1
|
Shulman DS, Crompton BD. Emerging Role of Blood-based Biomarkers in Sarcomas. Hematol Oncol Clin North Am 2025:S0889-8588(25)00040-1. [PMID: 40410056 DOI: 10.1016/j.hoc.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
We assess the emerging role of liquid biopsies, particularly circulating tumor DNA (ctDNA), in sarcoma management. Preliminary studies suggest that ctDNA has multiple potential applications including, early detection in patients with cancer predisposition syndromes, diagnosis, prognostication, therapy selection, and monitoring treatment response. Among patients with gastrointestinal stromal tumors, studies have demonstrated the capacity for identification of clinically relevant resistance mutations. In other sarcoma subtypes such as Ewing sarcoma and osteosarcoma, early findings indicate that ctDNA levels might correlate with tumor burden and outcomes, potentially aiding in risk stratification. Clinical utility has not been established for these applications.
Collapse
Affiliation(s)
- David S Shulman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Brian D Crompton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Boston Children's Hospital, Boston, MA 02115, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Kastner L, Kandalaft W, Mahant Mahant A, Crimella J, Hakim S, Peng X, Isakoff MS, Hayashi M, Loeb DM. Cytokine Profiling of Children, Adolescents, and Young Adults Newly Diagnosed with Sarcomas Demonstrates a Role for IL-1β in Osteosarcoma Metastasis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.05.25325205. [PMID: 40297413 PMCID: PMC12036375 DOI: 10.1101/2025.04.05.25325205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background Sarcomas are a heterogeneous group of mesenchymal tumors frequently diagnosed in pediatric and young adult patients. These tumors respond poorly to conventional immunotherapy, though the precise reason for this is not known. We sought to characterize the systemic immune response to sarcomas by measuring the levels of circulating cytokines in the plasma of sarcoma patients, testing the hypothesis that the natures of a patient's immune response to their tumor directly affects outcome. Methods Plasma was collected from newly diagnosed, treatment-naive pediatric sarcoma patients participating in an ongoing clinical trial, MCC20320. A panel of 18 cytokines was selected and cytokine levels were measured using the Luminex platform. Cytokine levels were analyzed based on clinicopathological parameters such as gender, age, stage, and survival. Results We found that the cytokine profile in patients newly diagnosed with sarcoma is distinct from healthy controls, but different sarcomas were not distinguishable. Patients with osteosarcoma who had elevated levels of multiple cytokines had inferior overall survival compared to those with fewer or no elevated levels. Similarly, elevated levels of individual cytokines and chemokines, including IL-24, CXCL5, and CXCL10, were associated with inferior event-free or overall survival in patients with osteosarcoma. Perhaps most significantly, elevated IL-1β at diagnosis was associated with metastatic presentation and inferior event-free survival in patients with osteosarcoma. Conclusion These findings suggest that pediatric sarcoma patients mount a systemic immune response that may affect event-free or overall survival. IL-1β in particular may be a valuable target for immunotherapy for osteosarcoma patients.
Collapse
Affiliation(s)
- Laurel Kastner
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - William Kandalaft
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | - Sydney Hakim
- Department of Pediatrics-Hematology/Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, Colorado 80045
| | - Xiao Peng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Masanori Hayashi
- Department of Pediatrics-Hematology/Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, Colorado 80045
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, NY 10461
- Marilyn and Stanley M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
3
|
Dhir A, Hayashi M, Bodlak A, Oesterheld J, Loeb DM, Mascarenhas L, Isakoff MS, Sandler ES, Borinstein SC, Trucco M, Lagmay JP, Setty BA, Pratilas CA, Caywood E, Metts J, Yin H, Fridley B, Yin J, Laborde J, Reed DR, Adams DL, Wagner LM. Phase II Trial of Gemcitabine and Nab-Paclitaxel for Recurrent Osteosarcoma with Serial Monitoring Using Liquid Biopsy: A Report from the National Pediatric Cancer Foundation. Clin Cancer Res 2024; 30:5314-5322. [PMID: 39360936 DOI: 10.1158/1078-0432.ccr-24-1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE The combination of gemcitabine and docetaxel is often used to treat patients with recurrent osteosarcoma. Nab-paclitaxel has preclinical activity against osteosarcoma and is potentially less myelosuppressive than docetaxel. We conducted a prospective multi-institutional phase II trial combining gemcitabine and nab-paclitaxel for patients aged 12 to 30 years with recurrent osteosarcoma and measurable disease. PATIENTS AND METHODS A Simon's two-stage design was used to test a 4-month progression-free survival (PFS-4) of 10% vs. 35%. Patients received nab-paclitaxel 125 mg/m2 and gemcitabine 1,000 mg/m2 weekly × 3 in 4-week cycles. Immunohistochemical analysis of archival tissue and serial assessment of circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) using ultralow passage whole-genome sequencing were performed to identify potential biomarkers of response. RESULTS Eighteen patients received 56 total cycles (median 2, range 1-12). Two patients (11%) experienced confirmed partial response and six (33%) received >2 cycles. The PFS-4 was 28% (95% confidence interval, 13%-59%). Six patients required dose reductions and three patients were removed due to toxicities. All 18 patients had detectable CTCs and 10 had ctDNA identified. All eight patients with MYC amplification at study entry experienced disease progression. CONCLUSIONS Gemcitabine and nab-paclitaxel demonstrated similar clinical activity and toxicity compared to previous retrospective reports utilizing gemcitabine and docetaxel in patients with recurrent osteosarcoma. Serial analysis of CTC and ctDNA was feasible in this prospective multi-institution study and provides preliminary data on the use of these assays in patients with relapsed disease.
Collapse
Affiliation(s)
- Aditi Dhir
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders Children's Hospital Colorado, Aurora, Colorado
| | - Avery Bodlak
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders Children's Hospital Colorado, Aurora, Colorado
| | - Javier Oesterheld
- Cancer and Blood Disorders Program, Atrium Health Levine Children's Hospital, Charlotte, North Carolina
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Leo Mascarenhas
- Cedar-Sinai Medical Center, Guerin Children's and Cedar-Sinai Cancer, Los Angeles, California
| | - Michael S Isakoff
- Division of Hematology/Oncology, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Eric S Sandler
- Division of Hematology/Oncology, Nemours Children's Health, Jacksonville, Florida
| | - Scott C Borinstein
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matteo Trucco
- Department of Pediatric Hematology-Oncology and BMT, Cleveland Clinic Children's, Cleveland, Ohio
| | - Joanne P Lagmay
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Shands Childrens Hospital, University of Florida, Gainesville, Florida
| | - Bhuvana A Setty
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Christine A Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Emi Caywood
- Division of Hematology/Oncology, Nemours Children's Health, Jacksonville, Florida
| | - Jonathan Metts
- Sarcoma Department, Moffitt Cancer Center, Tampa, Florida
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Peterburg, Florida
| | - Hong Yin
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Brooke Fridley
- Health Services and Outcomes Research, Children's Mercy Hospital, Kansas City, Missouri
| | - Jun Yin
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Jose Laborde
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Damon R Reed
- Moffitt Cancer Center, Department of Individualized Cancer Management, Tampa, Florida
| | | | - Lars M Wagner
- Division of Pediatric Hematology/Oncology, Duke University, Durham, North Carolina
| |
Collapse
|
4
|
Gupta A, Dietz MS, Riedel RF, Dhir A, Borinstein SC, Isakoff MS, Aye JM, Rainusso N, Armstrong AE, DuBois SG, Wagner LM, Rosenblum JM, Cohen-Gogo S, Albert CM, Zahler S, Chugh R, Trucco M. Consensus recommendations for systemic therapies in the management of relapsed Ewing sarcoma: A report from the National Ewing Sarcoma Tumor Board. Cancer 2024; 130:4028-4039. [PMID: 39182183 DOI: 10.1002/cncr.35537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Ewing sarcoma (ES) is a malignant tumor of bone and soft tissue that most often occurs in children, adolescents, and young adults. Debate and controversy remain in the management of relapsed/refractory ES (RR-ES). The authors leveraged the expertise assembled by the National Ewing Sarcoma Tumor Board, a multidisciplinary virtual tumor board that meets monthly to discuss challenging cases of ES. In this review, they focus on select topics that apply to the management of patients with RR-ES. The specific topics covered include the initial approach of such patients and discussion of the goals of care, the role of molecular testing, chemotherapy regimens and novel agents to consider, the role of maintenance therapy, and the use of high-dose chemotherapy with autologous stem cell rescue. The data referenced are often limited to subgroup analyses and/or compiled from multiple sources. Although not intended to replace the clinical judgement of treating physicians, these guidelines are intended to support clinicians and provide some clarity and recommendations for the management of patients with RR-ES. PLAIN LANGUAGE SUMMARY: Ewing sarcoma (ES) is a bone and soft tissue cancer that most often occurs in teenagers and young adults. This article uses the experience of the National Ewing Sarcoma Tumor Board, a multi-institution, multidisciplinary virtual tumor board that meets monthly to discuss challenging cases of ES and to address questions related to the treatment of patients with relapsed ES. Although not intended to replace the clinical judgement of treating physicians and limited by available data, these consensus recommendations will support clinicians who treat patients with this challenging malignancy, made even more difficult when it recurs.
Collapse
Affiliation(s)
- Ajay Gupta
- Division of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Matthew S Dietz
- Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Richard F Riedel
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Aditi Dhir
- Hematology/Oncology Division, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Scott C Borinstein
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael S Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Jamie M Aye
- Division of Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nino Rainusso
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University in St Louis, St Louis, Missouri, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Program and Harvard Medical School, Boston, Massachusetts, USA
| | - Lars M Wagner
- Division of Pediatric Hematology/Oncology, Duke University, Durham, North Carolina, USA
| | - Jeremy M Rosenblum
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Sarah Cohen-Gogo
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Catherine M Albert
- Seattle Children's Hospital/University of Washington School of Medicine, Seattle, Washington, USA
| | - Stacey Zahler
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplantation, Cleveland Clinic Children's, Cleveland, Ohio, USA
| | - Rashmi Chugh
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matteo Trucco
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplantation, Cleveland Clinic Children's, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Darville-O’Quinn P, Gokgoz N, Tsoi KM, Andrulis IL, Wunder JS. Investigating the Use of Circulating Tumor DNA for Sarcoma Management. J Clin Med 2024; 13:6539. [PMID: 39518682 PMCID: PMC11545914 DOI: 10.3390/jcm13216539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Sarcomas are a heterogeneous group of cancers, many with high rates of recurrence and metastasis, leading to significant morbidity and mortality. Due to a lack of early diagnostic biomarkers, by the time recurrent disease can be clinically detected, it is often extensive and difficult to treat. Here, we sought to investigate methods of detecting ctDNA in sarcoma patient plasma to potentially monitor disease recurrence, progression, and response to treatment. Methods: Whole-exome sequencing of matched tumor and blood samples revealed patient-specific mutations, which were used to develop personalized assays to detect ctDNA in patient plasma. Since ctDNA is present in extremely low quantities, detection requires highly sensitive methodologies. Droplet digital PCR is highly sensitive; however, it is limited in that it can only be used to target one tumor variant at a time. Therefore, a protocol combining multiplex PCR and targeted amplicon sequencing was developed. Results: ddPCR was successfully able to detect tumor-specific mutations in plasma, confirming the presence of ctDNA in sarcoma patients. Multiplex PCR followed by amplicon sequencing was able to detect multiple tumor variants simultaneously, although it was not as sensitive as ddPCR. Additionally, ctDNA was detected in patient plasma collected at two different time points. Conclusions: This work demonstrates that although there is a lack of recurrent biomarkers, personalized assays detecting ctDNA have the potential to be used to monitor disease progression in sarcoma.
Collapse
Affiliation(s)
- Paige Darville-O’Quinn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (P.D.-O.); (N.G.); (K.M.T.)
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (P.D.-O.); (N.G.); (K.M.T.)
| | - Kim M. Tsoi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (P.D.-O.); (N.G.); (K.M.T.)
- Musculoskeletal Oncology Unit, Sinai Health System, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (P.D.-O.); (N.G.); (K.M.T.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jay S. Wunder
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (P.D.-O.); (N.G.); (K.M.T.)
- Musculoskeletal Oncology Unit, Sinai Health System, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
6
|
Reed DR, Tulpule A, Metts J, Trucco M, Robertson-Tessi M, O'Donohue TJ, Iglesias-Cardenas F, Isakoff MS, Mauguen A, Shukla N, Dela Cruz FS, Tap W, Kentsis A, Morris CD, Hameed M, Honeyman JN, Behr GG, Sulis ML, Ortiz MV, Slotkin E. Pediatric Leukemia Roadmaps Are a Guide for Positive Metastatic Bone Sarcoma Trials. J Clin Oncol 2024; 42:2955-2960. [PMID: 38843482 PMCID: PMC11534082 DOI: 10.1200/jco.23.02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/02/2024] [Accepted: 04/11/2024] [Indexed: 08/30/2024] Open
Abstract
ALL cures require many MRD therapies. This strategy should drive experiments and trials in metastatic bone sarcomas.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Asmin Tulpule
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan Metts
- Johns Hopkins All Children's Hospital, St Petersburg, FL
| | | | | | - Tara J O'Donohue
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alex Kentsis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carol D Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joshua N Honeyman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gerald G Behr
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Luisa Sulis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
7
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Shirai R, Biebighauser T, Walker D, Oviedo J, Nelson-Taylor S, Bodlak A, Porfilio T, Oike N, Goodspeed A, Hayashi M. Cadherin-11 contributes to the heterogenous and dynamic Wnt-Wnt-β-catenin pathway activation in Ewing sarcoma. PLoS One 2024; 19:e0305490. [PMID: 38875295 PMCID: PMC11178195 DOI: 10.1371/journal.pone.0305490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Ewing sarcoma is the second most common bone cancer in children, and while patients who present with metastatic disease at the time of diagnosis have a dismal prognosis. Ewing sarcoma tumors are driven by the fusion gene EWS/Fli1, and while these tumors are genetically homogenous, the transcriptional heterogeneity can lead to a variety of cellular processes including metastasis. In this study, we demonstrate that in Ewing sarcoma cells, the canonical Wnt/β-Catenin signaling pathway is heterogeneously activated in vitro and in vivo, correlating with hypoxia and EWS/Fli1 activity. Ewing sarcoma cells predominantly express β-Catenin on the cell membrane bound to CDH11, which can respond to exogenous Wnt ligands leading to the immediate activation of Wnt/β-Catenin signaling within a tumor. Knockdown of CDH11 leads to delayed and decreased response to exogenous Wnt ligand stimulation, and ultimately decreased metastatic propensity. Our findings strongly indicate that CDH11 is a key component of regulating Wnt//β-Catenin signaling heterogeneity within Ewing sarcoma tumors, and is a promising molecular target to alter Wnt//β-Catenin signaling in Ewing sarcoma patients.
Collapse
Affiliation(s)
- Ryota Shirai
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Tyler Biebighauser
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Deandra Walker
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jillian Oviedo
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Sarah Nelson-Taylor
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Avery Bodlak
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Timothy Porfilio
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Naoki Oike
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Andrew Goodspeed
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
9
|
Ewongwo A, Hui C, Moding EJ. Opportunity in Complexity: Harnessing Molecular Biomarkers and Liquid Biopsies for Personalized Sarcoma Care. Semin Radiat Oncol 2024; 34:195-206. [PMID: 38508784 DOI: 10.1016/j.semradonc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Due to their rarity and complexity, sarcomas represent a substantial therapeutic challenge. However, the incredible diversity within and across sarcoma subtypes presents an opportunity for personalized care to maximize efficacy and limit toxicity. A deeper understanding of the molecular alterations that drive sarcoma development and treatment response has paved the way for molecular biomarkers to shape sarcoma treatment. Genetic, transcriptomic, and protein biomarkers have become critical tools for diagnosis, prognostication, and treatment selection in patients with sarcomas. In the future, emerging biomarkers like circulating tumor DNA analysis offer the potential to improve early detection, monitoring response to treatment, and identifying mechanisms of resistance to personalize sarcoma treatment. Here, we review the current state of molecular biomarkers for sarcomas and highlight opportunities and challenges for the implementation of new technologies in the future.
Collapse
Affiliation(s)
- Agnes Ewongwo
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Caressa Hui
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, CA.; Stanford Cancer Institute, Stanford University, Stanford, CA..
| |
Collapse
|
10
|
Mavrogenis AF, Altsitzioglou P, Tsukamoto S, Errani C. Biopsy Techniques for Musculoskeletal Tumors: Basic Principles and Specialized Techniques. Curr Oncol 2024; 31:900-917. [PMID: 38392061 PMCID: PMC10888002 DOI: 10.3390/curroncol31020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Biopsy is a pivotal component in the diagnostic process of bone and soft tissue tumors. The objective is to obtain adequate tissue without compromising local tumor dissemination and the patient's survival. This review explores contemporary principles and practices in musculoskeletal biopsies, emphasizing the critical role of diagnostic accuracy while also delving into the evolving landscape of liquid biopsies as a promising alternative in the field. A thorough literature search was done in PubMed and Google Scholar as well as in physical books in libraries to summarize the available biopsy techniques for musculoskeletal tumors, discuss the available methods, risk factors, and complications, and to emphasize the challenges related to biopsies in oncology. Research articles that studied the basic principles and specialized techniques of biopsy techniques in tumor patients were deemed eligible. Their advantages and disadvantages, technical and pathophysiological mechanisms, and possible risks and complications were reviewed, summarized, and discussed. An inadequately executed biopsy may hinder diagnosis and subsequently impact treatment outcomes. All lesions should be approached with a presumption of malignancy until proven otherwise. Liquid biopsies have emerged as a potent non-invasive tool for analyzing tumor phenotype, progression, and drug resistance and guiding treatment decisions in bone sarcomas and metastases. Despite advancements, several barriers remain in biopsies, including challenges related to costs, scalability, reproducibility, and isolation methods. It is paramount that orthopedic oncologists work together with radiologists and pathologists to enhance diagnosis, patient outcomes, and healthcare costs.
Collapse
Affiliation(s)
- Andreas F. Mavrogenis
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Pavlos Altsitzioglou
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Costantino Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy;
| |
Collapse
|
11
|
Akshintala S, Sundby RT, Bernstein D, Glod JW, Kaplan RN, Yohe ME, Gross AM, Derdak J, Lei H, Pan A, Dombi E, Palacio-Yance I, Herrera KR, Miettinen MM, Chen HX, Steinberg SM, Helman LJ, Mascarenhas L, Widemann BC, Navid F, Shern JF, Heske CM. Phase I trial of Ganitumab plus Dasatinib to Cotarget the Insulin-Like Growth Factor 1 Receptor and Src Family Kinase YES in Rhabdomyosarcoma. Clin Cancer Res 2023; 29:3329-3339. [PMID: 37398992 PMCID: PMC10529967 DOI: 10.1158/1078-0432.ccr-23-0709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Antibodies against insulin-like growth factor (IGF) type 1 receptor have shown meaningful but transient tumor responses in patients with rhabdomyosarcoma (RMS). The SRC family member YES has been shown to mediate IGF type 1 receptor (IGF-1R) antibody acquired resistance, and cotargeting IGF-1R and YES resulted in sustained responses in murine RMS models. We conducted a phase I trial of the anti-IGF-1R antibody ganitumab combined with dasatinib, a multi-kinase inhibitor targeting YES, in patients with RMS (NCT03041701). PATIENTS AND METHODS Patients with relapsed/refractory alveolar or embryonal RMS and measurable disease were eligible. All patients received ganitumab 18 mg/kg intravenously every 2 weeks. Dasatinib dose was 60 mg/m2/dose (max 100 mg) oral once daily [dose level (DL)1] or 60 mg/m2/dose (max 70 mg) twice daily (DL2). A 3+3 dose escalation design was used, and maximum tolerated dose (MTD) was determined on the basis of cycle 1 dose-limiting toxicities (DLT). RESULTS Thirteen eligible patients, median age 18 years (range 8-29) enrolled. Median number of prior systemic therapies was 3; all had received prior radiation. Of 11 toxicity-evaluable patients, 1/6 had a DLT at DL1 (diarrhea) and 2/5 had a DLT at DL2 (pneumonitis, hematuria) confirming DL1 as MTD. Of nine response-evaluable patients, one had a confirmed partial response for four cycles, and one had stable disease for six cycles. Genomic studies from cell-free DNA correlated with disease response. CONCLUSIONS The combination of dasatinib 60 mg/m2/dose daily and ganitumab 18 mg/kg every 2 weeks was safe and tolerable. This combination had a disease control rate of 22% at 5 months.
Collapse
Affiliation(s)
- Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Donna Bernstein
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - John W. Glod
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Rosandra N. Kaplan
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Joanne Derdak
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Alexander Pan
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Isabel Palacio-Yance
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Kailey R. Herrera
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Markku M. Miettinen
- Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Helen X. Chen
- Cancer Therapy Evaluation Program (CTEP), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Seth M. Steinberg
- Biostatistics and Data Management, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Lee J. Helman
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- The Osteosarcoma Institute, Dallas, Texas
| | - Leo Mascarenhas
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Fariba Navid
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
12
|
Gelineau NU, van Barneveld A, Samim A, Van Zogchel L, Lak N, Tas ML, Matser Y, Mavinkurve-Groothuis AMC, van Grotel M, Zsiros J, van Eijkelenburg NKA, Knops RRG, van Ewijk R, Langenberg KPS, Krijger RD, Hiemcke-Jiwa LS, Van Paemel R, Cornelli L, De Preter K, De Wilde B, Van Der Schoot E, Tytgat G. Case series on clinical applications of liquid biopsy in pediatric solid tumors: towards improved diagnostics and disease monitoring. Front Oncol 2023; 13:1209150. [PMID: 37664065 PMCID: PMC10473251 DOI: 10.3389/fonc.2023.1209150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background and aims Solid tumors account for about 30% of all pediatric cancers. The diagnosis is typically based on histological and molecular analysis of a primary tumor biopsy. Liquid biopsies carry several advantages over conventional tissue biopsy. However, their use for genomic analysis and response monitoring of pediatric solid tumors is still in experimental stages and mostly performed retrospectively without direct impact on patient management. In this case series we discuss six clinical cases of children with a solid tumor for whom a liquid biopsy assay was performed and demonstrate the potential of liquid biopsy for future clinical decision making. Methods We performed quantitative real-time PCR (RT-qPCR), droplet digital PCR (ddPCR) or reduced representation bisulphite sequencing of cell-free DNA (cfRRBS) on liquid biopsies collected from six pediatric patients with a solid tumor treated between 2017 and 2023 at the Princess Máxima Center for Pediatric Oncology in the Netherlands. Results were used to aid in clinical decision making by contribution to establish a diagnosis, by prognostication and response to therapy monitoring. Results In three patients cfRRBS helped to establish the diagnosis of a rhabdomyosarcoma, an Ewing sarcoma and a neuroblastoma (case 1-3). In two patients, liquid biopsies were used for prognostication, by MYCN ddPCR in a patient with neuroblastoma and by RT-qPCR testing rhabdomyosarcoma-specific mRNA in bone marrow of a patient with a rhabdomyosarcoma (case 4 and 5). In case 6, mRNA testing demonstrated disease progression and assisted clinical decision making. Conclusion This case series illustrates the value of liquid biopsy. We further demonstrate and recommend the use of liquid biopsies to be used in conjunction with conventional methods for the determination of metastatic status, prognostication and monitoring of treatment response in patients with pediatric solid tumors.
Collapse
Affiliation(s)
- Nina U. Gelineau
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Atia Samim
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Lieke Van Zogchel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Nathalie Lak
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Michelle L. Tas
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Yvette Matser
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Martine van Grotel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Jószef Zsiros
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Rutger R. G. Knops
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Roelof van Ewijk
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Ronald De Krijger
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Laura S. Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ruben Van Paemel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
| | - Lotte Cornelli
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
| | - Ellen Van Der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Godelieve Tytgat
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
13
|
Shulman DS, Merriam P, Choy E, Guenther LM, Cavanaugh KL, Kao P, Posner A, Bhushan K, Fairchild G, Barker E, Klega K, Stegmaier K, Crompton BD, London WB, DuBois SG. Phase 2 trial of palbociclib and ganitumab in patients with relapsed Ewing sarcoma. Cancer Med 2023; 12:15207-15216. [PMID: 37306107 PMCID: PMC10417097 DOI: 10.1002/cam4.6208] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Ewing sarcoma (EWS) is an aggressive sarcoma with few treatment options for patients with relapsed disease. Cyclin-dependent kinase 4 (CDK4) is a genomic vulnerability in EWS that is synergistic with IGF-1R inhibition in preclinical studies. We present the results of a phase 2 study combining palbociclib (CDK4/6 inhibitor) with ganitumab (IGF-1R monoclonal antibody) for patients with relapsed EWS. PATIENTS AND METHODS This open-label, non-randomized, phase 2 trial enrolled patients ≥12 years with relapsed EWS. All patients had molecular confirmation of EWS and RECIST measurable disease. Patients initially received palbociclib 125 mg orally on Days 1-21 and ganitumab 18 mg/kg intravenously on Days 1 and 15 of a 28-day cycle. The primary endpoints were objective response (complete or partial) per RECIST and toxicity by CTCAE. An exact one-stage design required ≥4 responders out of 15 to evaluate an alternative hypothesis of 40% response rate against a null of 10%. The study was closed following enrollment of the 10th patient due to discontinuation of ganitumab supply. RESULTS Ten evaluable patients enrolled [median age 25.7 years (range 12.3-40.1)]. The median duration of therapy was 2.5 months (range 0.9-10.8). There were no complete or partial responders. Three of 10 patients had stable disease for >4 cycles and 2 had stable disease at completion of planned therapy or study closure. Six-month progression-free survival was 30% (95% CI 1.6%-58.4%). Two patients had cycle 1 hematologic dose-limiting toxicities (DLTs) triggering palbociclib dose reduction to 100 mg daily for 21 days. Two subsequent patients had cycle 1 hematologic DLTs at the reduced dose. Eighty percent of patients had grade 3/4 AEs, including neutropenia (n = 8), white blood cell decreased (n = 7), and thrombocytopenia (n = 5). Serum total IGF-1 significantly increased (p = 0.013) and ctDNA decreased during the first cycle. CONCLUSIONS This combination lacks adequate therapeutic activity for further study, though a subset of patients had prolonged stable disease.
Collapse
Affiliation(s)
- David S. Shulman
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Priscilla Merriam
- Dana‐Farber Cancer Institute and Harvard Medical SchoolBostonMassachusettsUSA
| | - Edwin Choy
- Massachusetts General HospitalMassachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | | | - Kerri L. Cavanaugh
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Pei‐Chi Kao
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Andrew Posner
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ketki Bhushan
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Grace Fairchild
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Emma Barker
- Dana‐Farber Cancer Institute and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kelly Klega
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kimberly Stegmaier
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Brian D. Crompton
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Wendy B. London
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Steven G. DuBois
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
14
|
Earland N, Chen K, Semenkovich NP, Chauhan PS, Zevallos JP, Chaudhuri AA. Emerging Roles of Circulating Tumor DNA for Increased Precision and Personalization in Radiation Oncology. Semin Radiat Oncol 2023; 33:262-278. [PMID: 37331781 DOI: 10.1016/j.semradonc.2023.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Recent breakthroughs in circulating tumor DNA (ctDNA) technologies present a compelling opportunity to combine this emerging liquid biopsy approach with the field of radiogenomics, the study of how tumor genomics correlate with radiotherapy response and radiotoxicity. Canonically, ctDNA levels reflect metastatic tumor burden, although newer ultrasensitive technologies can be used after curative-intent radiotherapy of localized disease to assess ctDNA for minimal residual disease (MRD) detection or for post-treatment surveillance. Furthermore, several studies have demonstrated the potential utility of ctDNA analysis across various cancer types managed with radiotherapy or chemoradiotherapy, including sarcoma and cancers of the head and neck, lung, colon, rectum, bladder, and prostate . Additionally, because peripheral blood mononuclear cells are routinely collected alongside ctDNA to filter out mutations associated with clonal hematopoiesis, these cells are also available for single nucleotide polymorphism analysis and could potentially be used to detect patients at high risk for radiotoxicity. Lastly, future ctDNA assays will be utilized to better assess locoregional MRD in order to more precisely guide adjuvant radiotherapy after surgery in cases of localized disease, and guide ablative radiotherapy in cases of oligometastatic disease.
Collapse
Affiliation(s)
- Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Kevin Chen
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Pradeep S Chauhan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Jose P Zevallos
- Department of Otolaryngology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Aadel A Chaudhuri
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO; Department of Genetics, Washington University School of Medicine, St. Louis, MO; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO; Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
15
|
Anderson P, Ghisoli M, Crompton BD, Klega KS, Wexler LH, Slotkin EK, Stanbery L, Manning L, Wallraven G, Manley M, Horvath S, Bognar E, Nemunaitis J. Pilot Study of Recurrent Ewing's Sarcoma Management with Vigil/Temozolomide/Irinotecan and Assessment of Circulating Tumor (ct) DNA. Clin Cancer Res 2023; 29:1689-1697. [PMID: 36780200 PMCID: PMC10150239 DOI: 10.1158/1078-0432.ccr-22-2292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/08/2022] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
PURPOSE Treatment options for recurrent or refractory Ewing's sarcoma (ES) are limited. Vigil is a novel autologous tumor cell therapy expressing bi-shRNA furin/GMCSF plasmid, which previously demonstrated monotherapy activity in advanced ES. Herein we report safety and evidence of benefit to Vigil for ES as potential treatment. PATIENTS AND METHODS In this pilot trial, eligible patients with recurrent or refractory ES who failed initial standard-of-care therapy received treatment with temozolomide (TEM) 100 mg/m2/day oral and irinotecan (IRI) 50 mg/m2/day oral, Days 1 to 5, in combination with Vigil (1 × 106-107 cells/mL/day intradermal, Day 15), every 21 days (Vigil/TEM/IRI). Objective response rate (ORR) by RECIST v1.1, progression-free survival (PFS), and overall survival (OS) were assessed. Circulating tumor (ct) DNA analysis was done by patient-specific droplet digital PCR on baseline and serially collected on-treatment samples. RESULTS Eight of 10 enrolled patients were evaluable for safety and efficacy (mean age 24.6; 12.6-46.1 years old); 2 did not receive Vigil. Seven of 8 patients previously received TEM/IRI. No Vigil-related adverse events were reported. Common ≥Grade 3 chemotherapy-related toxicity included neutropenia (50%) and thrombocytopenia (38%). We observed two partial response patients by RECIST; both showed histologic complete response without additional cancer therapy. Median PFS was 8.2 months (95% confidence interval, 4.3-NA). Five patients showed stable disease or better for ≥6 months. Patient-specific EWS/FLI1 ctDNA was detectable in all 8 evaluable patients at baseline. Changes in ctDNA levels corresponded to changes in disease burden. CONCLUSIONS Results demonstrated safety of combination Vigil/TEM/IRI.
Collapse
Affiliation(s)
| | | | | | | | - Leonard H. Wexler
- MSK KIDS, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily K. Slotkin
- MSK KIDS, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhu Z, Hu E, Shen H, Tan J, Zeng S. The functional and clinical roles of liquid biopsy in patient-derived models. J Hematol Oncol 2023; 16:36. [PMID: 37031172 PMCID: PMC10082989 DOI: 10.1186/s13045-023-01433-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The liquid biopsy includes the detection of circulating tumor cells (CTCs) and CTC clusters in blood, as well as the detection of, cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) and extracellular vesicles (EVs) in the patient's body fluid. Liquid biopsy has important roles in translational research. But its clinical utility is still under investigation. Newly emerged patient-derived xenograft (PDX) and CTC-derived xenograft (CDX) faithfully recapitulate the genetic and morphological features of the donor patients' tumor and patient-derived organoid (PDO) can mostly mimic tumor growth, tumor microenvironment and its response to drugs. In this review, we describe how the development of these patient-derived models has assisted the studies of CTCs and CTC clusters in terms of tumor biological behavior exploration, genomic analysis, and drug testing, with the help of the latest technology. We then summarize the studies of EVs and cfDNA/ctDNA in PDX and PDO models in early cancer diagnosis, tumor burden monitoring, drug test and response monitoring, and molecular profiling. The challenges faced and future perspectives of research related to liquid biopsy using patient-derived models are also discussed.
Collapse
Affiliation(s)
- Ziqing Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Erya Hu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
17
|
Chen Y, Qin T, Chen Y, Gao M. Case report: Ewing sarcoma with EWSR-ERG fusion elevates procalcitonin extremely in the long term without infection. Front Oncol 2023; 12:1047738. [PMID: 36713573 PMCID: PMC9880485 DOI: 10.3389/fonc.2022.1047738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Background Ewing sarcoma (ES) represents a rare, aggressive bone and soft-tissue cancer. Unlike breast, liver, pancreatic, and prostate cancers, Ewing sarcoma has had no representative tumor marker until now. The use of procalcitonin (PCT) as a tumor marker is also rarely reported. PCT is a clinically recognized and widely used inflammatory marker in recent years. In rare cases, PCT may also be falsely positive due to non-infectious factors. In the few previously reported papers regarding the correlation between tumors and PCT, we learned that abnormalities of PCT level can also be impacted by individual cancers. Case presentation Here, we first reported a case of Ewing sarcoma with markedly elevated PCT without infection and carried out some literature review. The patient was a middle-aged man with extraskeletal Ewing sarcoma whose lesion was located in the distal abdominal ileum. He had a sudden and unprovoked onset of high fever during chemotherapy before surgery. After multiple examinations, the patient's blood routine, C-reactive protein, blood culture, and CT examination showed no signs of infection, and even the culture from the end of the central venous catheter showed no pathogen growth. Only PCT increased dramatically to more than 200 ng/ml. PCT remained at this level for several months until a single abdominal lumpectomy was performed before it dropped to near-normal levels. Conclusion In our report, PCT is significantly elevated in Ewing sarcoma in the absence of infection. Not only that, but we particularly highlighted the precipitous drop in PCT following tumor resection.
Collapse
Affiliation(s)
- Ying Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Chen
- Department of Hematology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China,*Correspondence: Yan Chen, ; Ming Gao,
| | - Ming Gao
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Yan Chen, ; Ming Gao,
| |
Collapse
|
18
|
Shulman DS, Whittle SB, Surdez D, Bailey KM, de Álava E, Yustein JT, Shlien A, Hayashi M, Bishop AJR, Crompton BD, DuBois SG, Shukla N, Leavey PJ, Lessnick SL, Kovar H, Delattre O, Grünewald TGP, Antonescu CR, Roberts RD, Toretsky JA, Tirode F, Gorlick R, Janeway KA, Reed D, Lawlor ER, Grohar PJ. An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma. NPJ Precis Oncol 2022; 6:65. [PMID: 36115869 PMCID: PMC9482616 DOI: 10.1038/s41698-022-00307-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment.
Collapse
Affiliation(s)
- David S Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah B Whittle
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Didier Surdez
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Kelly M Bailey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC/Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Center and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX, USA
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology/Department of Paediatric Laboratory Medicine/Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute and Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick J Leavey
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, and the Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Heinrich Kovar
- St. Anna Children´s Cancer Research Institute (CCRI) and Department Pediatrics Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg/Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)/Institut of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disease, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC, USA
| | - Franck Tirode
- Univ Lyon, Universite Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008, Lyon, France
| | - Richard Gorlick
- Division of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Damon Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - Elizabeth R Lawlor
- Seattle Children's Research Institute, University of Washington Medical School, Seattle, WA, USA
| | - Patrick J Grohar
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Doculara L, Trahair TN, Bayat N, Lock RB. Circulating Tumor DNA in Pediatric Cancer. Front Mol Biosci 2022; 9:885597. [PMID: 35647029 PMCID: PMC9133724 DOI: 10.3389/fmolb.2022.885597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The measurement of circulating tumor DNA (ctDNA) has gained increasing prominence as a minimally invasive tool for the detection of cancer-specific markers in plasma. In adult cancers, ctDNA detection has shown value for disease-monitoring applications including tumor mutation profiling, risk stratification, relapse prediction, and treatment response evaluation. To date, there are ctDNA tests used as companion diagnostics for adult cancers and it is not understood why the same cannot be said about childhood cancer, despite the marked differences between adult and pediatric oncology. In this review, we discuss the current understanding of ctDNA as a disease monitoring biomarker in the context of pediatric malignancies, including the challenges associated with ctDNA detection in liquid biopsies. The data and conclusions from pediatric cancer studies of ctDNA are summarized, highlighting treatment response, disease monitoring and the detection of subclonal disease as applications of ctDNA. While the data from retrospective studies highlight the potential of ctDNA, large clinical trials are required for ctDNA analysis for routine clinical use in pediatric cancers. We outline the requirements for the standardization of ctDNA detection in pediatric cancers, including sample handling and reproducibility of results. With better understanding of the advantages and limitations of ctDNA and improved detection methods, ctDNA analysis may become the standard of care for patient monitoring in childhood cancers.
Collapse
Affiliation(s)
- Louise Doculara
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Toby N. Trahair
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Narges Bayat
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B. Lock
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Richard B. Lock,
| |
Collapse
|
20
|
Basic Science with Preclinical Models to Investigate and Develop Liquid Biopsy: What Are the Available Data and Is It a Fruitful Approach? Int J Mol Sci 2022; 23:ijms23105343. [PMID: 35628154 PMCID: PMC9141279 DOI: 10.3390/ijms23105343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
The molecular analysis of circulating analytes (circulating tumor-DNA (ctDNA), -cells (CTCs) and -RNA (ctRNA)/exosomes) deriving from solid tumors and detected in the bloodstream—referred as liquid biopsy—has emerged as one of the most promising concepts in cancer management. Compelling data have evidenced its pivotal contribution and unique polyvalence through multiple applications. These data essentially derived from translational research. Therewith, data on liquid biopsy in basic research with preclinical models are scarce, a concerning lack that has been widely acknowledged in the field. This report aimed to comprehensively review the available data on the topic, for each analyte. Only 17, 17 and 2 studies in basic research investigated ctDNA, CTCs and ctRNA/exosomes, respectively. Albeit rare, these studies displayed noteworthy relevance, demonstrating the capacity to investigate questions related to the biology underlying analytes release that could not be explored via translational research with human samples. Translational, clinical and technological sectors of liquid biopsy may benefit from basic research and should take note of some important findings generated by these studies. Overall, results underscored the need to intensify the efforts to conduct future studies on liquid biopsy in basic research with new preclinical models.
Collapse
|
21
|
Thorwarth A, Haase K, Röefzaad C, Pajtler KW, Schramm K, Hauptmann K, Behnke A, Vokuhl C, Elgeti T, Gratopp A, Schulte JH, Scheer M, Hernáiz Driever P, Nysom K, Eggert A, Henssen AG, Deubzer HE. Genomic Evolution and Personalized Therapy of an Infantile Fibrosarcoma Harboring an NTRK Oncogenic Fusion. JCO Precis Oncol 2022; 6:e2100283. [PMID: 35613412 PMCID: PMC9200398 DOI: 10.1200/po.21.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precision medicine for infantile fibrosarcoma by monitoring of spatial and temporal clonal evolution (requested from authors: Would you be so kind to let us know when the article is announced via Twitter?).![]()
Collapse
Affiliation(s)
- Anne Thorwarth
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Kerstin Haase
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Sites Berlin and Heidelberg, Germany
| | - Claudia Röefzaad
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Kristian W Pajtler
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Sites Berlin and Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Kathrin Schramm
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Sites Berlin and Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Kathrin Hauptmann
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Anke Behnke
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Thomas Elgeti
- Department of Radiology (including Pediatric Radiology), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Alexander Gratopp
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitäts-Medizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Sites Berlin and Heidelberg, Germany
| | - Monika Scheer
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Pablo Hernáiz Driever
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Karsten Nysom
- Department of Pediatrics and Adolescent Medicine, Juliane Marie Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Angelika Eggert
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Sites Berlin and Heidelberg, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Anton G Henssen
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Sites Berlin and Heidelberg, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Sites Berlin and Heidelberg, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Liquid biopsies have emerged as a noninvasive alternative to tissue biopsy with potential applications during all stages of pediatric oncology care. The purpose of this review is to provide a survey of pediatric cell-free DNA (cfDNA) studies, illustrate their potential applications in pediatric oncology, and to discuss technological challenges and approaches to overcome these hurdles. RECENT FINDINGS Recent literature has demonstrated liquid biopsies' ability to inform treatment selection at diagnosis, monitor clonal evolution during treatment, sensitively detect minimum residual disease following local control, and provide sensitive posttherapy surveillance. Advantages include reduced procedural anesthesia, molecular profiling unbiased by tissue heterogeneity, and ability to track clonal evolution. Challenges to wider implementation in pediatric oncology, however, include blood volume restrictions and relatively low mutational burden in childhood cancers. Multiomic approaches address challenges presented by low-mutational burden, and novel bioinformatic analyses allow a single assay to yield increasing amounts of information, reducing blood volume requirements. SUMMARY Liquid biopsies hold tremendous promise in pediatric oncology, enabling noninvasive serial surveillance with adaptive care. Already integrated into adult care, recent advances in technologies and bioinformatics have improved applicability to the pediatric cancer landscape.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
23
|
Metts J, Russell T, Reed D, Trucco M. A Proposed Trial Design for the Treatment of Widely Metastatic Ewing Sarcoma Inspired by Evolutionary Dynamics. Cancers (Basel) 2022; 14:cancers14030736. [PMID: 35159003 PMCID: PMC8833360 DOI: 10.3390/cancers14030736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Metastatic Ewing sarcoma has dismal long-term survival despite multiple attempts to intensify standard therapy through the addition of new agents to the existing chemotherapy backbone. Here, based on the application of evolutionary dynamics to pediatric sarcoma, we propose an alternative treatment strategy that varies exposure to agents and dosing intensities, termed sequential second-strike therapy (SSST). We announce an upcoming clinical trial to apply these principles to patients with widely metastatic Ewing sarcoma, those with metastatic disease beyond the lungs.
Collapse
Affiliation(s)
- Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
- Correspondence:
| | - Thomas Russell
- Departments of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
| | - Damon Reed
- Moffitt Cancer Center, Department of Individualized Cancer Management, Tampa, FL 33612, USA;
| | - Matteo Trucco
- Department of Pediatric Hematology Oncology and BMT, Cleveland Clinic Children’s, Cleveland, OH 44106, USA;
| |
Collapse
|
24
|
Chang WI, Lin C, Liguori N, Honeyman JN, DeNardo B, El-Deiry W. Molecular Targets for Novel Therapeutics in Pediatric Fusion-Positive Non-CNS Solid Tumors. Front Pharmacol 2022; 12:747895. [PMID: 35126101 PMCID: PMC8811504 DOI: 10.3389/fphar.2021.747895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal fusions encoding novel molecular drivers have been identified in several solid tumors, and in recent years the identification of such pathogenetic events in tumor specimens has become clinically actionable. Pediatric sarcomas and other rare tumors that occur in children as well as adults are a group of heterogeneous tumors often with driver gene fusions for which some therapeutics have already been developed and approved, and others where there is opportunity for progress and innovation to impact on patient outcomes. We review the chromosomal rearrangements that represent oncogenic events in pediatric solid tumors outside of the central nervous system (CNS), such as Ewing Sarcoma, Rhabdomyosarcoma, Fibrolamellar Hepatocellular Carcinoma, and Renal Cell Carcinoma, among others. Various therapeutics such as CDK4/6, FGFR, ALK, VEGF, EGFR, PDGFR, NTRK, PARP, mTOR, BRAF, IGF1R, HDAC inhibitors are being explored among other novel therapeutic strategies such as ONC201/TIC10.
Collapse
Affiliation(s)
- Wen-I Chang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| | - Claire Lin
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Nicholas Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joshua N. Honeyman
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Pediatric Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Bradley DeNardo
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
| | - Wafik El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| |
Collapse
|
25
|
Seidel MG, Kashofer K, Moser T, Thueringer A, Liegl-Atzwanger B, Leithner A, Szkandera J, Benesch M, El-Heliebi A, Heitzer E. Clinical implementation of plasma cell-free circulating tumor DNA quantification by digital droplet PCR for the monitoring of Ewing sarcoma in children and adolescents. Front Pediatr 2022; 10:926405. [PMID: 36046479 PMCID: PMC9420963 DOI: 10.3389/fped.2022.926405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Treatment stratification and response assessment in pediatric sarcomas has relied on imaging studies and surgical/histopathological evidence of vital tumor cells. Such studies and evidence collection processes often involve radiation and/or general anesthesia in children. Cell-free circulating tumor DNA (ctDNA) detection in blood plasma is one available method of so-called liquid biopsies that has been shown to correlate qualitatively and quantitatively with the existence of vital tumor cells in the body. Our clinical observational study focused on the utility and feasibility of ctDNA detection in pediatric Ewing sarcoma (EWS) as a marker of minimal residual disease (MRD). PATIENTS AND METHODS We performed whole genome sequencing (WGS) to identify the exact breakpoints in tumors known to carry the EWS-FLI1 fusion gene. Patient-specific fusion breakpoints were tracked in peripheral blood plasma using digital droplet PCR (ddPCR) before, during, and after therapy in six children and young adults with EWS. Presence and levels of fusion breakpoints were correlated with clinical disease courses. RESULTS We show that the detection of ctDNA in the peripheral blood of EWS patients (i) is feasible in the clinical routine and (ii) allows for the longitudinal real-time monitoring of MRD activity in children and young adults. Although changing ctDNA levels correlated well with clinical outcome within patients, between patients, a high variability was observed (inter-individually). CONCLUSION ctDNA detection by ddPCR is a highly sensitive, specific, feasible, and highly accurate method that can be applied in EWS for follow-up assessments as an additional surrogate parameter for clinical MRD monitoring and, potentially, also for treatment stratification in the near future.
Collapse
Affiliation(s)
- Markus G Seidel
- Division for Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Tina Moser
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria.,Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Andrea Thueringer
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - Joanna Szkandera
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Benesch
- Division for Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Amin El-Heliebi
- BioTechMed-Graz, Graz, Austria.,Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria.,Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| |
Collapse
|
26
|
Krumbholz M, Eiblwieser J, Ranft A, Zierk J, Schmidkonz C, Stütz AM, Peneder P, Tomazou EM, Agaimy A, Bäuerle T, Hartmann W, Dirksen U, Metzler M. Quantification of Translocation-Specific ctDNA Provides an Integrating Parameter for Early Assessment of Treatment Response and Risk Stratification in Ewing Sarcoma. Clin Cancer Res 2021; 27:5922-5930. [PMID: 34426444 DOI: 10.1158/1078-0432.ccr-21-1324] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE We evaluated the predictive and prognostic value of circulating tumor DNA (ctDNA) in patients with Ewing sarcoma (EWS) treated in the EWING2008 trial. EXPERIMENTAL DESIGN Plasma samples from 102 patients with EWS enrolled in the EWING2008 trial were obtained before and during induction chemotherapy. Genomic EWSR1 fusion sequence spanning primers and probes were used for highly specific and sensitive quantification of the levels of ctDNA by digital droplet PCR. ctDNA levels were correlated to established clinical risk factors and outcome parameters. RESULTS Pretreatment ctDNA copy numbers were correlated with event-free and overall survival. The reduction in ctDNA levels below the detection limit was observed in most cases after only two blocks of vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) induction chemotherapy. The persistence of ctDNA after two VIDE blocks was a strong predictor of poor outcomes. ctDNA levels correlated well with most established clinical risk factors; an inverse correlation was found only for the histologic response to induction therapy. ctDNA levels did not provide simple representations of tumor volume, but integrated information from various tumor characteristics represented an independent EWS tumor marker with predictive and prognostic value. CONCLUSIONS ctDNA copy number in the plasma of patients with EWS is a quantifiable parameter for early risk stratification and can be used as a dynamic noninvasive biomarker for early prediction of treatment response and outcome of patients.
Collapse
Affiliation(s)
- Manuela Krumbholz
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany. .,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Johanna Eiblwieser
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Ranft
- Pediatrics III, West German Cancer Centre, University Hospital of Essen, Essen, Germany
| | - Jakob Zierk
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | | | - Adrian M Stütz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter Peneder
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Eleni M Tomazou
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Abbas Agaimy
- Department of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, University Hospital Muenster, Gerhard Domagk Institute of Pathology, Muenster, Germany
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre, University Hospital of Essen, Essen, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
27
|
Hadjimichael AC, Pergaris A, Kaspiris A, Foukas AF, Theocharis SE. Liquid Biopsy: A New Translational Diagnostic and Monitoring Tool for Musculoskeletal Tumors. Int J Mol Sci 2021; 22:11526. [PMID: 34768955 PMCID: PMC8583711 DOI: 10.3390/ijms222111526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Soft tissue and bone sarcomas represent a group of aggressive neoplasms often accompanied by dismal patient prognosis, especially when distant metastases are present. Moreover, effective treatment can pose a challenge, as recurrences are frequent and almost half of patients present with advanced disease. Researchers have unveiled the molecular abnormalities implicated in sarcomas' carcinogenesis, paving the way for novel treatment strategies based on each individual tumor's characteristics. Therefore, the development of new techniques aiding in early disease detection and tumor molecular profiling is imperative. Liquid biopsy refers to the sampling and analysis of patients' fluids, such as blood, to identify tumor biomarkers, through a variety of methods, including qRT-PCR, qPCR, droplet digital PCR, magnetic microbeads and digital PCR. Assessment of circulating tumor cells (CTCs), circulating free DNA (ctDNA), micro RNAs (miRs), long non-coding RNAs (lncRNAs), exosomes and exosome-associated proteins can yield a plethora of information on tumor molecular signature, histologic type and disease stage. In addition, the minimal invasiveness of the procedure renders possible its wide application in the clinical setting, and, therefore, the early detection of the presence of tumors. In this review of the literature, we gathered information on biomarkers assessed through liquid biopsy in soft tissue and bone sarcoma patients and we present the information they can yield for each individual tumor type.
Collapse
Affiliation(s)
- Argyris C. Hadjimichael
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.C.H.); (A.P.)
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.C.H.); (A.P.)
| | - Angelos Kaspiris
- Division for Orthopaedic Research, Laboratory of Molecular Pharmacology, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Athanasios F. Foukas
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Stamatios E. Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.C.H.); (A.P.)
| |
Collapse
|
28
|
Shah AT, Azad TD, Breese MR, Chabon JJ, Hamilton EG, Straessler K, Kurtz DM, Leung SG, Spillinger A, Liu HY, Behroozfard IH, Wittber FM, Hazard FK, Cho SJ, Daldrup-Link HE, Vo KT, Rangaswami A, Pribnow A, Spunt SL, Lacayo NJ, Diehn M, Alizadeh AA, Sweet-Cordero EA. A Comprehensive Circulating Tumor DNA Assay for Detection of Translocation and Copy-Number Changes in Pediatric Sarcomas. Mol Cancer Ther 2021; 20:2016-2025. [PMID: 34353895 PMCID: PMC9307079 DOI: 10.1158/1535-7163.mct-20-0987] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Most circulating tumor DNA (ctDNA) assays are designed to detect recurrent mutations. Pediatric sarcomas share few recurrent mutations but rather are characterized by translocations and copy-number changes. We applied Cancer Personalized Profiling by deep Sequencing (CAPP-Seq) for detection of translocations found in the most common pediatric sarcomas. We also applied ichorCNA to the combined off-target reads from our hybrid capture to simultaneously detect copy-number alterations (CNA). We analyzed 64 prospectively collected plasma samples from 17 patients with pediatric sarcoma. Translocations were detected in the pretreatment plasma of 13 patients and were confirmed by tumor sequencing in 12 patients. Two of these patients had evidence of complex chromosomal rearrangements in their ctDNA. We also detected copy-number changes in the pretreatment plasma of 7 patients. We found that ctDNA levels correlated with metastatic status and clinical response. Furthermore, we detected rising ctDNA levels before relapse was clinically apparent, demonstrating the high sensitivity of our assay. This assay can be utilized for simultaneous detection of translocations and CNAs in the plasma of patients with pediatric sarcoma. While we describe our experience in pediatric sarcomas, this approach can be applied to other tumors that are driven by structural variants.
Collapse
Affiliation(s)
- Avanthi Tayi Shah
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California
| | - Tej D Azad
- Stanford University School of Medicine, Stanford University, Stanford, California
| | - Marcus R Breese
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California
| | - Jacob J Chabon
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Emily G Hamilton
- Cancer Biology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Krystal Straessler
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California
- University of Utah School of Medicine, Salt Lake City, Utah
| | - David M Kurtz
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Stanley G Leung
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California
| | - Aviv Spillinger
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California
| | - Heng-Yi Liu
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California
| | - Inge H Behroozfard
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California
| | - Frederick M Wittber
- Department of Radiology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Soo-Jin Cho
- Departments of Pathology and Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Heike E Daldrup-Link
- Department of Radiology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Kieuhoa T Vo
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California
| | - Arun Rangaswami
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California
| | - Allison Pribnow
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Sheri L Spunt
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, California
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Norman J Lacayo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, California
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Maximilian Diehn
- Division of Radiation Therapy, Department of Radiation Oncology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Ash A Alizadeh
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, California
| | - E Alejandro Sweet-Cordero
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, San Fransisco, California.
| |
Collapse
|
29
|
van der Laan P, van Houdt WJ, van den Broek D, Steeghs N, van der Graaf WTA. Liquid Biopsies in Sarcoma Clinical Practice: Where Do We Stand? Biomedicines 2021; 9:1315. [PMID: 34680432 PMCID: PMC8533081 DOI: 10.3390/biomedicines9101315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Sarcomas are rare tumors of bone and soft tissue with a mesenchymal origin. This uncommon type of cancer is marked by a high heterogeneity, consisting of over 70 subtypes. Because of this broad spectrum, their treatment requires a subtype-specific therapeutic approach. Tissue biopsy is currently the golden standard for sarcoma diagnosis, but it has its limitations. Over the recent years, methods to detect, characterize, and monitor cancer through liquid biopsy have evolved rapidly. The analysis of circulating biomarkers in peripheral blood, such as circulating tumor cells (CTC) or circulating tumor DNA (ctDNA), could provide real-time information on tumor genetics, disease state, and resistance mechanisms. Furthermore, it traces tumor evolution and can assess tumor heterogeneity. Although the first results in sarcomas are encouraging, there are technical challenges that need to be addressed for implementation in clinical practice. Here, we summarize current knowledge about liquid biopsies in sarcomas and elaborate on different strategies to integrate liquid biopsy into sarcoma clinical care.
Collapse
Affiliation(s)
- Pia van der Laan
- Department of Surgical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (P.v.d.L.); (W.J.v.H.)
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Winan J. van Houdt
- Department of Surgical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (P.v.d.L.); (W.J.v.H.)
| | - Daan van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Neeltje Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Winette T. A. van der Graaf
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
30
|
Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit Rev Oncol Hematol 2021; 162:103340. [PMID: 33894338 DOI: 10.1016/j.critrevonc.2021.103340] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Bone sarcomas, although rare, are associated with significant morbidity and mortality. The most frequent primary bone cancers include osteosarcoma, chondrosarcoma and Ewing sarcoma. The treatment approaches are heterogeneous and mainly chosen based on precise tumour staging. Unfortunately, clinical outcome has not changed significantly in over 30 years and tumour grade is still the best prognosticator of metastatic disease and survival. An option to improve this scenario is to identify molecular biomarkers in the early stage of the disease, or even before the disease onset. Blood-based liquid biopsies are a promising, non-invasive way to achieve this goal and there are an increasing number of studies which investigate their potential application in bone cancer diagnosis, prognosis and personalised therapy. This review summarises the interplay between clinical and molecular aspects of the three main bone sarcomas, alongside biomarker discovery and promising applications of liquid biopsy in each tumour context.
Collapse
|
31
|
Bodlak A, Chang K, Channel J, Treece AL, Donaldson N, Cost CR, Garrington TP, Greffe B, Luna-Fineman S, Sopfe J, Loeb DM, Hayashi M. Circulating Plasma Tumor DNA Is Superior to Plasma Tumor RNA Detection in Ewing Sarcoma Patients: ptDNA and ptRNA in Ewing Sarcoma. J Mol Diagn 2021; 23:872-881. [PMID: 33887462 DOI: 10.1016/j.jmoldx.2021.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022] Open
Abstract
The detection of tumor-specific nucleic acids from blood increasingly is being used as a method of liquid biopsy and minimal residual disease detection. However, achieving high sensitivity and high specificity remains a challenge. Here, we perform a direct comparison of two droplet digital PCR (ddPCR)-based detection methods, circulating plasma tumor RNA and circulating plasma tumor DNA (ptDNA), in blood samples from newly diagnosed Ewing sarcoma patients. First, we developed three specific ddPCR-based assays to detect EWS-FLI1 or EWS-ERG fusion transcripts, which naturally showed superior sensitivity to DNA detection on in vitro control samples. Next, we identified the patient-specific EWS-FLI1 or EWS-ERG breakpoint from five patient tumor samples and designed ddPCR-based, patient-specific ptDNA assays for each patient. These patient-specific assays show that although plasma tumor RNA can be detected in select newly diagnosed patients, positive results are low and statistically unreliable compared with ptDNA assays, which reproducibly detect robust positive results across most patients. Furthermore, the unique disease biology of Ewing sarcoma enabled us to show that most cell-free RNA is not tumor-derived, although cell-free-DNA burden is affected strongly by tumor-derived DNA burden. Here, we conclude that, even with optimized highly sensitive and specific assays, tumor DNA detection is superior to RNA detection in Ewing sarcoma patients.
Collapse
Affiliation(s)
- Avery Bodlak
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Kyle Chang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Jessica Channel
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Amy L Treece
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Nathan Donaldson
- Department of Orthopedics, University of Colorado Denver, Aurora, Colorado
| | - Carrye R Cost
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | | - Brian Greffe
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | | - Jenna Sopfe
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
32
|
Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, Hardes J, Hartmann W, Kovar H, Metzler M, Shulman DS, Streitbürger A, Timmermann B, Toretsky JA, Uhlenbruch Y, Vieth V, Grünewald TGP, Dirksen U. Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med 2021; 10:1685. [PMID: 33919988 PMCID: PMC8071040 DOI: 10.3390/jcm10081685] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ewing sarcoma, a highly aggressive bone and soft-tissue cancer, is considered a prime example of the paradigms of a translocation-positive sarcoma: a genetically rather simple disease with a specific and neomorphic-potential therapeutic target, whose oncogenic role was irrefutably defined decades ago. This is a disease that by definition has micrometastatic disease at diagnosis and a dismal prognosis for patients with macrometastatic or recurrent disease. International collaborations have defined the current standard of care in prospective studies, delivering multiple cycles of systemic therapy combined with local treatment; both are associated with significant morbidity that may result in strong psychological and physical burden for survivors. Nevertheless, the combination of non-directed chemotherapeutics and ever-evolving local modalities nowadays achieve a realistic chance of cure for the majority of patients with Ewing sarcoma. In this review, we focus on the current standard of diagnosis and treatment while attempting to answer some of the most pressing questions in clinical practice. In addition, this review provides scientific answers to clinical phenomena and occasionally defines the resulting translational studies needed to overcome the hurdle of treatment-associated morbidities and, most importantly, non-survival.
Collapse
Affiliation(s)
- Stefan K. Zöllner
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| | - James F. Amatruda
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| | - Sebastian Bauer
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, Sarcoma Center, University Hospital Essen, 45147 Essen, Germany
| | - Stéphane Collaud
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Thoracic Surgery, Ruhrlandklinik, University of Essen-Duisburg, 45239 Essen, Germany
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IbiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Jendrik Hardes
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany;
- West German Cancer Center (WTZ), Network Partner Site, University Hospital Münster, 48149 Münster, Germany
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute and Medical University Vienna, 1090 Vienna, Austria;
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Arne Streitbürger
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Beate Timmermann
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre, 45147 Essen, Germany
| | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA;
| | - Yasmin Uhlenbruch
- St. Josefs Hospital Bochum, University Hospital, 44791 Bochum, Germany;
| | - Volker Vieth
- Department of Radiology, Klinikum Ibbenbüren, 49477 Ibbenbühren, Germany;
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, 69120 Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
33
|
Nellan A, Bodlak A, Mirsky DM, Mulcahy Levy J, Garrington TP, Foreman NK, Gilani A, Hayashi M. ddPCR Analysis Reveals BRAF V600E Mutations Are Infrequent in Isolated Pituitary Langerhans Cell Histiocytosis Patients. J Neuropathol Exp Neurol 2021; 79:1313-1319. [PMID: 32930721 DOI: 10.1093/jnen/nlaa091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia with a highly variable clinical presentation affecting people of all ages. Mutations in BRAF V600E are the most identifiable molecular alteration in LCH although its incidence in pediatric patients with isolated pituitary stalk involvement is not well described. Pediatric patients with LCH and isolated pituitary stalk involvement typically present with central diabetes insipidus. Diagnosis requires a transcranial biopsy which often yields scant tissue. We sought to determine the prevalence of BRAF V600E mutations in patients with isolated pituitary stalk LCH using digital droplet polymerase chain reaction because this method requires minimal tumor DNA. We identified 8 patients with isolated pituitary stalk thickening who underwent a biopsy at Children's Hospital Colorado from January 2001 to December 2019, as well as 6 patients with systemic LCH diagnosed by biopsy in the same period as a comparison. Only one out of the 8 patients with isolated thickened pituitary stalk was found to have a detectable BRAF V600E mutation. Five out of the 6 patients with systemic LCH had a detectable BRAF V600E mutation. In our series, BRAF V600E mutations are rare in pediatric patients with LCH and isolated pituitary stalk involvement.
Collapse
Affiliation(s)
- Anandani Nellan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Center for Cancer and Blood Disorders, Children's Hospital Colorado.,Division of Pediatric Hematology / Oncology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Avery Bodlak
- Division of Pediatric Hematology / Oncology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | | - Jean Mulcahy Levy
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Center for Cancer and Blood Disorders, Children's Hospital Colorado.,Division of Pediatric Hematology / Oncology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Timothy P Garrington
- Division of Pediatric Hematology / Oncology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Center for Cancer and Blood Disorders, Children's Hospital Colorado.,Division of Pediatric Hematology / Oncology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Ahmed Gilani
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Center for Cancer and Blood Disorders, Children's Hospital Colorado.,Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Masanori Hayashi
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Center for Cancer and Blood Disorders, Children's Hospital Colorado.,Division of Pediatric Hematology / Oncology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
34
|
Clanchy FIL. Rationale for Early Detection of EWSR1 Translocation-Associated Sarcoma Biomarkers in Liquid Biopsy. Cancers (Basel) 2021; 13:824. [PMID: 33669307 PMCID: PMC7920076 DOI: 10.3390/cancers13040824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcomas are mesenchymal tumours that often arise and develop as a result of chromosomal translocations, and for several forms of sarcoma the EWSR1 gene is a frequent translocation partner. Sarcomas are a rare form of malignancy, which arguably have a proportionally greater societal burden that their prevalence would suggest, as they are more common in young people, with survivors prone to lifelong disability. For most forms of sarcoma, histological diagnosis is confirmed by molecular techniques such as FISH or RT-PCR. Surveillance after surgical excision, or ablation by radiation or chemotherapy, has remained relatively unchanged for decades, but recent developments in molecular biology have accelerated the progress towards routine analysis of liquid biopsies of peripheral blood. The potential to detect evidence of residual disease or metastasis in the blood has been demonstrated by several groups but remains unrealized as a routine diagnostic for relapse during remission, for disease monitoring during treatment, and for the detection of occult, residual disease at the end of therapy. An update is provided on research relevant to the improvement of the early detection of relapse in sarcomas with EWSR1-associated translocations, in the contexts of biology, diagnosis, and liquid biopsy.
Collapse
Affiliation(s)
- Felix I. L. Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7LD, UK
| |
Collapse
|
35
|
Abstract
Ewing sarcoma is a rare and aggressive tumor that affects children and young adults. Ewing sarcomas are characterized by specific chromosomal translocations that give rise to fusion transcripts that codify for aberrant transcription factors. More than 95% of Ewing sarcoma harbor translocations that produce the fusion of the EWSR1 gene with the transcription factors FLI1 or ERG. This feature can be used to diagnose this entity unambiguously.In this chapter we describe a RT-PCR method that allows for the detection of the most frequent alterations with elevated specificity and sensitivity which is able to distinguish among the different types of fusions. The method is fast and economical, and can be carried out with the conventional equipment available in any molecular biology laboratory.
Collapse
Affiliation(s)
- Carlos Rodríguez-Martín
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
36
|
Izquierdo E, Proszek P, Pericoli G, Temelso S, Clarke M, Carvalho DM, Mackay A, Marshall LV, Carceller F, Hargrave D, Lannering B, Pavelka Z, Bailey S, Entz-Werle N, Grill J, Vassal G, Rodriguez D, Morgan PS, Jaspan T, Mastronuzzi A, Vinci M, Hubank M, Jones C. Droplet digital PCR-based detection of circulating tumor DNA from pediatric high grade and diffuse midline glioma patients. Neurooncol Adv 2021; 3:vdab013. [PMID: 34169282 PMCID: PMC8218704 DOI: 10.1093/noajnl/vdab013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of liquid biopsy is of potential high importance for children with high grade (HGG) and diffuse midline gliomas (DMG), particularly where surgical procedures are limited, and invasive biopsy sampling not without risk. To date, however, the evidence that detection of cell-free DNA (cfDNA) or circulating tumor DNA (ctDNA) could provide useful information for these patients has been limited, or contradictory. METHODS We optimized droplet digital PCR (ddPCR) assays for the detection of common somatic mutations observed in pediatric HGG/DMG, and applied them to liquid biopsies from plasma, serum, cerebrospinal fluid (CSF), and cystic fluid collected from 32 patients. RESULTS Although detectable in all biomaterial types, ctDNA presented at significantly higher levels in CSF compared to plasma and/or serum. When applied to a cohort of 127 plasma specimens from 41 patients collected from 2011 to 2018 as part of a randomized clinical trial in pediatric non-brainstem HGG/DMG, ctDNA profiling by ddPCR was of limited use due to the small volumes (mean = 0.49 mL) available. In anecdotal cases where sufficient material was available, cfDNA concentration correlated with disease progression in two examples each of poor response in H3F3A_K27M-mutant DMG, and longer survival times in hemispheric BRAF_V600E-mutant cases. CONCLUSION Tumor-specific DNA alterations are more readily detected in CSF than plasma. Although we demonstrate the potential of the approach to assessing tumor burden, our results highlight the necessity for adequate sample collection and approach to improve detection if plasma samples are to be used.
Collapse
Affiliation(s)
- Elisa Izquierdo
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Paula Proszek
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, UK
| | - Giulia Pericoli
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Sara Temelso
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Matthew Clarke
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Diana M Carvalho
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Alan Mackay
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Lynley V Marshall
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
- Children & Young People’s Unit, Royal Marsden Hospital NHS Trust, Sutton, UK
| | - Fernando Carceller
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
- Children & Young People’s Unit, Royal Marsden Hospital NHS Trust, Sutton, UK
| | - Darren Hargrave
- Department of Haematology and Oncology, UCL Great Ormond Street Institute for Child Health, London, UK
| | - Birgitta Lannering
- Department of Pediatrics, Institute of Clinical Sciences, Queen Silvia Children’s Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Zdenek Pavelka
- Department of Pediatric Oncology, University Hospital Brno – Children’s Hospital, Brno, Czechia
| | - Simon Bailey
- Department of Paediatric Oncology, Great North Children’s Hospital, Newcastle University Center for Cancer, Newcastle upon Tyne, UK
| | - Natacha Entz-Werle
- Pediatric Onco-Hematology Department, University Hospital of Strasbourg, Strasbourg, France
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets team, Faculty of Pharmacy, Illkirch, France
| | - Jacques Grill
- Pediatric and Adolescent Oncology and INSERM Unit U981, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy and Paris Saclay University, Villejuif, France
| | - Gilles Vassal
- Pediatric and Adolescent Oncology and INSERM Unit U981, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy and Paris Saclay University, Villejuif, France
| | - Daniel Rodriguez
- Medical Physics and Clinical Engineering, Nottingham University Hospital Trust Nottingham University Hospital Trust, Nottingham, UK
| | - Paul S Morgan
- Medical Physics and Clinical Engineering, Nottingham University Hospital Trust Nottingham University Hospital Trust, Nottingham, UK
| | - Tim Jaspan
- Department of Radiology, Nottingham University Hospital Trust, Nottingham University Hospital Trust, Nottingham, UK
| | - Angela Mastronuzzi
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Mara Vinci
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Michael Hubank
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, UK
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| |
Collapse
|
37
|
Fusion genes as biomarkers in pediatric cancers: A review of the current state and applicability in diagnostics and personalized therapy. Cancer Lett 2020; 499:24-38. [PMID: 33248210 DOI: 10.1016/j.canlet.2020.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
The incidence of pediatric cancers is rising steadily across the world, along with the challenges in understanding the molecular mechanisms and devising effective therapeutic strategies. Pediatric cancers are presented with diverse molecular characteristics and more distinct subtypes when compared to adult cancers. Recent studies on the genomic landscape of pediatric cancers using next-generation sequencing (NGS) approaches have redefined this field by providing better subtype characterization and novel actionable targets. Since early identification and personalized treatment strategies influence therapeutic outcomes, survival, and quality of life in pediatric cancer patients, the quest for actionable biomarkers is of great value in this field. Fusion genes that are prevalent and recurrent in several pediatric cancers are ideally suited in this context due to their disease-specific occurrence. In this review, we explore the current status of fusion genes in pediatric cancer subtypes and their use as biomarkers for diagnosis and personalized therapy. We discuss the technological advancements made in recent years in NGS sequencing and their impact on fusion detection algorithms that have revolutionized this field. Finally, we also discuss the advantages of pairing liquid biopsy protocols for fusion detection and their eventual use in diagnosis and treatment monitoring.
Collapse
|
38
|
Pilla L, Alberti A, Di Mauro P, Gemelli M, Cogliati V, Cazzaniga ME, Bidoli P, Maccalli C. Molecular and Immune Biomarkers for Cutaneous Melanoma: Current Status and Future Prospects. Cancers (Basel) 2020; 12:E3456. [PMID: 33233603 PMCID: PMC7699774 DOI: 10.3390/cancers12113456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in the genomic, molecular and immunological make-up of melanoma allowed the development of novel targeted therapy and of immunotherapy, leading to changes in the paradigm of therapeutic interventions and improvement of patients' overall survival. Nevertheless, the mechanisms regulating either the responsiveness or the resistance of melanoma patients to therapies are still mostly unknown. The development of either the combinations or of the sequential treatment of different agents has been investigated but without a strongly molecularly motivated rationale. The need for robust biomarkers to predict patients' responsiveness to defined therapies and for their stratification is still unmet. Progress in immunological assays and genomic techniques as long as improvement in designing and performing studies monitoring the expression of these markers along with the evolution of the disease allowed to identify candidate biomarkers. However, none of them achieved a definitive role in predicting patients' clinical outcomes. Along this line, the cross-talk of melanoma cells with tumor microenvironment plays an important role in the evolution of the disease and needs to be considered in light of the role of predictive biomarkers. The overview of the relationship between the molecular basis of melanoma and targeted therapies is provided in this review, highlighting the benefit for clinical responses and the limitations. Moreover, the role of different candidate biomarkers is described together with the technical approaches for their identification. The provided evidence shows that progress has been achieved in understanding the molecular basis of melanoma and in designing advanced therapeutic strategies. Nevertheless, the molecular determinants of melanoma and their role as biomarkers predicting patients' responsiveness to therapies warrant further investigation with the vision of developing more effective precision medicine.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Andrea Alberti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Health Science and Public Health, University of Brescia, ASST Ospedali Civili, 25123 Brescia, Italy;
| | - Pierluigi Di Mauro
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Maria Gemelli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Viola Cogliati
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Marina Elena Cazzaniga
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Paolo Bidoli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha 26999, Qatar;
| |
Collapse
|
39
|
Sciandra M, De Feo A, Parra A, Landuzzi L, Lollini PL, Manara MC, Mattia G, Pontecorvi G, Baricordi C, Guerzoni C, Bazzocchi A, Longhi A, Scotlandi K. Circulating miR34a levels as a potential biomarker in the follow-up of Ewing sarcoma. J Cell Commun Signal 2020; 14:335-347. [PMID: 32504411 PMCID: PMC7511499 DOI: 10.1007/s12079-020-00567-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023] Open
Abstract
Appropriate tools for monitoring sarcoma progression are still limited. The aim of the present study was to investigate the value of miR-34a-5p (miR34a) as a circulating biomarker to follow disease progression and measure the therapeutic response. Stable forced re-expression of miR34a in Ewing sarcoma (EWS) cells significantly limited tumor growth in mice. Absolute quantification of miR34a in the plasma of mice and 31 patients showed that high levels of this miRNA inversely correlated with tumor volume. In addition, miR34a expression was higher in the blood of localized EWS patients than in the blood of metastatic EWS patients. In 12 patients, we followed miR34a expression during preoperative chemotherapy. While there was no variation in the blood miR34a levels in metastatic patients at the time of diagnosis or after the last cycle of preoperative chemotherapy, there was an increase in the circulating miR34a levels in patients with localized tumors. The three patients with the highest fold-increase in the miR levels did not show evidence of metastasis. Although this analysis should be extended to a larger cohort of patients, these findings imply that detection of the miR34a levels in the blood of EWS patients may assist with the clinical management of EWS.
Collapse
Affiliation(s)
- Marika Sciandra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Parra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gianfranco Mattia
- Oncology Unit, Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giada Pontecorvi
- Oncology Unit, Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Baricordi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Clara Guerzoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Longhi
- Department of Chemotherapy, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
40
|
Wei J, Liu X, Li T, Xing P, Zhang C, Yang J. The new horizon of liquid biopsy in sarcoma: the potential utility of circulating tumor nucleic acids. J Cancer 2020; 11:5293-5308. [PMID: 32742476 PMCID: PMC7391194 DOI: 10.7150/jca.42816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The diagnosis, treatment and prognosis of sarcoma are mainly dependent on tissue biopsy, which is limited in its ability to provide a panoramic view into the dynamics of tumor progression. In addition, effective biomarkers to monitor the progression and therapeutic response of sarcoma are lacking. Liquid biopsy, a recent technological breakthrough, has gained great attention in the last few decades. Nucleic acids (such as DNA, mRNAs, microRNAs, and long non-coding RNAs) that are released from tumors circulate in the blood of cancer patients and can be evaluated through liquid biopsy. Circulating tumor nucleic acids reflect the intertumoral and intratumoral heterogeneity, and thus liquid biopsy provides a noninvasive strategy to examine these molecules compared with traditional tissue biopsy. Over the past decade, a great deal of information on the potential utilization of circulating tumor nucleic acids in sarcoma screening, prognosis and therapy efficacy monitoring has emerged. Several specific gene mutations in sarcoma can be detected in peripheral blood samples from patients and can be found in circulating tumor DNA to monitor sarcoma. In addition, circulating tumor non-coding RNA may also be a promising biomarker in sarcoma. In this review, we discuss the clinical application of circulating tumor nucleic acids as blood-borne biomarkers in sarcoma.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, 067000, China
| | - Xinyue Liu
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ting Li
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Peipei Xing
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chao Zhang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jilong Yang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
41
|
Coombs CC, Dickherber T, Crompton BD. Chasing ctDNA in Patients With Sarcoma. Am Soc Clin Oncol Educ Book 2020; 40:e351-e360. [PMID: 32598183 DOI: 10.1200/edbk_280749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Liquid biopsies are new technologies that allow cancer profiling of tumor fragments found in body fluids, such as peripheral blood, collected noninvasively from patients with malignancies. These assays are increasingly valuable in clinical oncology practice as prognostic biomarkers, as guides for therapy selection, for treatment monitoring, and for early detection of disease progression and relapse. However, application of these assays to rare cancers, such as pediatric and adult sarcomas, have lagged. In this article, we review the technical challenges of applying liquid biopsy technologies to sarcomas, provide an update on progress in the field, describe common pitfalls in interpreting liquid biopsy data, and discuss the intersection of sarcoma clinical care and commercial assays emerging on the horizon.
Collapse
Affiliation(s)
| | | | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
42
|
Andersson D, Fagman H, Dalin MG, Ståhlberg A. Circulating cell-free tumor DNA analysis in pediatric cancers. Mol Aspects Med 2020; 72:100819. [DOI: 10.1016/j.mam.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
|
43
|
Reed DR, Metts J, Pressley M, Fridley BL, Hayashi M, Isakoff MS, Loeb DM, Makanji R, Roberts RD, Trucco M, Wagner LM, Alexandrow MG, Gatenby RA, Brown JS. An evolutionary framework for treating pediatric sarcomas. Cancer 2020; 126:2577-2587. [PMID: 32176331 PMCID: PMC7318114 DOI: 10.1002/cncr.32777] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022]
Abstract
Lessons from extinction can be used in trials designed to pursue a cure for cancer. When cancer cannot be cured, similar strategies may be unwise, and strategies that leverage the adaptations of cancer to therapy should be considered.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Interdisciplinary Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | - Mariyah Pressley
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brooke L Fridley
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Michael S Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children's Medical Center, Hartford, Connecticut
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Rikesh Makanji
- Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ryan D Roberts
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplantation, Nationwide Children's Hospital, Columbus, Ohio
| | - Matteo Trucco
- Depatment of Pediatrics, University of Miami, Miami, Florida
| | - Lars M Wagner
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Mark G Alexandrow
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
44
|
Weiser DA, West-Szymanski DC, Fraint E, Weiner S, Rivas MA, Zhao CWT, He C, Applebaum MA. Progress toward liquid biopsies in pediatric solid tumors. Cancer Metastasis Rev 2020; 38:553-571. [PMID: 31836951 DOI: 10.1007/s10555-019-09825-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pediatric solid tumors have long been known to shed tumor cells, DNA, RNA, and proteins into the blood. Recent technological advances have allowed for improved capture and analysis of these typically scant circulating materials. Efforts are ongoing to develop "liquid biopsy" assays as minimally invasive tools to address diagnostic, prognostic, and disease monitoring needs in childhood cancer care. Applying these highly sensitive technologies to serial liquid biopsies is expected to advance understanding of tumor biology, heterogeneity, and evolution over the course of therapy, thus opening new avenues for personalized therapy. In this review, we outline the latest technologies available for liquid biopsies and describe the methods, pitfalls, and benefits of the assays that are being developed for children with extracranial solid tumors. We discuss what has been learned in several of the most common pediatric solid tumors including neuroblastoma, sarcoma, Wilms tumor, and hepatoblastoma and highlight promising future directions for the field.
Collapse
Affiliation(s)
- Daniel A Weiser
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY, USA
| | | | - Ellen Fraint
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY, USA
| | - Shoshana Weiner
- Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA
| | - Marco A Rivas
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Carolyn W T Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Mark A Applebaum
- Department of Pediatrics, The University of Chicago, 900 E. 57th St., KCBD 5116, Chicago, IL, 60637, USA.
| |
Collapse
|
45
|
Said R, Guibert N, Oxnard GR, Tsimberidou AM. Circulating tumor DNA analysis in the era of precision oncology. Oncotarget 2020; 11:188-211. [PMID: 32010431 PMCID: PMC6968778 DOI: 10.18632/oncotarget.27418] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal genomic heterogeneity of various tumor types and advances in technology have stimulated the development of circulating tumor DNA (ctDNA) genotyping. ctDNA was developed as a non-invasive, cost-effective alternative to tumor biopsy when such biopsy is associated with significant risk, when tumor tissue is insufficient or inaccessible, and/or when repeated assessment of tumor molecular abnormalities is needed to optimize treatment. The role of ctDNA is now well established in the clinical decision in certain alterations and tumors, such as the epidermal growth factor receptor (EGFR) mutation in non-small cell lung cancer and the v-Ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in colorectal cancer. The role of ctDNA analysis in other tumor types remains to be validated. Evolving data indicate the association of ctDNA level with tumor burden, and the usefulness of ctDNA analysis in assessing minimal residual disease, in understanding mechanisms of resistance to treatment, and in dynamically guiding therapy. ctDNA analysis is increasingly used to select therapy. Carefully designed clinical trials that use ctDNA analysis will increase the rate of patients who receive targeted therapy, will elucidate our understanding of evolution of tumor biology and will accelerate drug development and implementation of precision medicine. In this article we provide a critical overview of clinical trials and evolving data of ctDNA analysis in specific tumors and across tumor types.
Collapse
Affiliation(s)
- Rabih Said
- Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology, St. George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
- Co-authorship
| | - Nicolas Guibert
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Thoracic Oncology, Toulouse University Hospital, Toulouse, France
- Co-authorship
| | - Geoffrey R. Oxnard
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
The pitfalls and promise of liquid biopsies for diagnosing and treating solid tumors in children: a review. Eur J Pediatr 2020; 179:191-202. [PMID: 31897843 PMCID: PMC6971142 DOI: 10.1007/s00431-019-03545-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Cell-free DNA profiling using patient blood is emerging as a non-invasive complementary technique for cancer genomic characterization. Since these liquid biopsies will soon be integrated into clinical trial protocols for pediatric cancer treatment, clinicians should be informed about potential applications and advantages but also weaknesses and potential pitfalls. Small retrospective studies comparing genetic alterations detected in liquid biopsies with tumor biopsies for pediatric solid tumor types are encouraging. Molecular detection of tumor markers in cell-free DNA could be used for earlier therapy response monitoring and residual disease detection as well as enabling detection of pathognomonic and therapeutically relevant genomic alterations.Conclusion: Existing analyses of liquid biopsies from children with solid tumors increasingly suggest a potential relevance for molecular diagnostics, prognostic assessment, and therapeutic decision-making. Gaps remain in the types of tumors studied and value of detection methods applied. Here we review the current stand of liquid biopsy studies for pediatric solid tumors with a dedicated focus on cell-free DNA analysis. There is legitimate hope that integrating fully validated liquid biopsy-based innovations into the standard of care will advance patient monitoring and personalized treatment of children battling solid cancers.What is Known:• Liquid biopsies are finding their way into routine oncological screening, diagnosis, and disease monitoring in adult cancer types fast.• The most widely adopted source for liquid biopsies is blood although other easily accessible body fluids, such as saliva, pleural effusions, urine, or cerebrospinal fluid (CSF) can also serve as sources for liquid biopsiesWhat is New:• Retrospective proof-of-concept studies in small cohorts illustrate that liquid biopsies in pediatric solid tumors yield tremendous potential to be used in diagnostics, for therapy response monitoring and in residual disease detection.• Liquid biopsy diagnostics could tackle some long-standing issues in the pediatric oncology field; they can enable accurate genetic diagnostics in previously unbiopsied tumor types like renal tumors or brain stem tumors leading to better treatment strategies.
Collapse
|
47
|
Cell-free DNA in blood as a noninvasive insight into the sarcoma genome. Mol Aspects Med 2019; 72:100827. [PMID: 31703948 DOI: 10.1016/j.mam.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 12/26/2022]
Abstract
Sarcomas are malignant tumors of mesenchymal origin that arise mainly from connective and supportive tissue. Sarcomas include a wide range of histological subtypes, showing a large diversity at the molecular level, from simple to highly complex karyotypes but with few recurrent somatic changes. Therapeutic decisions increasingly rely on the molecular characteristics of the individual tumor. Circulating cell-free DNA (ctDNA) is released into peripheral blood and can be used for the genomic analysis of sarcomas. However, the diversity and heterogeneity of somatic changes observed in sarcomas pose a challenge when choosing an adequate assay for the detection of ctDNA in body fluids. In this review, we provide an overview of different studies on ctDNA from blood in bone and soft tissue sarcomas, including gastrointestinal stromal tumors. We will specifically address the technological challenges that must be considered to achieve the sensitive detection of ctDNA and discuss the clinical applications of ctDNA in the management and treatment of sarcomas.
Collapse
|
48
|
Abbou SD, Shulman DS, DuBois SG, Crompton BD. Assessment of circulating tumor DNA in pediatric solid tumors: The promise of liquid biopsies. Pediatr Blood Cancer 2019; 66:e27595. [PMID: 30614191 PMCID: PMC6550461 DOI: 10.1002/pbc.27595] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022]
Abstract
Circulating tumor DNA can be detected in the blood and body fluids of patients using ultrasensitive technologies, which have the potential to improve cancer diagnosis, risk stratification, noninvasive tumor profiling, and tracking of treatment response and disease recurrence. As we begin to apply "liquid biopsy" strategies in children with cancer, it is important to tailor our efforts to the unique genomic features of these tumors and address the technical and logistical challenges of integrating biomarker testing. This article reviews the literature demonstrating the feasibility of applying liquid biopsy to pediatric solid malignancies and suggests new directions for future studies.
Collapse
Affiliation(s)
- Samuel D. Abbou
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA,Department of Oncology for Children and Adolescents, Gustave Roussy, Villejuif, France
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Brian D. Crompton
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA,Broad Institute, Cambridge, MA, USA
| |
Collapse
|
49
|
Braig D, Becherer C, Bickert C, Braig M, Claus R, Eisenhardt AE, Heinz J, Scholber J, Herget GW, Bronsert P, Fricke A, Follo M, Stark GB, Bannasch H, Eisenhardt SU. Genotyping of circulating cell-free DNA enables noninvasive tumor detection in myxoid liposarcomas. Int J Cancer 2019; 145:1148-1161. [PMID: 30779112 DOI: 10.1002/ijc.32216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
Abstract
Soft tissue sarcomas (STS) are rare tumors of mesenchymal origin. About 50% of patients with STS experience relapse and more than 30% will die within 10 years after diagnosis. In this study we investigated circulating free DNA (cfDNA) and tumor-specific genetic alterations therein (circulating tumor DNA, ctDNA) as diagnostic biomarkers. Plasma concentrations and fragmentation of cfDNA was analyzed with quantitative PCR. Patients with STS (n = 64) had significantly higher plasma concentrations and increased fragmentation of cfDNA when compared to patients in complete remission (n = 19) and healthy controls (n = 41) (p < 0.01 and p < 0.001). Due to overlapping values between patients with STS and controls, the sensitivity and specificity of these assays is limited. Sensitive assays to detect genomic alterations in cfDNA of synovial sarcomas (t(X;18)), myxoid liposarcomas (t(12;16) and TERT C228T promoter mutation) and well-differentiated/de-differentiated liposarcomas (MDM2 amplifications) were established. ctDNA was quantified in nine liposarcoma patients during the course of their treatment. Levels of breakpoint t(12;16) and TERT C228T ctDNA correlated with the clinical course and tumor burden in patients with myxoid liposarcomas (n = 4). ctDNA could detect minimal residual disease and tumor recurrence. In contrast, detection of MDM2 amplifications was not sensitive enough to detect tumors in patients with well-differentiated/de-differentiated liposarcomas (n = 5). Genotyping of cfDNA for tumor specific genetic alterations is a feasible and promising approach for monitoring tumor activity in patients with myxoid liposarcomas. Detection of ctDNA during follow-up examinations despite negative standard imaging studies might warrant more sensitive imaging (e.g. PET-CT) or closer follow-up intervals to timely localize and treat recurrences.
Collapse
Affiliation(s)
- David Braig
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Plastic and Reconstructive Surgery, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Caroline Becherer
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christiane Bickert
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Moritz Braig
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Claus
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Internal Medicine, Augsburg Hospital, Medical Faculty of the University of Augsburg, Augsburg, Germany
| | - Anja E Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juergen Heinz
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jutta Scholber
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg W Herget
- Department of Orthopaedics and Traumatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alba Fricke
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Plastic Aesthetic and Hand Surgery, HELIOS Klinikum Emil von Behring, Berlin, Germany
| | - Marie Follo
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - G Bjoern Stark
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Holger Bannasch
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Eguchi-Ishimae M, Tezuka M, Kokeguchi T, Nagai K, Moritani K, Yonezawa S, Tauchi H, Tokuda K, Ishida Y, Ishii E, Eguchi M. Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 2019; 58:521-529. [PMID: 30739374 DOI: 10.1002/gcc.22734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/31/2022] Open
Abstract
Cell-free DNA (cfDNA), which are small DNA fragments in blood derived from dead cells including tumor cells, could serve as useful biomarkers and provide valuable genetic information about the tumors. cfDNA is now used for the genetic analysis of several types of cancers, as a surrogate for tumor biopsy, designated as "liquid biopsy." Rhabdomyosarcoma (RMS), the most frequent soft tissue tumor in childhood, can arise in any part of the body, and radiological imaging is the only available method for estimating the tumor burden, because no useful specific biological markers are present in the blood. Because tumor volume is one of the determinants of treatment response and outcome, early detection at diagnosis as well as relapse is essential for improving the treatment outcome. A 15-year-old male patient was diagnosed with alveolar RMS of prostate origin with bone marrow invasion. The PAX3-FOXO1 fusion was identified in the tumor cells in the bone marrow. After the diagnosis, cfDNA was serially collected to detect the PAX3-FOXO1 fusion sequence as a tumor marker. cfDNA could be an appropriate source for detecting the fusion gene; assays using cfDNA have proved to be useful for the early detection of tumor progression/recurrence. Additionally, the fusion gene dosage estimated by quantitative polymerase chain reaction reflected the tumor volume during the course of the treatment. We suggest that for fusion gene-positive RMSs, and other soft tissue tumors, the fusion sequence should be used for monitoring the tumor burden in the body to determine the diagnosis and treatment options for the patients.
Collapse
Affiliation(s)
| | - Mari Tezuka
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tomoki Kokeguchi
- Division of Pediatrics, Ehime Prefectural Niihama Hospital, Niihama, Ehime, Japan
| | - Kozo Nagai
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kyoko Moritani
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Sachiko Yonezawa
- Division of Pediatrics, Matsuyama Red Cross Hospital, Matsuyama, Ehime, Japan
| | - Hisamichi Tauchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kiriko Tokuda
- Division of Pediatrics/Pediatric Medical Center, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan
| | - Yasushi Ishida
- Division of Pediatrics/Pediatric Medical Center, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan
| | - Eiichi Ishii
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|