1
|
Guinn BA, Schuler PJ, Schrezenmeier H, Hofmann S, Weiss J, Bulach C, Götz M, Greiner J. A Combination of the Immunotherapeutic Drug Anti-Programmed Death 1 with Lenalidomide Enhances Specific T Cell Immune Responses against Acute Myeloid Leukemia Cells. Int J Mol Sci 2023; 24:ijms24119285. [PMID: 37298237 DOI: 10.3390/ijms24119285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Immune checkpoint inhibitors can block inhibitory molecules on the surface of T cells, switching them from an exhausted to an active state. One of these inhibitory immune checkpoints, programmed cell death protein 1 (PD-1) is expressed on T cell subpopulations in acute myeloid leukemia (AML). PD-1 expression has been shown to increase with AML progression following allo-haematopoeitic stem cell transplantation, and therapy with hypomethylating agents. We have previously shown that anti-PD-1 can enhance the response of leukemia-associated antigen (LAA)-specific T cells against AML cells as well as leukemic stem and leukemic progenitor cells (LSC/LPCs) ex vivo. In concurrence, blocking of PD-1 with antibodies such as nivolumab has been shown to enhance response rates post-chemotherapy and stem cell transplant. The immune modulating drug lenalidomide has been shown to promote anti-tumour immunity including anti-inflammatory, anti-proliferative, pro-apoptotic and anti-angiogenicity. The effects of lenalidomide are distinct from chemotherapy, hypomethylating agents or kinase inhibitors, making lenalidomide an attractive agent for use in AML and in combination with existing active agents. To determine whether anti-PD-1 (nivolumab) and lenalidomide alone or in combination could enhance LAA-specific T cell immune responses, we used colony-forming immune and ELISpot assays. Combinations of immunotherapeutic approaches are believed to increase antigen-specific immune responses against leukemic cells including LPC/LSCs. In this study we used a combination of LAA-peptides with the immune checkpoint inhibitor anti-PD-1 and lenalidomide to enhance the killing of LSC/LPCs ex vivo. Our data offer a novel insight into how we could improve AML patient responses to treatment in future clinical studies.
Collapse
Affiliation(s)
- Barbara-Ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Patrick J Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm and German Red Cross, 89073 Ulm, Germany
| | - Susanne Hofmann
- Department of Internal Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Christiane Bulach
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Marlies Götz
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Jochen Greiner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| |
Collapse
|
2
|
Tong X, Li M, Jin J, Li Y, Li L, Peng Y, Huang L, Xu B, Meng F, Mao X, Huang L, Huang W, Zhang D. Cladribine- and decitabine-containing conditioning regimen has a low post-transplant relapse rate in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome. Int J Cancer 2023; 152:2123-2133. [PMID: 36594582 DOI: 10.1002/ijc.34419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
To reduce the risk of relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT), there have been continuing efforts to optimize the conditioning regimens. Our study aimed to analyze the risk factors associated with the relapse of relapsed/refractory (R/R), high-risk acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS) post-transplant and the efficacy of a new conditioning regimen involving decitabine and cladribine. Clinical data of 125 patients with R/R AML, high-risk AML and high-risk MDS who underwent allo-HSCT were collected. In addition, 35 patients with R/R AML, high-risk AML and high-risk MDS received treatment with a new conditioning regimen including decitabine and cladribine. Cox regression analysis was used to identify risk factors associated with OS, RFS and relapse. Among 125 patients who underwent allo-HSCT, CR before allo-HSCT and matched sibling donors were independent protective factors for OS. DNMT3A abnormality was an independent risk factor for both relapse and RFS. Among 35 patients who received a new conditioning regimen containing decitabine and cladribine, only six patients relapsed and 1-year cumulative incidence of relapse was 11.7%. Moreover, this new regimen showed efficient MRD clearance early after allo-HSCT. The combined decitabine- and cladribine-based conditioning regimen showed a low relapse rate and a high survival without an increased incidence of GVHD or adverse effects and thus has potential for use in allo-HSCT for R/R AML, high-risk AML and high-risk MDS.
Collapse
Affiliation(s)
- Xiwen Tong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yizhou Peng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lifang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Bazinet A, Kantarjian HM. Moving toward individualized target-based therapies in acute myeloid leukemia. Ann Oncol 2023; 34:141-151. [PMID: 36423744 DOI: 10.1016/j.annonc.2022.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease at the genetic level. The field of AML therapy is increasingly shifting away from uniform approaches based solely on intensive chemotherapy (such as '7 + 3') toward personalized therapy. The treatment of AML can now be individualized based on patient characteristics and cytogenetic/molecular disease features. In this review, we provide a comprehensive updated summary of personalized, target-directed therapy in AML. We first discuss the selection of intensive versus low-intensity treatment approaches based on the patient's age and/or comorbidities. We follow with a detailed review of specific molecularly defined AML subtypes that benefit from the addition of targeted agents. In this context, we highlight the urgent need for novel therapies in tumor protein p53 (TP53)-mutated AML. We then propose approaches to optimize AML therapy in patients without directly actionable mutations. We conclude with a discussion on the emerging role of using measurable residual disease to modify therapy based on the quality of response.
Collapse
Affiliation(s)
- A Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - H M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
4
|
Babakhanlou R, Ravandi-Kashani F. SOHO State of the Art Updates and Next Questions |The Role of Maintenance Therapy in Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:1-7. [PMID: 36456394 DOI: 10.1016/j.clml.2022.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease predominantly affecting the elderly population. Although, up to 65% of patients with AML achieve a complete remission with standard induction chemotherapy, the majority of patients will relapse and succumb to the disease. Although maintenance therapy is a component of standard management for various hematological malignancies, such as acute lymphoblastic leukemia (ALL), acute promyelocytic leukemia (APL) or multiple myeloma, past studies investigating the role of maintenance therapy in AML were unable to demonstrate an advantage in overall survival, and therefore, it has not been an established practice in the treatment of AML. For patients, who are not candidates for stem cell transplant, effective AML maintenance therapies are needed in order to reduce the risk of relapse. Over the past decades, many investigators have examined the role of various maintenance strategies in AML; with the intention to prolong remission and overall survival. This review will provide an overview of prior and ongoing approaches and strategies to maintenance therapy for AML.
Collapse
Affiliation(s)
- Rodrick Babakhanlou
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX.
| | | |
Collapse
|
5
|
McVinnie K, Innes A, Nadal‐Melsio E, Atta M, Deplano S. A case of chronic neutrophilic leukemia and multiple myeloma showing the benefits of lenalidomide and cyclophosphamide therapy in treating both conditions. Am J Hematol 2022; 97:1491-1494. [PMID: 35898175 PMCID: PMC9825857 DOI: 10.1002/ajh.26670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Affiliation(s)
| | - Andrew Innes
- Department of HaematologyHammersmith HospitalLondonUK
| | | | - Maria Atta
- Department of HaematologyHammersmith HospitalLondonUK
| | | |
Collapse
|