1
|
Pereira S, Ma G, Na L, Hudoklin S, Kreft ME, Kostevsek N, Al-Jamal WT. Encapsulation of doxorubicin prodrug in heat-triggered liposomes overcomes off-target activation for advanced prostate cancer therapy. Acta Biomater 2022; 140:530-546. [PMID: 34954416 DOI: 10.1016/j.actbio.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
L-377,202 prodrug consists of doxorubicin (Dox) conjugated to a prostate-specific antigen (PSA) peptide substrate that can be cleaved by enzymatically active PSA at the tumor site. Despite the initial promise in phase I trial, further testing of L-377,202 (herein called Dox-PSA) was ceased due to some degree of non-specific activation and toxicity concerns. To improve safety of Dox-PSA, we encapsulated it into low temperature-sensitive liposomes (LTSL) to bypass systemic activation, while maintaining its biological activity upon controlled release in response to mild hyperthermia (HT). A time-dependent accumulation of activated prodrug in the nuclei of PSA-expressing cells exposed to mild HT was observed, showing that Dox-PSA was efficiently released from the LTSL, cleaved by PSA and entering the cell nucleus as free Dox. Furthermore, we have shown that Dox-PSA loading in LTSL can block its biological activity at 37°C, while the combination with mild HT resulted in augmented cytotoxicity in both 2D and 3D PC models compared to the free Dox-PSA. More importantly, Dox-PSA encapsulation in LTSL prolonged its blood circulation and reduced Dox accumulation in the heart of C4-2B tumor-bearing mice over the free Dox-PSA, thus significantly improving Dox-PSA therapeutic window. Finally, Dox-PSA-loaded LTSL combined with HT significantly delayed tumor growth at a similar rate as mice treated with free Dox-PSA in both solid and metastatic PC tumor models. This indicates this strategy could block the systemic cleavage of Dox-PSA without reducing its efficacy in vivo, which could represent a safer option to treat patients with locally advanced PC. STATEMENT OF SIGNIFICANCE: This study investigates a new tactic to tackle non-specific cleavage of doxorubicin PSA-activatable prodrug (L-377,202) to treat advanced prostate cancer. In the present study, we report a nanoparticle-based approach to overcome the non-specific activation of L-377,202 in the systemic circulation. This includes encapsulating Dox-PSA in low temperature-sensitive liposomes to prevent its premature hydrolysis and non-specific cleavage. This class of liposomes offers payload protection against degradation in plasma, improved pharmacokinetics and tumor targeting, and an efficient and controlled drug release triggered by mild hyperthermia (HT) (∼42°C). We believe that this strategy holds great promise in bypassing any systemic toxicity concerns that could arise from the premature activation of the prodrug whilst simultaneously being able to control the spatiotemporal context of Dox-PSA cleavage and metabolism.
Collapse
|
2
|
Comparetti EJ, Romagnoli GG, Gorgulho CM, Pedrosa VDA, Kaneno R. Anti-PSMA monoclonal antibody increases the toxicity of paclitaxel carried by carbon nanotubes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111254. [PMID: 32806261 DOI: 10.1016/j.msec.2020.111254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Multiple-wall carbon nanotubes (CNTs) were functionalized with polyethyleneimine in order to incorporate paclitaxel (PTX), the first line chemotherapeutic agent for prostate cancer. These particles were then covered with antibodies for the prostate-specific membrane antigen (PSMA), to address them to prostate cancer cells. LNCaP prostate cancer cells (PSMA+), HCT-116 and CaCo-2 colon cancer cells (PSMA-), as well as human peripheral monocytes and lymphocytes (PSMA-), were in vitro exposed to fluorescent CNT composites. The interaction/adherence of those composites to target cells was analyzed by fluorescence microscopy and flow cytometry, showing a diffuse interaction of CNTs and CNT-PTX with all cell types. Analysis of cytotoxicity revealed that both prostate (PSMA+) and colorectal cancer cells (PSMA-) were more susceptible to PTX complexed with CNTs than to pure PTX or CNTs alone, while the incorporation of anti-PSMA (CNT-PTX-PSMA) improved the toxicity on LNCaP cells but not on PSMA- targets. No toxicity was observed in human monocytes and lymphocytes but composites induced phenotypical changes in monocytes. Our results demonstrate the feasibility of using anti-PSMA antibody to address drug-loaded CNT to cancer cells as a strategy for improving the effectiveness of antineoplastic agents.
Collapse
Affiliation(s)
- Edson José Comparetti
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil
| | - Graziela Gorete Romagnoli
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil; São Paulo State University - UNESP, School of Medicine of Botucatu - Department of Pathology, Botucatu, SP, Brazil; UNOESTE - Oeste Paulista University, Department of Health Sciences, Jaú, SP, Brazil
| | - Carolina Mendonça Gorgulho
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil; São Paulo State University - UNESP, School of Medicine of Botucatu - Department of Pathology, Botucatu, SP, Brazil
| | - Valber de Albuquerque Pedrosa
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil
| | - Ramon Kaneno
- São Paulo State University - UNESP, Institute of Biosciences - Department of Chemical and Biological Sciences, Botucatu, SP, Brazil.
| |
Collapse
|
3
|
Junco JA, Rodríguez R, Fuentes F, Baladrón I, Castro MD, Calzada L, Valenzuela C, Bover E, Pimentel E, Basulto R, Arteaga N, Cid-Arregui A, Sariol F, González L, Porres-Fong L, Medina M, Rodríguez A, Garay AH, Reyes O, López M, de Quesada L, Alvarez A, Martínez C, Marrero M, Molero G, Guerra A, Rosales P, Capote C, Acosta S, Vela I, Arzuaga L, Campal A, Ruiz E, Rubio E, Cedeño P, Sánchez MC, Cardoso P, Morán R, Fernández Y, Campos M, Touduri H, Bacardi D, Feria I, Ramirez A, Cosme K, Saura PL, Quintana M, Muzio V, Bringas R, Ayala M, Mendoza M, Fernández LE, Carr A, Herrera L, Guillén G. Safety and Therapeutic Profile of a GnRH-Based Vaccine Candidate Directed to Prostate Cancer. A 10-Year Follow-Up of Patients Vaccinated With Heberprovac. Front Oncol 2019; 9:49. [PMID: 30859088 PMCID: PMC6397853 DOI: 10.3389/fonc.2019.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/17/2019] [Indexed: 12/25/2022] Open
Abstract
Heberprovac is a GnRH based vaccine candidate containing 2.4 mg of the GnRHm1-TT peptide as the main active principle; 245 μg of the very small size proteoliposomes adjuvant (VSSP); and 350 μL of Montanide ISA 51 VG oil adjuvant. The aim of this study was to assess the safety and tolerance of the Heberprovac in advanced prostate cancer patients as well as its capacity to induce anti-GnRH antibodies, the subsequent effects on serum levels of testosterone and PSA and the patient overall survival. The study included eight patients with histologically-proven advanced prostate cancer with indication for hormonal therapy, who received seven intramuscular immunizations with Heberprovac within 18 weeks. Anti-GnRH antibody titers, testosterone and PSA levels, as well as clinical parameters were recorded and evaluated. The vaccine was well tolerated. Significant reductions in serum levels of testosterone and PSA were seen after four immunizations. Castrate levels of testosterone were observed in all patients at the end of the immunization schedule, which remained at the lowest level for at least 20 months. In a 10-year follow-up three out of six patients who completed the entire trial survived. In contrast only one out eight patients survived in the same period in a matched randomly selected group receiving standard anti-hormonal treatment. Heberprovac vaccination showed a good security profile, as well as immunological, biochemical and, most importantly, clinical benefit. The vaccinated group displayed survival advantage compared with the reference group that received standard treatment. These results warrant further clinical trials with Heberprovac involving a larger cohort.
Collapse
Affiliation(s)
- Jesús A. Junco
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Ranfis Rodríguez
- Uro-oncology Department of National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Franklin Fuentes
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Idania Baladrón
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maria D. Castro
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Lesvia Calzada
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | | | - Eddy Bover
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | | | - Roberto Basulto
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Niurka Arteaga
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | | | | | | | | | - María Medina
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Ayni Rodríguez
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - A. Hilda Garay
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Osvaldo Reyes
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Matilde López
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | - Alfredo Guerra
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - Pedro Rosales
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Carlos Capote
- Amalia Simoni Clinical-Surgical Hospital, Camagüey, Cuba
| | - Sahily Acosta
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Idania Vela
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Lina Arzuaga
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Ana Campal
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Erlán Ruiz
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Elier Rubio
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Pável Cedeño
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - María Carmen Sánchez
- Clinical Laboratory of the Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Pedro Cardoso
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Rolando Morán
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Yairis Fernández
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - Magalys Campos
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Henio Touduri
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - Dania Bacardi
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Indalecio Feria
- Clinical Trials Department of Oncologic Hospital Marie Curie of Camaguey, Marie Curie, Camagüey, Cuba
| | - Amilcar Ramirez
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - Karelia Cosme
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | - Verena Muzio
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ricardo Bringas
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Marta Ayala
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Mendoza
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | | | | | - Luis Herrera
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
- BioCubafarma, Havana, Cuba
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
4
|
Campos C, Sotomayor P, Jerez D, González J, Schmidt CB, Schmidt K, Banzer W, Godoy AS. Exercise and prostate cancer: From basic science to clinical applications. Prostate 2018; 78:639-645. [PMID: 29569731 DOI: 10.1002/pros.23502] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/09/2018] [Indexed: 11/08/2022]
Abstract
Prostate cancer (PCa) is a disease of increasing medical significance worldwide. In developed countries, PCa is the most common non-skin cancer in men, and one of the leading causes of cancer-related deaths. Exercise is one of the environmental factors that have been shown to influence cancer risk. Moreover, systemic reviews and meta-analysis have suggested that total physical activity is related to a decrease in the risk of developing PCa. In addition, epidemiological studies have shown that exercise, after diagnosis, has benefits regarding PCa development, and positive outcome in patients under treatment. The standard treatment for locally advanced or metastatic PCa is Androgen deprivation therapy (ADT). ADT produces diverse side effects, including loss of libido, changes in body composition (increase abdominal fat), and reduced muscle mass, and muscle tone. Analysis of numerous research publications showed that aerobic and/or resistance training improve patient's physical condition, such us, cardiorespiratory fitness, muscle strength, physical function, body composition, and fatigue. Therefore, exercise might counteract several ADT treatment-induced side effects. In addition of the aforementioned benefits, epidemiological, and in vitro studies have shown that exercise might decrease PCa development. Thus, physical activity might attenuate the risk of PCa and supervised exercise intervention might improve deleterious effects of cancer treatment, such as ADT side effects. This review article provides evidence indicating that exercise could complement, and potentiate, the current standard treatments for advanced PCa, probably by creating an unfavorable microenvironment that can negatively affect tumor development, and progression.
Collapse
Affiliation(s)
- Christian Campos
- Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de, Chile
| | - Paula Sotomayor
- Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago de, Chile
| | - Daniel Jerez
- Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de, Chile
| | - Javier González
- Department of Sport Medicine, Institute of Sport Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Camila B Schmidt
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago de, Chile
| | - Katharina Schmidt
- Department of Sport Medicine, Institute of Sport Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Winfried Banzer
- Department of Sport Medicine, Institute of Sport Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alejandro S Godoy
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago de, Chile
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
5
|
Treatment effects in prostate cancer. Mod Pathol 2018; 31:S110-121. [PMID: 29297495 DOI: 10.1038/modpathol.2017.158] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/24/2017] [Accepted: 09/24/2017] [Indexed: 02/01/2023]
Abstract
Nonsurgical treatments for prostate cancer include androgen-deprivation therapy (ADT), radiation therapy (RT), ablative therapies, chemotherapy, and newly emerging immunotherapies. These approaches can be used alone or in combination depending on the clinical scenario. ADT is typically reserved for high-risk locally or systemically advanced disease that is not amenable to curative surgery. Radiation therapy can be used instead of surgery as primary therapy with curative intent for low-intermediate-risk disease as well as for control of locally advanced disease not suitable for surgery. Ablative therapies can be used as primary therapy for low-intermediate-risk disease or as salvage therapy for clinically localized disease where RT has failed. Chemotherapy and immune-based therapies are currently used for androgen-independent disease, although the indications for these approaches may well change as new data from clinical trials accrue. Pathologists should be able to recognize tissue changes associated with these treatments to provide information that will optimize patient management. This is particularly true in situations where clinical history of recent or remote nonsurgical treatment is not provided with the specimen. In the absence of this information, pathologists encountering the features described herein are encouraged to review patient records or communicate directly with clinical colleagues to determine how a given patient was treated and when.
Collapse
|
6
|
Nazıroğlu M, Blum W, Jósvay K, Çiğ B, Henzi T, Oláh Z, Vizler C, Schwaller B, Pecze L. Menthol evokes Ca 2+ signals and induces oxidative stress independently of the presence of TRPM8 (menthol) receptor in cancer cells. Redox Biol 2017; 14:439-449. [PMID: 29078169 PMCID: PMC5680524 DOI: 10.1016/j.redox.2017.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
Abstract
Menthol is a naturally occurring monoterpene alcohol possessing remarkable biological properties including antipruritic, analgesic, antiseptic, anti-inflammatory and cooling effects. Here, we examined the menthol-evoked Ca2+ signals in breast and prostate cancer cell lines. The effect of menthol (50–500 µM) was predicted to be mediated by the transient receptor potential ion channel melastatin subtype 8 (TRPM8). However, the intensity of menthol-evoked Ca2+ signals did not correlate with the expression levels of TRPM8 in breast and prostate cancer cells indicating a TRPM8-independent signaling pathway. Menthol-evoked Ca2+ signals were analyzed in detail in Du 145 prostate cancer cells, as well as in CRISPR/Cas9 TRPM8-knockout Du 145 cells. Menthol (500 µM) induced Ca2+ oscillations in both cell lines, thus independent of TRPM8, which were however dependent on the production of inositol trisphosphate. Results based on pharmacological tools point to an involvement of the purinergic pathway in menthol-evoked Ca2+ responses. Finally, menthol (50–500 µM) decreased cell viability and induced oxidative stress independently of the presence of TRPM8 channels, despite that temperature-evoked TRPM8-mediated inward currents were significantly decreased in TRPM8-knockout Du 145 cells compared to wild type Du 145 cells.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey; Department of Biophysics, Faculty of Mediciene, Suleyman Demirel University, Isparta, Turkey
| | - Walter Blum
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, Fribourg, Switzerland
| | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Bilal Çiğ
- Department of Biophysics, Faculty of Mediciene, Suleyman Demirel University, Isparta, Turkey
| | - Thomas Henzi
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, Fribourg, Switzerland
| | - Zoltán Oláh
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, Miskolc-Egyetemváros, Hungary; Acheuron Ltd., Szeged, Hungary
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, Fribourg, Switzerland
| | - László Pecze
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, Fribourg, Switzerland.
| |
Collapse
|
7
|
Mohamed AA, Tan SH, Xavier CP, Katta S, Huang W, Ravindranath L, Jamal M, Li H, Srivastava M, Srivatsan ES, Sreenath TL, McLeod DG, Srinivasan A, Petrovics G, Dobi A, Srivastava S. Synergistic Activity with NOTCH Inhibition and Androgen Ablation in ERG-Positive Prostate Cancer Cells. Mol Cancer Res 2017; 15:1308-1317. [PMID: 28607007 DOI: 10.1158/1541-7786.mcr-17-0058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
The oncogenic activation of the ETS-related gene (ERG) due to gene fusions is present in over half of prostate cancers in Western countries. Because of its high incidence and oncogenic role, ERG and components of ERG network have emerged as potential drug targets for prostate cancer. Utilizing gene expression datasets, from matched normal and prostate tumor epithelial cells, an association of NOTCH transcription factors with ERG expression status was identified, confirming that NOTCH factors are direct transcriptional targets of ERG. Inhibition of ERG in TMPRSS2-ERG-positive VCaP cells led to decreased levels of NOTCH1 and 2 proteins and downstream transcriptional targets and partially recapitulated the phenotypes associated with ERG inhibition. Regulation of NOTCH1 and 2 genes by ERG were also noted with ectopic ERG expression in LNCaP (ERG-negative prostate cancer) and RWPE-1 (benign prostate-derived immortalized) cells. Furthermore, inhibition of NOTCH by the small-molecule γ-secretase inhibitor 1, GSI-1, conferred an increased sensitivity to androgen receptor (AR) inhibitors (bicalutamide and enzalutamide) or the androgen biosynthesis inhibitor (abiraterone) in VCaP cells. Combined treatment with bicalutamide and GSI-1 showed strongest inhibition of AR, ERG, NOTCH1, NOTCH2, and PSA protein levels along with decreased cell growth, cell survival, and enhanced apoptosis. Intriguingly, this effect was not observed in ERG-negative prostate cancer cells or immortalized benign/normal prostate epithelial cells. These data underscore the synergy of AR and NOTCH inhibitors in reducing the growth of ERG-positive prostate cancer cells.Implications: Combinational targeting of NOTCH and AR signaling has therapeutic potential in advanced ERG-driven prostate cancers. Mol Cancer Res; 15(10); 1308-17. ©2017 AACR.
Collapse
Affiliation(s)
- Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shilpa Katta
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Wei Huang
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Muhammad Jamal
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed University of Health Sciences, Bethesda, Maryland
| | - Eri S Srivatsan
- Division of General Surgery, Department of Surgery, VAGLAHS/David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California
| | - Taduru L Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - David G McLeod
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
| |
Collapse
|
8
|
Rycaj K, Li H, Zhou J, Chen X, Tang DG. Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin Cancer Biol 2017; 44:83-97. [PMID: 28408152 PMCID: PMC5491097 DOI: 10.1016/j.semcancer.2017.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Metastasis causes more than 90% of cancer-related deaths and most prostate cancer (PCa) patients also die from metastasis. The 'metastatic cascade' is a complex biological process that encompasses tumor cell dissociation (from the primary tumor), local invasion, intravasation, transport in circulation, extravasation, colonization, and overt growth in end organs. It has become clear that successful metastasis not only involves many tumor cell-intrinsic properties but also depends on productive interactions between cancer cells and the tumor microenvironment. In this Review, we begin with a general summary on cancer metastasis and a specific discussion on PCa metastasis. We then discuss recent advances in our knowledge of the cellular determinants of PCa metastasis and the importance of tumor microenvironment, especially an immunosuppressive tumor microenvironment, in shaping metastatic propensities. We conclude with a presentation of current and future therapeutic options for patients with PCa metastasis, emphasizing the development of novel, mechanism-based combinatorial strategies for treating metastatic and castration-resistant PCa.
Collapse
Affiliation(s)
- Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Hangwen Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jianjun Zhou
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Chen
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|