional status of tumor microvasculature and tumor oxygenation levels were further estimated using OAI. The results revealed the differential (size-dependent) nature of vascular responses to radiation treatments at varying doses. The vessels exhibited an decrease in their density accompanied by a decline in the number of vascular segments following irradiation, compared to the control group. The measurements further revealed an increase of tumor oxygenation levels for 14 × 2 Gy and 3 × 8 Gy irradiations. Our results suggest that OAI could be used to assess the response to radiotherapy based on changes in the functional and morphological status of tumor microvasculature, which are closely linked to the intratumor microenvironment. OAI assessment of the tumor microenvironment such as oxygenation status has the potential to be applied to precise radiotherapy strategy.
Collapse
Affiliation(s)
- Dan Wu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- *Correspondence: Dan Wu, ; Jun Yang, ; Huabei Jiang,
| | - Nan Xu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yonghua Xie
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yang Shen
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yunlu Fu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Liang Liu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zihui Chi
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Runyu Lu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Renjie Xiang
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yanting Wen
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Ultrasonic Department, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
- *Correspondence: Dan Wu, ; Jun Yang, ; Huabei Jiang,
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
- *Correspondence: Dan Wu, ; Jun Yang, ; Huabei Jiang,
| |
Collapse
|
16
|
Outcomes and Toxicities of Modern Combined Modality Therapy with Atezolizumab Plus Bevacizumab and Radiation Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14081901. [PMID: 35454808 PMCID: PMC9032898 DOI: 10.3390/cancers14081901] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Atezolizumab plus bevacizumab has become frontline therapy for unresectable HCC. The compatibility of atezolizumab/bevacizumab with liver-directed RT has not been reported. Methods: HCC patients treated with liver-directed RT and atezolizumab/bevacizumab between 1/2020−11/2021 were included. Toxicity and outcomes were retrospectively recorded. For ALCs, we matched the analysis to a previously cohort of RT-treated HCC patients who did not receive atezolizumab/bevacizumab. Survival and time-to-liver-failure were analyzed using Kaplan−Meier. Results: Of 21 patients, with a median follow-up of 9.5 months, the median OS was 16.1 months. Post-RT, all patients had reduced tumors or treatment response. There were no ≥Grade 3 RT-related toxicities. Autoimmune complications occurred in two patients (9.5%), and GI bleeding in three patients (14.3%). Liver function remained stable post-RT. There was a marked decrease in ALCs immediately post-RT (post-RT/pre-RT ratio 47.3%, p < 0.0001), restored by 1 month to pre-treatment baseline (1-month post-RT/pre-RT ratio 95.1%, n.s.). Compared to HCC patients treated with RT alone, post-RT ALC recovery was faster with atezolizumab/bevacizumab (p = 0.009). Conclusion: In this first reported experience of RT with modern systemic therapy for HCC, combination therapy is safe and well-tolerated. As a favorable prognosticator, there appears to be faster recovery of ALC among patients who received RT with atezolizumab/bevacizumab.
Collapse
|
17
|
Swamy K. Stereotactic Body Radiotherapy Immunological Planning-A Review With a Proposed Theoretical Model. Front Oncol 2022; 12:729250. [PMID: 35155221 PMCID: PMC8826062 DOI: 10.3389/fonc.2022.729250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022] Open
Abstract
In the stereotactic body radiotherapy (SBRT) and immunotherapy era, we are moving toward an “immunological radiation plan”, i.e., radiation scheduling with abscopal effect as a vital endpoint as well. The literature review of part A enumerates the advantages of the intermediate dose of SBRT 6–10 Gy per fraction, appropriate use of dose painting, proper timing with immunotherapy, and the potential of immunoadjuvants to maximize cell kill in the irradiated lesions, found to have improved the abscopal effects. Part B summarizes part A, primarily the findings of animal trials, forming the basis of the tenets of the proposed model given in part C to realize the true abscopal potential of the SBRT tumor cell kill of the index lesions. Part C proposes a theoretical model highlighting tumor vasculature integrity as the central theme for converting “abscopal effect by chance” to “abscopal effect by design” using a harmonized combinatorial approach. The proposed model principally deals with the use of SBRT in strategizing increased cell kill in irradiated index tumors along with immunomodulators as a basis for improving the consistency of the abscopal effect. Included is the possible role of integrating immunotherapy just after SBRT, “cyclical” antiangiogenics, and immunoadjuvants/immune metabolites as abscopal effect enhancers of SBRT tumor cell kill. The proposed model suggests convergence research in adopting existing numerous SBRT abscopal enhancing strategies around the central point of sustained vascular integrity to develop decisive clinical trial protocols in the future.
Collapse
|
18
|
De B, Abu-Gheida I, Patel A, Ng SSW, Zaid M, Thunshelle CP, Elganainy D, Corrigan KL, Rooney MK, Javle M, Raghav K, Lee SS, Vauthey JN, Tzeng CWD, Tran Cao HS, Ludmir EB, Minsky BD, Smith GL, Holliday EB, Taniguchi CM, Koong AC, Das P, Koay EJ. Benchmarking Outcomes after Ablative Radiotherapy for Molecularly Characterized Intrahepatic Cholangiocarcinoma. J Pers Med 2021; 11:1270. [PMID: 34945742 PMCID: PMC8703854 DOI: 10.3390/jpm11121270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that ablative radiotherapy (A-RT) with a biologically effective dose (BED10) ≥ 80.5 Gy for patients with unresectable intrahepatic cholangiocarcinoma (ICC) is associated with longer survival. Despite recent large-scale sequencing efforts in ICC, outcomes following RT based on genetic alterations have not been described. We reviewed records of 156 consecutive patients treated with A-RT for unresectable ICC from 2008 to 2020. For 114 patients (73%), next-generation sequencing provided molecular profiles. The overall survival (OS), local control (LC), and distant metastasis-free survival (DMFS) were estimated using the Kaplan-Meier method. Univariate and multivariable Cox analyses were used to determine the associations with the outcomes. The median tumor size was 7.3 (range: 2.2-18.2) cm. The portal vein thrombus (PVT) was present in 10%. The RT median BED10 was 98 Gy (range: 81-144 Gy). The median (95% confidence interval) follow-up was 58 (42-104) months from diagnosis and 39 (33-74) months from RT. The median OS was 32 (29-35) months after diagnosis and 20 (16-24) months after RT. The one-year OS, LC, and intrahepatic DMFS were 73% (65-80%), 81% (73-87%), and 34% (26-42%). The most common mutations were in IDH1 (25%), TP53 (22%), ARID1A (19%), and FGFR2 (13%). Upon multivariable analysis, the factors associated with death included worse performance status, larger tumor, metastatic disease, higher CA 19-9, PVT, satellitosis, and IDH1 and PIK3CA mutations. TP53 mutation was associated with local failure. Further investigation into the prognostic value of individual mutations and combinations thereof is warranted.
Collapse
Affiliation(s)
- Brian De
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Ibrahim Abu-Gheida
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Aashini Patel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Sylvia S. W. Ng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Mohamed Zaid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Connor P. Thunshelle
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Dalia Elganainy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Kelsey L. Corrigan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Michael K. Rooney
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.); (K.R.); (S.S.L.)
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.); (K.R.); (S.S.L.)
| | - Sunyoung S. Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.); (K.R.); (S.S.L.)
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.-N.V.); (C.-W.D.T.); (H.S.T.C.)
| | - Ching-Wei D. Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.-N.V.); (C.-W.D.T.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.-N.V.); (C.-W.D.T.); (H.S.T.C.)
| | - Ethan B. Ludmir
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Bruce D. Minsky
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Grace L. Smith
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Emma B. Holliday
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Cullen M. Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Albert C. Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| | - Eugene J. Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.A.-G.); (A.P.); (S.S.W.N.); (M.Z.); (C.P.T.); (D.E.); (K.L.C.); (M.K.R.); (E.B.L.); (B.D.M.); (G.L.S.); (E.B.H.); (C.M.T.); (A.C.K.); (P.D.)
| |
Collapse
|
19
|
Inchingolo R, Acquafredda F, Ferraro V, Laera L, Surico G, Surgo A, Fiorentino A, Marini S, de'Angelis N, Memeo R, Spiliopoulos S. Non-surgical treatment of hilar cholangiocarcinoma. World J Gastrointest Oncol 2021; 13:1696-1708. [PMID: 34853644 PMCID: PMC8603446 DOI: 10.4251/wjgo.v13.i11.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/30/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer of the biliary confluence also known as hilar cholangiocarcinoma (HC) or Klatskin tumor, is a rare type of neoplastic disease constituting approximately 40%-60% of intrahepatic malignancies, and 2% of all cancers. The prognosis is extremely poor and the majority of Klatskin tumors are deemed unresectable upon diagnosis. Most patients with unresectable bile duct cancer die within the first year after diagnosis, due to hepatic failure, and/or infectious complications secondary to biliary obstruction. Curative treatments include surgical resection and liver transplantation in highly selected patients. Nevertheless, very few patients are eligible for surgery or transplant at the time of diagnosis. For patients with unresectable HC, radiotherapy, chemotherapy, photodynamic therapy, and liver-directed minimally invasive procedures such as percutaneous image-guided ablation and intra-arterial chemoembolization are recommended treatment options. This review focuses on currently available treatment options for unresectable HC and discusses future perspectives that could optimize outcomes.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Interventional Radiology Unit, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70124, Italy
| | - Fabrizio Acquafredda
- Interventional Radiology Unit, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70124, Italy
| | - Valentina Ferraro
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Letizia Laera
- Department of Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Gianmarco Surico
- Department of Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Stefania Marini
- Department of Radiology, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Nicola de'Angelis
- Unit of Minimally Invasive and Robotic Digestive Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, Acquaviva Delle Fonti 70021, Italy
| | - Stavros Spiliopoulos
- 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Athens 12461, Greece
| |
Collapse
|
20
|
Taunk NK, Burgdorf B, Dong L, Ben-Josef E. Simultaneous Multiple Liver Metastasis Treated with Pencil Beam Proton Stereotactic Body Radiotherapy (SBRT). Int J Part Ther 2021; 8:89-94. [PMID: 34722815 PMCID: PMC8489493 DOI: 10.14338/ijpt-20-00085.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Compared with photon stereotactic body radiotherapy (SBRT) plans that may have to use many more penetrating x-ray beams for each isocenter, proton SBRT with ultrahypofractionated doses use fewer beam angles and offer significantly reduced low-dose radiation bath to normal liver tissue. We demonstrate techniques to deliver safe and effective proton SBRT, where planning and organ motion complexity further increased with multiple liver lesions. For treatment planning, we recommend robust and logical beam angles, avoiding devices and encouraging entry perpendicular to the dominant motion, as well as volumetric repainting to mitigate the interplay effect to clinically acceptable levels. This report highlights the significant technical challenges with ultrahypofractionated proton pencil beam scanning liver therapy, how they are managed, and the effectiveness of this treatment.
Collapse
Affiliation(s)
- Neil K Taunk
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brendan Burgdorf
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lei Dong
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edgar Ben-Josef
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Uchinami Y, Katoh N, Abo D, Taguchi H, Yasuda K, Nishioka K, Soyama T, Morita R, Miyamoto N, Suzuki R, Sho T, Nakai M, Ogawa K, Kakisaka T, Orimo T, Kamiyama T, Shimizu S, Aoyama H. Treatment outcomes of stereotactic body radiation therapy using a real-time tumor-tracking radiotherapy system for hepatocellular carcinomas. Hepatol Res 2021; 51:870-879. [PMID: 33894086 DOI: 10.1111/hepr.13649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 01/07/2023]
Abstract
AIM To report the outcomes of stereotactic body radiotherapy using a real-time tumor-tracking radiotherapy system for hepatocellular carcinoma patients. METHODS From January 2005 to July 2018, 63 patients with 74 lesions with a maximum diameter ≤52 mm were treated by stereotactic body radiotherapy using a real-time tumor-tracking radiotherapy system. No patient with a Child-Pugh Score ≥9 was included, and 85.6% had a score of 5 or 6. Using the biological effective dose (BED) with an α/β ratio of 10 (BED10 ), the median dose in BED10 at the reference point was 76.8 Gy (range 60-122.5 Gy). Overall survival (OS) and local control rates were assessed using the Kaplan-Meier method. RESULTS With a median follow-up period of 24.6 months (range 0.9-118.4 months), the 1-year and 2-year OS rates were 86.8% (95% confidence interval [95% CI] 75.8-93.3) and 71.1% (57.8-81.6), respectively. The 2-year OS was 89.6% in patients with the baseline modified albumin-bilirubin (mALBI) grade =1, and 61.7% in patients with grade ≥2a. In the multivariate analysis, the mALBI grade (=1 vs. ≥2a) was a significant factor for OS (p = 0.028, 95% CI 1.11-6.18). The 1-year and 2-year local control rates were 100% (100-100%) and 92.0% (77.5-97.5%). The local control rates were significantly higher in the BED10 ≥100 Gy group than in the BED10 <100 Gy group (2-year 100% vs. 86.5%, p = 0.049) at the reference point. CONCLUSION This retrospective study of stereotactic body radiotherapy using real-time tumor-tracking radiotherapy for hepatocellular carcinoma showed favorable outcomes with lower incidence of toxicities, especially in patients treated with BED10 ≥100 Gy to the reference point.
Collapse
Affiliation(s)
- Yusuke Uchinami
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Daisuke Abo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kentaro Nishioka
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Soyama
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Ryo Morita
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Ryusuke Suzuki
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery I, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery I, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinichi Shimizu
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
22
|
Shampain KL, Hackett CE, Towfighi S, Aslam A, Masch WR, Harris AC, Chang SD, Khanna K, Mendiratta V, Gabr AM, Owen D, Mendiratta-Lala M. SBRT for HCC: Overview of technique and treatment response assessment. Abdom Radiol (NY) 2021; 46:3615-3624. [PMID: 33963419 DOI: 10.1007/s00261-021-03107-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Stereotactic body radiation therapy (SBRT) is an emerging locoregional treatment (LRT) modality used in the management of patients with hepatocellular carcinoma (HCC). The decision to treat HCC with LRT is evaluated in a multidisciplinary setting, and the specific LRT chosen depends on the treatment intent, such as bridge-to-transplant, down-staging to transplant, definitive/curative treatment, and/or palliation, as well as underlying patient clinical factors. Accurate assessment of treatment response is necessary in order to guide clinical management in these patients. Patients who undergo LRT need continuous imaging evaluation to assess treatment response and to evaluate for recurrence. Thus, an accurate understanding of expected post-SBRT imaging findings is critical to avoid misinterpreting normal post-treatment changes as local progression or viable tumor. SBRT-treated HCC demonstrates unique imaging findings that differ from HCC treated with other forms of LRT. In particular, SBRT-treated HCC can demonstrate persistent APHE and washout on short-term follow-up imaging. This brief review summarizes current evidence for the use of SBRT for HCC, including patient population, SBRT technique and procedure, tumor response assessment on contrast-enhanced cross-sectional imaging with expected findings, and pitfalls in treatment response evaluation.
Collapse
Affiliation(s)
| | | | - Sohrab Towfighi
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Anum Aslam
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - William R Masch
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Alison C Harris
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Silvia D Chang
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Kanika Khanna
- Department of Hepatology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Ahmed M Gabr
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, USA
| | | |
Collapse
|
23
|
Xue H, Qiu B, Wang H, Jiang P, Sukocheva O, Fan R, Xue L, Wang J. Stereotactic Ablative Brachytherapy: Recent Advances in Optimization of Radiobiological Cancer Therapy. Cancers (Basel) 2021; 13:cancers13143493. [PMID: 34298703 PMCID: PMC8304109 DOI: 10.3390/cancers13143493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Brachytherapy (BT), a type of focal anti-cancer radiotherapy, delivers a highly focused radiation dose to localized tumors, sparing surrounding normal tissues. Recent technological advances have helped to increase the accuracy of BT and, thus, improve BT-based cancer treatment. Stereotactic ablative brachytherapy (SABT) was designed to improve the ablative effect of radiation, which was achieved via improved image guidance, and calculation of ablative dose, shorter treatment duration, and better organ preservation. Recently collected data characterized SABT as having the potential to cure various early-stage cancers. The method provides higher tumor control rate levels that were previously achievable only by surgical resection. Notably, SABT is suitable for application with unresectable malignancies. However, the pathological assessment of SABT irradiated tumors is limited due to difficulties in specimen acquisition. Prostate, lung, liver, and gynecological cancers are the most commonly reported SABT-treated malignancies. This study will give an overview of SABT, focusing on the advances in SABT optimization, and provide insights on the future benefits of the combined application of SABT with cancer immunotherapies.
Collapse
Affiliation(s)
- Hui Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China; (H.X.); (B.Q.); (H.W.); (P.J.)
| | - Bin Qiu
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China; (H.X.); (B.Q.); (H.W.); (P.J.)
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China; (H.X.); (B.Q.); (H.W.); (P.J.)
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China; (H.X.); (B.Q.); (H.W.); (P.J.)
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China; (H.X.); (B.Q.); (H.W.); (P.J.)
- Correspondence: (L.X.); (J.W.); Tel.: +86-13701076310 (L.X.); +86-13701076310 (J.W.)
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China; (H.X.); (B.Q.); (H.W.); (P.J.)
- Correspondence: (L.X.); (J.W.); Tel.: +86-13701076310 (L.X.); +86-13701076310 (J.W.)
| |
Collapse
|
24
|
Li X, Ding X, Zheng W, Liu G, Janssens G, Souris K, Barragán-Montero AM, Yan D, Stevens C, Kabolizadeh P. Linear Energy Transfer Incorporated Spot-Scanning Proton Arc Therapy Optimization: A Feasibility Study. Front Oncol 2021; 11:698537. [PMID: 34327139 PMCID: PMC8313436 DOI: 10.3389/fonc.2021.698537] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/22/2021] [Indexed: 02/02/2023] Open
Abstract
Purpose To integrate dose-averaged linear energy transfer (LETd) into spot-scanning proton arc therapy (SPArc) optimization and to explore its feasibility and potential clinical benefits. Methods An open-source proton planning platform (OpenREGGUI) has been modified to incorporate LETd into optimization for both SPArc and multi-beam intensity-modulated proton therapy (IMPT) treatment planning. SPArc and multi-beam IMPT plans with different beam configurations for a prostate patient were generated to investigate the feasibility of LETd-based optimization using SPArc in terms of spatial LETd distribution and plan delivery efficiency. One liver and one brain case were studied to further evaluate the advantages of SPArc over multi-beam IMPT. Results With similar dose distributions, the efficacy of spatially optimizing LETd distributions improves with increasing number of beams. Compared with multi-beam IMPT plans, SPArc plans show substantial improvement in LETd distributions while maintaining similar delivery efficiency. Specifically, for the liver case, the average LETd in the GTV was increased by 124% for the SPArc plan, and only 9.6% for the 2-beam IMPT plan compared with the 2-beam non-LETd optimized IMPT plan. In case of LET optimization for the brain case, the SPArc plan could effectively increase the average LETd in the CTV and decrease the values in the critical structures while smaller improvement was observed in 3-beam IMPT plans. Conclusion This work demonstrates the feasibility and significant advantages of using SPArc for LETd-based optimization, which could maximize the LETd distribution wherever is desired inside the target and averts the high LETd away from the adjacent critical organs-at-risk.
Collapse
Affiliation(s)
- Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Weili Zheng
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Gang Liu
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guillaume Janssens
- Advanced Technology Group, Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Kevin Souris
- Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Ana M Barragán-Montero
- Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Peyman Kabolizadeh
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| |
Collapse
|
25
|
Kurilova I, Bendet A, Fung EK, Petre EN, Humm JL, Boas FE, Crane CH, Kemeny N, Kingham TP, Cercek A, D'Angelica MI, Beets-Tan RGH, Sofocleous CT. Radiation segmentectomy of hepatic metastases with Y-90 glass microspheres. Abdom Radiol (NY) 2021; 46:3428-3436. [PMID: 33606062 DOI: 10.1007/s00261-021-02956-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate safety and efficacy of radiation segmentectomy (RS) with 90Y glass microspheres in patients with limited metastatic liver disease not amenable to resection or percutaneous ablation. METHODS Patients with ≤ 3 tumors treated with RS from 6/2015 to 12/2017 were included. Target tumor radiation dose was > 190 Gy based on medical internal radiation dose (MIRD) dosimetry. Tumor response, local tumor progression (LTP), LTP-free survival (LTPFS) and disease progression rate in the treated segment were defined using Choi and RECIST 1.1 criteria. Toxicities were evaluated using modified SIR criteria. RESULTS Ten patients with 14 tumors underwent 12 RS. Median tumor size was 3 cm (range 1.4-5.6). Median follow-up was 17.8 months (range 1.6-37.3). Response rates per Choi and RECIST 1.1 criteria were 8/8 (100%) and 4/9 (44%), respectively. Overall LTP rate was 3/14 (21%) during the study period. One-, two- and three-year LTPFS was 83%, 83% and 69%, respectively. Median LTPFS was not reached. Disease progression rate in the treated segment was 6/18 (33%). Median overall survival was 41.5 months (IQR 16.7-41.5). Median delivered tumor radiation dose was 293 Gy (range 163-1303). One major complication was recorded in a patient post-Whipple procedure who suffered anaphylactic reaction to prophylactic cefotetan and liver abscess in RS region 6.5 months post-RS. All patients were alive on last follow-up. CONCLUSION RS of ≤ 3 hepatic segments can safely provide a 2-year local tumor control rate of 83% in selected patients with limited metastatic liver disease and limited treatment options. Optimal dosimetry methodology requires further investigation.
Collapse
Affiliation(s)
- I Kurilova
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - A Bendet
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - E K Fung
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - E N Petre
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - J L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - F E Boas
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - C H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - N Kemeny
- Department of Gastrointestinal Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - T P Kingham
- Hepatopancreatobiliary Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - A Cercek
- Department of Gastrointestinal Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - M I D'Angelica
- Hepatopancreatobiliary Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - R G H Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - C T Sofocleous
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Chen LC, Lin HY, Hung SK, Chiou WY, Lee MS. Role of modern radiotherapy in managing patients with hepatocellular carcinoma. World J Gastroenterol 2021; 27:2434-2457. [PMID: 34092968 PMCID: PMC8160620 DOI: 10.3748/wjg.v27.i20.2434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Several treatment options are available for managing HCC patients, classified roughly as local, local-regional, and systemic therapies. The high post-monotherapy recurrence rate of HCC urges the need for the use of combined modalities to increase tumor control and patient survival. Different international guidelines offer treatment recommendations based on different points of view and classification systems. Radiotherapy (RT) is a well-known local-regional treatment modality for managing many types of cancers, including HCC. However, only some of these treatment guidelines include RT, and the role of combined modalities is rarely mentioned. Hence, the present study reviewed clinical evidence for the use of different combined modalities in managing HCC, focusing on modern RT's role. Modern RT has an increased utility in managing HCC patients, mainly due to two driving forces. First, technological advancement (e.g., stereotactic body radiotherapy and advanced proton-beam therapy) enables precise delivery of radiation to increase tumor control and reduce side effects in the surrounding normal tissue. Second, the boom in developing target therapies and checkpoint-blockade immunotherapy prolongs overall survival in HCC patients, re-emphasizing the importance of local tumor control. Remarkably, RT combines with systemic therapies to generate the systemic therapy augmented by radiotherapy effect, a benefit now being actively investigated.
Collapse
Affiliation(s)
- Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi 62247, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
27
|
Kashihara T, Nakamura S, Murakami N, Ito K, Matsumoto Y, Kobayashi K, Omura G, Mori T, Honma Y, Kubo Y, Okamoto H, Takahashi K, Inaba K, Okuma K, Igaki H, Nakayama Y, Kato K, Matsumoto F, Yoshimoto S, Itami J. Initial Experience of Intentional Internal High-Dose Policy Volumetric Modulated Arc Therapy of Neck Lymph Node Metastases ≥ 2 cm in Patients With Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:651409. [PMID: 33987086 PMCID: PMC8112241 DOI: 10.3389/fonc.2021.651409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose Most locoregional recurrences after definitive radiotherapy for head and neck squamous cell carcinoma (HNSCC) develop "in-field." Dose escalation while sparing organs at risk can be a good solution for improving local control without increasing adverse effects. This study investigated the safety and effectiveness of volumetric modulated arc therapy (VMAT) using intentionally internal high-dose policy (IIHDP) to treat neck lymph node metastases (NLNM) ≥ 2 cm in HNSCC patients. Materials and Methods We analyzed 71 NLNM from 51 HNSCC patients who had received definitive radiotherapy to treat NLNM ≥ 2 cm using the VMAT technique in our institution between February 2017 and August 2019. Thirty-seven NLNM from 25 patients were treated using IIHDP VMAT (group A), and 34 NLNM from 27 patients were treated with homogeneous-dose distribution policy (HDDP) VMAT (group B). One patient with three NLNM had one lymph node assigned to group A and the other two to group B. Adverse events and local recurrence-free survival (LRFS) was compared between the two groups. Results In the median follow-up period of 527 days, there were no significant differences between the groups in terms of dermatitis or mucositis ≥ grade 2/3, but LRFS was significantly longer in group A (p = 0.007). In the Cox regression analysis after adjustment for the propensity score, group A also showed an apparently superior LFRS. Conclusion Our initial experience of IIHDP VMAT suggested that IIHDP VMAT to treat HNSCC neck lymph node metastases measuring ≥ 2 cm was feasible and possibly led to better local control than HDDP VMAT.
Collapse
Affiliation(s)
- Tairo Kashihara
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| | - Satoshi Nakamura
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Murakami
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| | - Kimiteru Ito
- Department of Radiology in National Cancer Center Hospital, Tokyo, Japan
| | - Yoshifumi Matsumoto
- Department of Head and Neck Oncology in National Cancer Center Hospital, Tokyo, Japan
| | - Kenya Kobayashi
- Department of Head and Neck Oncology in National Cancer Center Hospital, Tokyo, Japan
| | - Go Omura
- Department of Head and Neck Oncology in National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Pathology and Clinical Laboratories in National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Honma
- Department of Head and Neck Medical Oncology in National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Kubo
- Department of Radiology in National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Okamoto
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| | - Kana Takahashi
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| | - Koji Inaba
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| | - Kae Okuma
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Igaki
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Nakayama
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Head and Neck Medical Oncology in National Cancer Center Hospital, Tokyo, Japan
| | - Fumihiko Matsumoto
- Department of Head and Neck Oncology in National Cancer Center Hospital, Tokyo, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Oncology in National Cancer Center Hospital, Tokyo, Japan
| | - Jun Itami
- Department of Radiation Therapy in National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
28
|
Romesser PB, Tyagi N, Crane CH. Magnetic Resonance Imaging-Guided Adaptive Radiotherapy for Colorectal Liver Metastases. Cancers (Basel) 2021; 13:cancers13071636. [PMID: 33915810 PMCID: PMC8036824 DOI: 10.3390/cancers13071636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
Technological advances have enabled well tolerated and effective radiation treatment for small liver metastases. Stereotactic ablative radiation therapy (SABR) refers to ablative dose delivery (>100 Gy BED) in five fractions or fewer. For larger tumors, the safe delivery of SABR can be challenging due to a more limited volume of healthy normal liver parenchyma and the proximity of the tumor to radiosensitive organs such as the stomach, duodenum, and large intestine. In addition to stereotactic treatment delivery, controlling respiratory motion, the use of image guidance, adaptive planning and increasing the number of radiation fractions are sometimes necessary for the safe delivery of SABR in these situations. Magnetic Resonance (MR) image-guided adaptive radiation therapy (MRgART) is a new and rapidly evolving treatment paradigm. MR imaging before, during and after treatment delivery facilitates direct visualization of both the tumor target and the adjacent normal healthy organs as well as potential intrafraction motion. Real time MR imaging facilitates non-invasive tumor tracking and treatment gating. While daily adaptive re-planning permits treatment plans to be adjusted based on the anatomy of the day. MRgART therapy is a promising radiation technology advance that can overcome many of the challenges of liver SABR and may facilitate the safe tumor dose escalation of colorectal liver metastases.
Collapse
Affiliation(s)
- Paul B. Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Christopher H. Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Correspondence:
| |
Collapse
|
29
|
Brunner TB, Bettinger D, Schultheiss M, Maruschke L, Sturm L, Bartl N, Koundurdjieva I, Kirste S, Neeff HP, Goetz C, Nicolay NH, Ihorst G, Bamberg F, Thimme R, Grosu AL, Gkika E. Efficacy of Stereotactic Body Radiotherapy in Patients With Hepatocellular Carcinoma Not Suitable for Transarterial Chemoembolization (HERACLES: HEpatocellular Carcinoma Stereotactic RAdiotherapy CLinical Efficacy Study). Front Oncol 2021; 11:653141. [PMID: 33816309 PMCID: PMC8017336 DOI: 10.3389/fonc.2021.653141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The aim of this prospective observational trial was to evaluate the efficacy, toxicity and quality of life after stereotactic body radiation therapy (SBRT) in patients with hepatocellular carcinoma (HCC) and to assess the results of this treatment in comparison to trans-arterial chemoembolization (TACE). Patients with HCC, treated with TACE or SBRT, over a period of 12 months, enrolled in the study. The primary endpoint was feasibility; secondary endpoints were toxicity, quality of life (QOL), local progression (LP) and overall survival (OS). Between 06/2016 and 06/2017, 19 patients received TACE and 20 SBRT, 2 of whom were excluded due to progression. The median follow-up was 31 months. The QOL remained stable before and after treatment and was comparable in both treatment groups. Five patients developed grade ≥ 3 toxicities in the TACE group and 3 in the SBRT group. The cumulative incidence of LP after 1-, 2- and 3-years was 6, 6, 6% in the SBRT group and 28, 39, and 65% in the TACE group (p = 0.02). The 1- and 2- years OS rates were 84% and 47% in the TACE group and 44% and 39% in the SBRT group (p = 0.20). In conclusion, SBRT is a well-tolerated local treatment with a high local control rates and can be safely delivered, while preserving the QOL of HCC patients.
Collapse
Affiliation(s)
- Thomas B. Brunner
- Department of Radiation Oncology, University Medical Center Magdeburg, Magdeburg, Germany
| | - Dominik Bettinger
- Berta-Ottenstein-Programme, University of Freiburg, Freiburg, Germany
- Department of Medicine II, Medical Center-University of Freiburg, Freiburg, Germany
| | - Michael Schultheiss
- Department of Medicine II, Medical Center-University of Freiburg, Freiburg, Germany
| | - Lars Maruschke
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Lukas Sturm
- Department of Medicine II, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nico Bartl
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ivana Koundurdjieva
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Hannes P. Neeff
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Christian Goetz
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Nils Henrik Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Tsurugai Y, Takeda A, Eriguchi T, Sanuki N, Aoki Y. Hypofractionated radiotherapy for hepatocellular carcinomas adjacent to the gastrointestinal tract. Hepatol Res 2021; 51:294-302. [PMID: 33201542 DOI: 10.1111/hepr.13590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
AIM Decisions regarding therapeutic plans for inoperable patients with hepatocellular carcinoma (HCC) adjacent to the gastrointestinal (GI) tract are challenging because radiofrequency ablation has the potential risk of thermal injury. Moreover, the response rate of transcatheter arterial chemoembolization is relatively low and stereotactic body radiotherapy (SBRT) is believed to be too toxic. We have applied hypofractionated radiotherapy (HFRT) for such lesions. This study investigated the outcomes and toxicities of this treatment. METHODS Among consecutive HCC patients treated with radiotherapy with curative intent at our institution between 2015 and 2019, we retrospectively extracted those outside of the indication for SBRT due to exceeding the constraint of the GI tract and who were treated using HFRT with a prescription dose of 42 Gy in 14 fractions and prophylactic proton pump inhibitor administration for 6 months. The oncological outcomes and toxicities were investigated. RESULTS A total of 66 patients with 73 lesions were eligible. The median follow-up period was 24.0 months. The local recurrence, intrahepatic recurrence, liver-related death, and overall survival rates at 2 years were 11.3%, 50.6%, 15.9%, and 60.4%, respectively. Six (9.1%) patients experienced Child-Pugh score deterioration ≥2 within 6 months following treatment. Two and one patient developed grades 2 and 3 gastroduodenal bleeding, respectively. CONCLUSIONS HFRT can achieve good local control in patients with HCC adjacent to the GI tract, with low GI toxicity incidence. Our study demonstrated that HFRT can be a potentially curative treatment option for lesions.
Collapse
Affiliation(s)
- Yuichiro Tsurugai
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Atsuya Takeda
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Takahisa Eriguchi
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Naosko Sanuki
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| | - Yousuke Aoki
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Kanagawa, Japan
| |
Collapse
|
31
|
Huang TJ, Tien Y, Wu JK, Huang WT, Cheng JCH. Impact of breath-hold level on positional error aligned by stent/Lipiodol in Hepatobiliary radiotherapy with breath-hold respiratory control. BMC Cancer 2020; 20:613. [PMID: 32611378 PMCID: PMC7328270 DOI: 10.1186/s12885-020-07082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/16/2020] [Indexed: 11/18/2022] Open
Abstract
Background Respiratory motion management with breath hold for patients with hepatobiliary cancers remain a challenge in the precise positioning for radiotherapy. We compared different image-guided alignment markers for estimating positional errors, and investigated the factors associated with positional errors under breath-hold control. Methods Spirometric motion management system (SDX) for breath holds was used in 44 patients with hepatobiliary tumor. Among them, 28 patients had a stent or embolized materials (lipiodol) as alignment markers. Cone-beam computed tomography (CBCT) and kV-orthogonal images were compared for accuracy between different alignment references. Breath-hold level (BHL) was practiced, and BHL variation (ΔBHL) was defined as the standard deviation in differences between actual BHLs and baseline BHL. Mean BHL, ΔBHL, and body-related factors were analyzed for the association with positional errors. Results Using the reference CBCT, the correlations of positional errors were significantly higher in those with stent/lipiodol than when the vertebral bone was used for alignment in three dimensions. Patients with mean BHL > 1.4 L were significantly taller (167.6 cm vs. 161.6 cm, p = 0.03) and heavier (67.1 kg vs. 57.4 kg, p = 0.02), and had different positional error in the craniocaudal direction (− 0.26 cm [caudally] vs. + 0.09 cm [cranially], p = 0.01) than those with mean BHL < 1.4 L. Positional errors were similar for patients with ΔBHL< 0.03 L and > 0.03 L. Conclusion Under rigorous breath-hold respiratory control, BHL correlated with body weight and height. With more accurate alignment reference by stent/lipiodol, actual BHL but not breath-hold variation was associated with craniocaudal positional errors.
Collapse
|
32
|
Parzen JS, Hartsell W, Chang J, Apisarnthanarax S, Molitoris J, Durci M, Tsai H, Urbanic J, Ashman J, Vargas C, Stevens C, Kabolizadeh P. Hypofractionated proton beam radiotherapy in patients with unresectable liver tumors: multi-institutional prospective results from the Proton Collaborative Group. Radiat Oncol 2020; 15:255. [PMID: 33148296 PMCID: PMC7643436 DOI: 10.1186/s13014-020-01703-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Background Recent advances in radiotherapy techniques have allowed ablative doses to be safely delivered to inoperable liver tumors. In this setting, proton beam radiotherapy (PBT) provides the means to escalate radiation dose to the target volume while sparing the uninvolved liver. This study evaluated the safety and efficacy of hypofractionated PBT for liver tumors, predominantly hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Methods We evaluated the prospective registry of the Proton Collaborative Group for patients undergoing definitive PBT for liver tumors. Demographic, clinicopathologic, toxicity, and dosimetry information were compiled. Results To date, 63 patients have been treated at 9 institutions between 2013 and 2019. Thirty (48%) had HCC and 25 (40%) had ICC. The median dose and biological equivalent dose (BED) delivered was 58.05 GyE (range 32.5–75) and 80.5 GyE (range 53.6–100), respectively. The median mean liver BED was 13.9 GyE. Three (4.8%) patients experienced at least one grade ≥ 3 toxicity. With median follow-up of 5.1 months (range 0.1–40.8), the local control (LC) rate at 1 year was 91.2% for HCC and 90.9% for ICC. The 1-year LC was significantly higher (95.7%) for patients receiving BED greater than 75.2 GyE than for patients receiving BED of 75.2 GyE or lower (84.6%, p = 0.029). The overall survival rate at 1 year was 65.6% for HCC and 81.8% for ICC. Conclusions Hypofractionated PBT results in excellent LC, sparing of the uninvolved liver, and low toxicity, even in the setting of dose-escalation. Higher dose correlates with improved LC, highlighting the importance of PBT especially in patients with recurrent or bulky disease.
Collapse
Affiliation(s)
| | - William Hartsell
- Northwestern Medicine Chicago Proton Center, Warrenville, IL, USA
| | - John Chang
- Oklahoma Proton Center, Oklahoma City, OK, USA
| | | | | | | | - Henry Tsai
- Princeton ProCure Proton Therapy Center, Kendall Park, NJ, USA
| | - James Urbanic
- California Protons Therapy Center, San Diego, CA, USA
| | | | | | | | - Peyman Kabolizadeh
- Beaumont Proton Therapy Center, Royal Oak, MI, USA. .,Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, 3601 W Thirteen Mile Rd, Royal Oak, MI, 48073, USA.
| |
Collapse
|
33
|
Abstract
Stereotactic ablative radiotherapy (SABR) commonly is used for small liver metastases. Modern conformal radiotherapy techniques, including 3-dimensional conformal radiotherapy and intensity-modulated radiation therapy, enable the safe delivery of SABR to small liver volumes. For larger tumors, the safe delivery of SABR can be challenging due to a more limited volume of healthy normal liver parenchyma and the proximity of the tumor to radiosensitive organs, such as the stomach, duodenum, and large intestine. Controlling respiratory motion, the use of image guidance, and increasing the number of radiation fractions sometimes are necessary for the safe delivery of SABR in these situations.
Collapse
Affiliation(s)
- Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box #22, New York, NY 10065, USA; Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box #22, New York, NY 10065, USA
| | - Brian P Neal
- Medical Physics, ProCure Proton Therapy Center, 103 Cedar Grove Lane, Somerset, NJ 08873, USA
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box #22, New York, NY 10065, USA.
| |
Collapse
|
34
|
Jin C, Yang W, Ran L, Zhang J, Zhu H. Feasibility of High-Intensity Focused Ultrasound for Hepatocellular Carcinoma after Stereotactic Body Radiation Therapy: Initial Experience. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2744-2751. [PMID: 32747074 DOI: 10.1016/j.ultrasmedbio.2020.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this initial clinical observation was to investigate the safety and effect of high-intensity focused ultrasound (HIFU) for patients with hepatocellular carcinoma (HCC) after stereotactic body radiation therapy (SBRT). Twenty patients who had been treated with SBRT, with 24 local residuals, received HIFU ablation. The changes of periphery blood cell count and serum biochemistry were observed before HIFU and 1 week after. Contrast-enhanced magnetic resonance imaging before HIFU and 2 weeks after was performed to assess the effect of HIFU. All patients received follow-up. The mean ± standard deviation follow-up time was 19.3 ± 18.0 mo. The median survival time and 1-y survival rate were 21 mo and 76.2%. Seventeen residual lesions (70.8%) received complete ablation and seven received partial ablation, with a mean ablation ratio of 75.8% ± 18.2%. No significant differences were found in periphery blood cell counts or serum biochemistry 1 week after HIFU compared with before HIFU. No severe adverse reactions related to HIFU were observed. Thus, we believe that HIFU can safely and effectively ablate residual HCC after SBRT, which may be a feasible option for patients with HCC who have local residuals after SBRT.
Collapse
Affiliation(s)
- Chengbing Jin
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wei Yang
- Institute of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Lifeng Ran
- Institute of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zhu
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Kashihara T, Kobayashi K, Iijima K, Murakami N, Yoshida K, Okuma K, Nakamura S, Takahashi K, Inaba K, Igaki H, Nakayama Y, Kato T, Uno T, Itami J. A case report of a patient with bulky uterine cervical neoplasm who achieved complete response with "intentional internal high-dose policy" high-dose-rate interstitial brachytherapy. Medicine (Baltimore) 2020; 99:e20860. [PMID: 32629674 PMCID: PMC7337609 DOI: 10.1097/md.0000000000020860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Gynecological high-dose-rate (HDR) brachytherapy has progressed for years, but it remains difficult for bulky tumors to be controlled locally. Dose limitations to organs at risk (OARs) are invariably obstacles in increasing the prescription dose. Additionally, it is controversial that the excessive hyperdose sleeve, the volume receiving a dose equal to or greater than twice the reference dose, should be eliminated in gynecological HDR brachytherapy. On the other hand, the technique of simultaneous integrated protection was reported for large hepatocellular carcinoma treatment, and similarly, internal high-dose brachytherapy could be used for treating bulky cervical carcinoma. PATIENT CONCERNS A 54-year-old female had irregular genital bleeding and lost 13 kg in one year. DIAGNOSIS She was diagnosed with T3bN1M0 cervical cancer in another hospital. The transverse diameter of the primary tumor was 10.5 cm. INTERVENTIONS The whole pelvis and para-aortic lymph node were irradiated with a total of 50 Gy in 25 fractions, but the size of the tumor showed only a slight decrease to 8.9 cm. After external beam radiotherapy, first-time high-dose-rate interstitial brachytherapy (HDR-ISBT) was administered without "intentional internal high-dose (IIHD) policy," the technique of high-dose administration to only the inside of the tumor. Considering the rectum dose limitation, in the additional 2 times of brachytherapy, "IIHD policy" HDR-ISBT was applied. In the second and third HDR-ISBT, the percentage of the volume exposed to 200% of the prescribed dose for high-risk clinical target volume increased by 241% and 204% compared with the first HDR-ISBT, while the doses to OARs were not significantly higher than those of the first-time HDR-ISBT. OUTCOMES Complete response was obtained, and no recurrence findings and side effects caused by HDR-ISBT have been detected for 2 years and 9 months. LESSONS To our knowledge, this is the first report of IIHD HDR-ISBT for bulky cervical cancer. This technique can be the solution for treating bulky cervical cancer.
Collapse
Affiliation(s)
- Tairo Kashihara
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Kazuma Kobayashi
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Kotaro Iijima
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Naoya Murakami
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Ken Yoshida
- Department of Radiology, Osaka Medical College Hospital, Osaka
| | - Kae Okuma
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Satoshi Nakamura
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Kana Takahashi
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Koji Inaba
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Hiroshi Igaki
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Yuko Nakayama
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| | - Tomoyasu Kato
- Department of Gynecologic Oncology, National Cancer Center Hospital, Tokyo
| | - Takashi Uno
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Jun Itami
- Department of Radiation Therapy, National Cancer Center Hospital, Tokyo
| |
Collapse
|
36
|
Kjærgaard K, Weber B, Alstrup AKO, Petersen JBB, Hansen R, Hamilton-Dutoit SJ, Mortensen FV, Sørensen M. Hepatic regeneration following radiation-induced liver injury is associated with increased hepatobiliary secretion measured by PET in Göttingen minipigs. Sci Rep 2020; 10:10858. [PMID: 32616907 PMCID: PMC7331737 DOI: 10.1038/s41598-020-67609-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Normal liver tissue is highly vulnerable towards irradiation, which remains a challenge in radiotherapy of hepatic tumours. Here, we examined the effects of radiation-induced liver injury on two specific liver functions and hepatocellular regeneration in a minipig model. Five Göttingen minipigs were exposed to whole-liver stereotactic body radiation therapy (SBRT) in one fraction (14 Gy) and examined 4–5 weeks after; five pigs were used as controls. All pigs underwent in vivo positron emission tomography (PET) studies of the liver using the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine ([11C]CSar) and the galactose-analogue tracer [18F]fluoro-2-deoxy-d-galactose ([18F]FDGal). Liver tissue samples were evaluated histopathologically and by immunohistochemical assessment of hepatocellular mitosis, proliferation and apoptosis. Compared with controls, both the rate constant for secretion of [11C]CSar from hepatocytes into intrahepatic bile ducts as well as back into blood were doubled in irradiated pigs, which resulted in reduced residence time of [11C]CSar inside the hepatocytes. Also, the hepatic systemic clearance of [18F]FDGal in irradiated pigs was slightly increased, and hepatocellular regeneration was increased by a threefold. In conclusion, parenchymal injury and increased regeneration after whole-liver irradiation was associated with enhanced hepatobiliary secretion of bile acids. Whole-liver SBRT in minipigs ultimately represents a potential large animal model of radiation-induced liver injury and for testing of normal tissue protection methods.
Collapse
Affiliation(s)
- Kristoffer Kjærgaard
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, 8200, Aarhus N, Denmark. .,Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark.
| | - Britta Weber
- Department of Oncology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | | | | | - Rune Hansen
- Department of Oncology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | | | | | - Michael Sørensen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, 8200, Aarhus N, Denmark.,Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| |
Collapse
|
37
|
Stereotactic Body Radiotherapy for Large Unresectable Hepatocellular Carcinomas - A Single Institution Phase II Study. Clin Oncol (R Coll Radiol) 2020; 32:423-432. [PMID: 32093876 DOI: 10.1016/j.clon.2020.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
Abstract
AIMS To evaluate the safety and efficacy of liver stereotactic body radiotherapy (SBRT) in the treatment of unresectable hepatocellular carcinomas (HCC) measuring >5 cm. MATERIALS AND METHODS Between November 2013 and February 2016, 13 patients with unresectable HCC (>5 cm), ineligible for other local treatments, with a Child-Pugh score (CPS) ≤ B7, were enrolled into a single-institution phase II study. SBRT was delivered by volumetric-modulated arc radiotherapy. Radiological response was reported using modified Response Evaluation Criteria in Solid Tumours criteria and toxicities graded by Common Terminology Criteria for Adverse Events v4 criteria. RESULTS Sixteen hepatomas (median size 7.5 cm, range 5.1-9.7 cm) were treated in 13 patients. The baseline CPS was A5/6 in nine patients (69%) and B7 in four patients (31%). Five patients (38%) received previous liver-directed treatment. The median prescribed dose was 45 Gy (range 40-45 Gy) in five fractions. The median follow-up was 17.7 months. The 1-year local control rate was 92%. The median overall survival was 17.7 months and the 1-year overall survival was 62%. The median time to local progression was not reached. Five patients (39%) had an increase in CPS by two or more points at 3 months. Overall, there were 10 grade 3 acute toxicities occurring in seven patients, of which six were haematological. Quality of life remained clinically stable or improved at 3 months in 61.5% and 53.8% of patients based on the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 Global Health Score and Functional Assessment of Cancer Therapy - Hepatobiliary version 4 score, respectively. CONCLUSIONS In our cohort, SBRT to unresectable large HCC tumours provided excellent local control with acceptable toxicities. Regional recurrence remained the major cause of failure. Further studies are warranted to examine the role for SBRT in combination with other modalities to maximise disease control in the liver.
Collapse
|
38
|
Mitin T, Degnin C, Chen Y, Shirvani S, Gillespie E, Hoffe S, Latifi K, Nabavizadeh N, Dengina N, Chernich M, Usychkin S, Kharitonova E, Egorova Y, Pankratov A, Tsimafeyeu I, Thomas CR, Tjulandin S, Likhacheva A. Radiotherapy for Hepatocellular Carcinoma in Russia: a Survey-Based Analysis of Current Practice and the Impact of an Educational Workshop on Clinical Expertise. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2020; 35:105-111. [PMID: 30467774 DOI: 10.1007/s13187-018-1447-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiation therapy (RT) is an effective treatment modality for hepatocellular carcinoma (HCC), but globally, it is underutilized. In Russia, practice patterns with regard to liver-directed radiation are unknown. Under the auspices of Russian Society of Clinical Oncology (RUSSCO), our team conducted an IRB-approved contouring workshop for Russian radiation oncologists. Pre- and post-workshop surveys were analyzed to determine baseline clinical experience and patterns of care for liver-directed RT among Russian providers. The effect of the contouring workshop on participants' knowledge was tested using mixed effects model. Forty pre-workshop and 24 post-workshop questionnaires were analyzable with a 100% response rate. Sixty percent of respondents had never evaluated a patient with HCC and only 8% (3 out of 40) reported treating an HCC patient with liver-directed RT. Nonetheless, 73% of respondents were comfortable offering liver-directed RT prior to the workshop. After the workshop, 85% of respondents felt comfortable treating a patient with HCC with liver-directed RT and 50% were comfortable recommending stereotactic body radiation therapy (SBRT). Measures of knowledge pertaining to evaluation of HCC patients and selection for appropriate liver-directed therapies were dramatically improved after the workshop. Liver-directed RT is not commonly used in Russia in the management of patients with HCC, and few centers are equipped for motion management. Our contouring workshop resulted in dramatically improved understanding of the evaluation and management of HCC patients. We recommend starting with a more protracted fractionated RT and building experience through attendance of additional educational activities, participation in multidisciplinary liver tumor boards, and prospective analysis of treatment toxicity and outcomes.
Collapse
Affiliation(s)
- Timur Mitin
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- International Design and Implementation Group for Radiation Oncology workshops (INDIGO), Moscow, Russia
| | - Catherine Degnin
- Biostatistics Shared Resources, OHSU Knight Cancer Institute, Portland, OR, USA
| | - Yiyi Chen
- Biostatistics Shared Resources, OHSU Knight Cancer Institute, Portland, OR, USA
| | - Shervin Shirvani
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, 2946 E Banner Gateway Dr, Gilbert, AZ, 85234, USA
| | - Erin Gillespie
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Natalia Dengina
- International Design and Implementation Group for Radiation Oncology workshops (INDIGO), Moscow, Russia
- Department of Radiotherapy, Ulyanovsk Regional Cancer Center, Ulyanovsk Oblast, Russia
| | - Marina Chernich
- International Design and Implementation Group for Radiation Oncology workshops (INDIGO), Moscow, Russia
- N.N. Blokhin Russian Cancer Center, Moscow, Russia
| | - Sergey Usychkin
- International Design and Implementation Group for Radiation Oncology workshops (INDIGO), Moscow, Russia
- Medscan Clinic, Moscow, Russia
| | | | - Yulia Egorova
- Russian Society of Clinical Oncology (RUSSCO), Moscow, Russia
| | - Alexandr Pankratov
- International Design and Implementation Group for Radiation Oncology workshops (INDIGO), Moscow, Russia
- PET-Technology Center, Balashikha, Russia
| | - Ilya Tsimafeyeu
- Russian Society of Clinical Oncology (RUSSCO), Moscow, Russia
- PET-Technology Center, Balashikha, Russia
- Kidney Cancer Research Bureau, Moscow, Russia
| | - Charles R Thomas
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - Anna Likhacheva
- International Design and Implementation Group for Radiation Oncology workshops (INDIGO), Moscow, Russia.
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, 2946 E Banner Gateway Dr, Gilbert, AZ, 85234, USA.
| |
Collapse
|
39
|
Avila S, Smani DA, Koay EJ. Radiation dose escalation for locally advanced unresectable intrahepatic and extrahepatic cholangiocarcinoma. Chin Clin Oncol 2020; 9:10. [PMID: 32008331 PMCID: PMC7277074 DOI: 10.21037/cco.2019.12.05] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
Intrahepatic cholangiocarcinoma (IHCC) and extrahepatic cholangiocarcinoma (EHCC) remain challenging diseases to treat. The majority of patients present with advanced disease, and the tumors often cause life-threatening biliary obstruction and vascular compromise of the liver. Local control (LC) of these tumors has the potential to prolong life for patients. While escalated-dose radiation therapy (EDRT) has been demonstrated to be an effective, safe option to achieve LC of IHCC, data for EHCC suggest that EDRT with current techniques has limitations, often due to dose-limiting bowel structures in close proximity to the extrahepatic biliary system. Here we review the results of EDRT for IHCC and EHCC and point to potential directions to combine radiotherapy with novel agents. The molecular characterization of cholangiocarcinoma has particularly opened new avenues for clinical investigations of targeted therapies with EDRT and may point to ways to achieve both systemic and LC benefits for patients.
Collapse
Affiliation(s)
- Santiago Avila
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Danyal A Smani
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
40
|
Park PC, Choi GW, Zaid MM, Elganainy D, Smani DA, Tomich J, Samaniego R, Ma J, Tamm EP, Beddar S, Koay EJ. Enhancement pattern mapping technique for improving contrast-to-noise ratios and detectability of hepatobiliary tumors on multiphase computed tomography. Med Phys 2020; 47:64-74. [PMID: 31449684 PMCID: PMC7065272 DOI: 10.1002/mp.13769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Currently, radiologists use tumor-to-normal tissue contrast across multiphase computed tomography (MPCT) for lesion detection. Here, we developed a novel voxel-based enhancement pattern mapping (EPM) technique and investigated its ability to improve contrast-to-noise ratios (CNRs) in a phantom study and in patients with hepatobiliary cancers. METHODS The EPM algorithm is based on the root mean square deviation between each voxel and a normal liver enhancement model using patient-specific (EPM-PA) or population data (EPM-PO). We created a phantom consisting of liver tissue and tumors with distinct enhancement signals under varying tumor sizes, motion, and noise. We also retrospectively evaluated 89 patients with hepatobiliary cancers who underwent active breath-hold MPCT between 2016 and 2017. MPCT phases were registered using a three-dimensional deformable image registration algorithm. For the patient study, CNRs of tumor to adjacent tissue across MPCT phases, EPM-PA and EPM-PO were measured and compared. RESULTS EPM resulted in statistically significant CNR improvement (P < 0.05) for tumor sizes down to 3 mm, but the CNR improvement was significantly affected by tumor motion and image noise. Eighty-two of 89 hepatobiliary cases showed CNR improvement with EPM (PA or PO) over grayscale MPCT, by an average factor of 1.4, 1.6, and 1.5 for cholangiocarcinoma, hepatocellular carcinoma, and colorectal liver metastasis, respectively (P < 0.05 for all). CONCLUSIONS EPM increases CNR compared with grayscale MPCT for primary and secondary hepatobiliary cancers. This new visualization method derived from MPCT datasets may have applications for early cancer detection, radiomic characterization, tumor treatment response, and segmentation. IMPLICATIONS FOR PATIENT CARE We developed a voxel-wise enhancement pattern mapping (EPM) technique to improve the contrast-to-noise ratio (CNR) of multiphase CT. The improvement in CNR was observed in datasets of patients with cholangiocarcinoma, hepatocellular carcinoma, and colorectal liver metastasis. EPM has the potential to be clinically useful for cancers with regard to early detection, radiomic characterization, response, and segmentation.
Collapse
Affiliation(s)
- Peter C. Park
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gye W. Choi
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed M. Zaid
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dalia Elganainy
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Danyal A. Smani
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Tomich
- Space and Airborne Systems, Raytheon, McKinney, TX, USA
| | - Ray Samaniego
- Space and Airborne Systems, Raytheon, McKinney, TX, USA
| | - Jingfei Ma
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric P. Tamm
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sam Beddar
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J. Koay
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Chen C, Nelson LJ, Ávila MA, Cubero FJ. Mitogen-Activated Protein Kinases (MAPKs) and Cholangiocarcinoma: The Missing Link. Cells 2019; 8:cells8101172. [PMID: 31569444 PMCID: PMC6829385 DOI: 10.3390/cells8101172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, the incidence of both liver and biliary tract cancer has increased. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common types of hepatic malignancies. Whereas HCC is the fifth most common malignant tumor in Western countries, the prevalence of CCA has taken an alarming increase from 0.3 to 2.1 cases per 100,000 people. The lack of specific biomarkers makes diagnosis very difficult in the early stages of this fatal cancer. Thus, the prognosis of CCA is dismal and surgery is the only effective treatment, whilst recurrence after resection is common. Even though chemotherapy and radiotherapy may prolong survival in patients with CCA, the 5-year survival rate is still very low—a significant global problem in clinical diagnosis and therapy. The mitogen-activated protein kinase (MAPK) pathway plays an important role in signal transduction by converting extracellular stimuli into a wide range of cellular responses including inflammatory response, stress response, differentiation, survival, and tumorigenesis. Dysregulation of the MAPK cascade involves key signaling components and phosphorylation events that play an important role in tumorigenesis. In this review, we discuss the pathophysiological role of MAPK, current therapeutic options, and the current situation of MAPK-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi 214000, China.
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, Scotland, UK.
| | - Matías A Ávila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
| |
Collapse
|
42
|
Hrinivich WT, McNutt TR, Meyer JJ. Radiation treatment planning with embedded dose escalation. Radiat Oncol 2019; 14:145. [PMID: 31412952 PMCID: PMC6693221 DOI: 10.1186/s13014-019-1348-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/26/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Heterogeneous target doses are a common by-product from attempts to improve normal tissue sparing in radiosurgery treatment planning. These regions of escalated dose within the target may increase tumor control probability (TCP). Purposely embedding hot spots within tumors during optimization may also increase the TCP. This study discusses and compares five optimization approaches that not only eliminate homogeneity constraints, but also maximize heterogeneity and internal dose escalation. METHODS Co-planar volumetric modulated arc therapy (VMAT) plans were produced for virtual spherical targets with 2-8 cm diameters, minimum target dose objectives of 25 Gy, and objectives to minimize normal tissue dose. Five other sets of plans were produced with additional target dose objectives: 1) minimum dose-volume histogram (DVH) objective on 10% of the target 2) minimum dose objective on a sub-structure within the target, and 3-5) minimum generalized equivalent uniform dose (gEUD) objectives assuming three different volume-effect parameters. Plans were normalized to provide equivalent maximum OAR dose and were compared in terms of target D0.1 cc, ratio of V12.5 Gy to PTV volume (R50%), monitor units per 5 Gy fraction (MU), and mean multi-leaf collimator (MLC) segment size. All planning approaches were also applied to a clinical patient dataset and compared. RESULTS Mean ± standard deviation metrics achievable using the baseline and experimental approaches 1-5) included D0.1 cc: 27.7 ± 0.8, 64.6 ± 10.5, 56.5 ± 10.3, 48.9 ± 5.7, 44.8 ± 5.0, and 37.4 ± 4.5 Gy. R50%: 4.64 ± 3.27, 5.15 ± 2.32, 4.83 ± 2.64, 4.42 ± 1.83, 4.45 ± 1.88, and 4.21 ± 1.75. MU: 795 ± 27, 1988 ± 222, 1766 ± 259, 1612 ± 112, 1524 ± 90, and 1362 ± 146. MLC segment size: 4.7 ± 1.6, 2.3 ± 0.7, 2.6 ± 0.8, 2.7 ± 0.7, 2.7 ± 0.8, and 2.8 ± 0.8 cm. CONCLUSIONS The DVH-based approach provided the highest embedded doses for all target diameters and patient example with modest increases in R50%, achieved by decreasing MLC segment size while increasing MU. These results suggest that embedding doses > 220% of tumor margin dose is feasible, potentially improving TCP for solid tumors.
Collapse
Affiliation(s)
- William T Hrinivich
- Dept. of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway St. Weinberg Suite 1440, Baltimore, MD, 21231, USA.
| | - Todd R McNutt
- Dept. of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway St. Weinberg Suite 1440, Baltimore, MD, 21231, USA
| | - Jeffrey J Meyer
- Dept. of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway St. Weinberg Suite 1440, Baltimore, MD, 21231, USA
| |
Collapse
|
43
|
The Combination of Stereotactic Body Radiation Therapy and Immunotherapy in Primary Liver Tumors. JOURNAL OF ONCOLOGY 2019; 2019:4304817. [PMID: 31182960 PMCID: PMC6512065 DOI: 10.1155/2019/4304817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Treatment recommendations for primary liver malignancies, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are complex and require a multidisciplinary approach. Despite surgical options that are potentially curative, options for nonsurgical candidates include systemic therapy, radiotherapy (RT), transarterial chemoembolization (TACE), and radiofrequency ablation (RFA). Stereotactic Body Radiation Therapy (SBRT) is now in routine use for the treatment of lung cancer, and there is growing evidence supporting its use in liver tumors. SBRT has the advantage of delivering ablative radiation doses in a limited number of fractions while minimizing the risk of radiation-induced liver disease (RILD) through highly conformal treatment plans. It should be considered in a multidisciplinary setting for the management of patients with unresectable, locally advanced primary liver malignancies and limited treatment options. Recently, the combination of immunotherapy with SBRT has been proposed to improve antitumor effects through engaging the immune system. This review aims at shedding light on the novel concept of the combination strategy of immune-radiotherapy in liver tumors by exploring the evidence surrounding the use of SBRT and immunotherapy for the treatment of HCC and CCA.
Collapse
|
44
|
Effect of setup and inter-fraction anatomical changes on the accumulated dose in CT-guided breath-hold intensity modulated proton therapy of liver malignancies. Radiother Oncol 2019; 134:101-109. [PMID: 31005203 DOI: 10.1016/j.radonc.2019.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/04/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the effect of setup uncertainties including uncertainties between different breath holds (BH) and inter-fractional anatomical changes under CT-guided BH with intensity-modulated proton therapy (IMPT) in patients with liver cancer. METHODS AND MATERIALS This retrospective study considered 17 patients with liver tumors who underwent feedback-guided BH (FGBH) IMRT treatment with daily CT-on-rail imaging. Planning CT images were acquired at simulation using FGBH, and FGBH CT-on-rail images were also acquired prior to each treatment. Selective robust IMPT plans were generated using planning CT and re-calculated on each daily CT-on-rail image. Subsequently, the fractional doses were deformed and accumulated onto the planning CT according to the deformable image registration between daily and planning CTs. The doses to the target and organs at risk (OARs) were compared between IMRT, planned IMPT, and accumulated IMPT doses. RESULTS For IMPT plans, the mean of D98% of CTV for all 17 patients was slightly reduced from the planned dose of 68.90 ± 1.61 Gy to 66.48 ± 1.67 Gy for the accumulated dose. The target coverage could be further improved by adjusting planning techniques. The dose-volume histograms of both planned and accumulated IMPT doses showed better sparing of OARs than that of the IMRT. CONCLUSIONS IMPT with FGBH and CT-on-rail guidance is a robust treatment approach for liver tumor cases.
Collapse
|
45
|
Mazzola R, Ruggieri R, Figlia V, Rigo M, Giaj Levra N, Ricchetti F, Nicosia L, Corradini S, Alongi F. Stereotactic body radiotherapy of central lung malignancies using a simultaneous integrated protection approach : A prospective observational study. Strahlenther Onkol 2019; 195:719-724. [PMID: 30689026 DOI: 10.1007/s00066-018-01419-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
Abstract
AIM It is recognized that stereotactic body radiotherapy (SBRT) for centrally located lung metastases is affected by higher rates of severe toxicity. In the present study, we report the clinical outcomes following a novel intensity-modulated radiotherapy prescription dose, termed simultaneous integrated protection (SIP), for nearby organs at risk (OARs). MATERIALS AND METHODS The prescribed total doses of SBRT were 70 Gy in 10 fractions and 60 Gy in 8 fractions. For ultra-centrally located lesions, a dose of 60 Gy in 10 fractions was delivered. The main planning instructions were: (1) to remain within the limits of the given dose constraints for an OAR; (2) to make use of the maximum possible dose to the OARs to minimize dose inhomogeneity for the Planning Target Volume (PTV). SBRT-related toxicity was prospectively assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) v4.0. The primary clinical endpoint was the SBRT-related toxicity. Secondary endpoint was local control. RESULTS Forty patients affected by a single central malignancy were analyzed. The median follow-up was 20 months (range, 6-58 months). Acute and late clinical pulmonary toxicity ≥grade 2 was recorded in 2 out of 40 patients (5%) and 3 out of 40 patients (7%), respectively. No patient experienced cardiac toxicity. No narrowing or stenosis of any airway or vessel was registered. One-year local control rate was 91%. The median time to local progression was 13 months (range, 6-46 months). CONCLUSION SBRT using a PTV-SIP approach for single central lung metastases achieved low SBRT-related toxicity with acceptable local control.
Collapse
Affiliation(s)
- Rosario Mazzola
- Radiation Oncology, IRCCS, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy.
| | - Ruggero Ruggieri
- Radiation Oncology, IRCCS, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy
| | - Vanessa Figlia
- Radiation Oncology, IRCCS, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy
| | - Michele Rigo
- Radiation Oncology, IRCCS, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy
| | - Niccolò Giaj Levra
- Radiation Oncology, IRCCS, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy
| | - Francesco Ricchetti
- Radiation Oncology, IRCCS, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy
| | - Luca Nicosia
- Radiation Oncology, IRCCS, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy
| | | | - Filippo Alongi
- Radiation Oncology, IRCCS, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy.,University of Brescia, Brescia, Italy
| |
Collapse
|
46
|
Dar AR, McKillop I, Vickress J, Lock M, Yartsev S. Prognostic Significance of Tumor Location for Liver Cancer Radiotherapy. Cureus 2018; 10:e3714. [PMID: 30788203 PMCID: PMC6373884 DOI: 10.7759/cureus.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Introduction According to the Surveillance, Epidemiology and End Results (SEER) data, cancerous involvement of the liver is on an increase over the last three decades. It occurs worldwide in all races and carries a poor prognosis. Currently, considerable progress has been made in patient selection, staging, surgery, chemotherapy agents, and stereotactic radiotherapy in both primary and metastatic liver cancers with improved outcomes. While there is evidence of the prognostic factors of liver function, the involvement of the portal vein, inferior vena cava thrombosis, lesion size, radiation dose, number of fractions, and SBRT techniques, there is no study evaluating outcomes with the location of the lesion. Our aim in this retrospective study was to explore the correlation of tumor location from the portal vein bifurcation (vascular wall) and the radiotherapy outcome (survival) in hepatocellular cancer. Methods Contrast-enhanced computed tomography (CT) studies in 86 patients with liver cancer were retrospectively reviewed in an institutional review board (IRB)-approved database to determine the distance to the bifurcation point of the portal vein from tumor’s centre of mass (distance tumor bifurcation: DTB) and from the edge point of the planning target volume closest to the bifurcation (distance edge bifurcation: DEB). The mean dose to the sphere of 1 cm diameter around the bifurcation point (mean dose at bifurcation: MDB) was calculated. These parameters were tested as predictors of patient outcomes using univariate and multivariate analysis as two groups of patients. Results Only the DEB correlation with survival for hepatocellular carcinoma (HCC) was found to be significant (P = 0.028). A larger MDB is caused by a smaller DTB and a smaller DEB. The hazard ratio for DTB, DEB, and MDB were 0.48, 0.41, and 1.05, respectively. The DEB was found to be a better predictor of outcomes (overall survival) compared to the DTB and MDB parameters. The close proximity of the tumor to the blood supply vessels was a decisive factor. The DTB parameter is also dependent on the size of the tumor and this factor weakens the correlation of this parameter on survival data. The inclusion of the dosimetric and geometric location, as well as distance parameters in predictive models for liver cancer patients, was shown to benefit the pre-selection of treatment options for liver cancer patients treated with radiotherapy. Conclusion For hepatocellular cancer patients, the distance between the edge point of the planning treatment volume (PTV) to the portal vein bifurcation (DEB) of more than 2 cm was found to be a predictor of survival.
Collapse
Affiliation(s)
- A Rashid Dar
- Radiation Oncology, Schulich School of Medicine & Dentistry - Western University, London, CAN
| | | | - Jason Vickress
- Medical Physics, Peel Regional Cancer Center, Brampton, CAN
| | - Michael Lock
- Radiation Oncology, Schulich School of Medicine & Dentistry - Western University, London, CAN
| | - Slav Yartsev
- Medical Physics, London Regional Cancer Program, London, CAN
| |
Collapse
|
47
|
Abstract
Modern radiotherapy techniques have enabled high focal doses of radiation to be delivered to patients with primary and secondary malignancies of the liver. The current clinical practice of radiation oncology has benefitted from decades of research that have informed how to achieve excellent local control and survival outcomes with minimal toxicities. Still, one of the most devastating consequences of radiation to the liver remains a challenge: radiation-induced liver disease (RILD). Here, we will review the current understanding of classic and nonclassic RILD from a clinical perspective, the evaluation and management of patients who are at risk of developing RILD, methods to reduce the likelihood of RILD using modern radiation techniques, and the diagnosis and treatment of radiation-related liver toxicities.
Collapse
|
48
|
CyberKnife MLC-based treatment planning for abdominal and pelvic SBRT: Analysis of multiple dosimetric parameters, overall scoring index and clinical scoring. Phys Med 2018; 56:25-33. [DOI: 10.1016/j.ejmp.2018.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/31/2022] Open
|
49
|
Pfeiler T, Ahmad Khalil D, Ayadi M, Bäumer C, Blanck O, Chan M, Engwall E, Geismar D, Peters S, Plaude S, Spaan B, Timmermann B, Wulff J. Motion effects in proton treatments of hepatocellular carcinoma-4D robustly optimised pencil beam scanning plans versus double scattering plans. Phys Med Biol 2018; 63:235006. [PMID: 30468685 DOI: 10.1088/1361-6560/aaecfc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pencil beam scanning (PBS) proton therapy enables better dose conformality for complex anatomical geometries than passive proton scattering techniques, but is more susceptible to organ motion. This becomes an issue when treating moving tumours in the thorax or abdomen. Novel four-dimensional treatment planning approaches have been developed to increase the robustness of PBS plans against motion. However, their efficacy still needs to be examined by means of 4D dynamically accumulated dose (4DDD) analyses. This study investigates the potential use of 4D robust optimisation to maintain sufficient target coverage in the presence of organ motion, while sparing surrounding healthy tissue, for hepatocellular carcinoma (HCC). The liver is particularly suited to study motion interplay effects since the treatment region exhibits smaller density gradients and more homogeneous tissue than targets in the thorax, making it less prone to range errors. A facility-specific beam time model, developed and experimentally validated previously, was used for the clinical evaluation. 4DDD analyses of eleven target volumes did not show a significant improvement of the target coverage using 4D robust optimisation, but a reduction of the dose to close-by organs at risk. Interplay effects were averaged out for the applied fractionation scheme of 15 fractions. Contrary to PBS, passive double scattering (DS) plans yielded homogeneous 4DDD dose distributions in a single fraction. But, in some cases, they exceeded organ at risk dose limits, which were only satisfied in PBS. The average normal liver dose could be decreased by almost 6% compared to non-robustly optimised PBS plans and by 16% compared to DS plans when implementing 4D robust optimisation. Except for some very small tumours with large motion amplitudes, 4D robustly optimised PBS plans were found to be clinically acceptable even without supplementary motion mitigation techniques.
Collapse
Affiliation(s)
- Tina Pfeiler
- West German Proton Therapy Centre Essen (WPE), Essen, Germany. West German Cancer Centre (WTZ), Essen, Germany. TU Dortmund University, Experimental Physics 5, Dortmund, Germany. Department of Particle Therapy, University Hospital Essen, Essen, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lin YL. Proton beam therapy in apneic oxygenation treatment of an unresectable hepatocellular carcinoma: A case report and review of literature. World J Hepatol 2018; 10:772-779. [PMID: 30386470 PMCID: PMC6206151 DOI: 10.4254/wjh.v10.i10.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Presented here is the clinical course of a 63-year-old patient with a central, large and unresectable hepatocellular carcinoma (HCC) with liver metastases and tumor invasion of the portal and hepatic veins. After the tumor had been diagnosed, the patient was immediately treated with proton beam therapy (PBT), at a total dose of 60 Gy (relative biological effectiveness) in 20 fractions administered within 4 wk. To manage the respiratory movements, at the Rinecker Proton Therapy Center, apneic oxygenation was given daily, under general anesthesia. The patient tolerated both the PBT and general anesthesia very well, and did now show any signs of acute or late toxicity. The treatment was followed by constant reductions in the tumor marker alpha-fetoprotein and the cholestatic parameters gamma-glutamyltransferase and alkaline phosphatase. The patient commenced an adjuvant treatment with sorafenib, given at 6-wk intervals, after the PBT. Follow-up with regular magnetic resonance imaging has continued for 40 mo so far, demonstrating remarkable shrinkage of the HCC (maximal diameter dropping from approximately 13 cm to 2 cm). To date, the patient remains free of tumor recurrence. PBT served as a safe and effective treatment method for an unresectable HCC with vascular invasion.
Collapse
Affiliation(s)
- Yi-Lan Lin
- Department of Radiation Oncology, Rinecker Proton Therapy Center, Munich 81371, Germany
| |
Collapse
|