1
|
Liu J, Zhao H, Gao T, Huang X, Liu S, Liu M, Mu W, Liang S, Fu S, Yuan S, Yang Q, Gu P, Li N, Ma Q, Liu J, Zhang X, Zhang N, Liu Y. Glypican-3-targeted macrophages delivering drug-loaded exosomes offer efficient cytotherapy in mouse models of solid tumours. Nat Commun 2024; 15:8203. [PMID: 39313508 PMCID: PMC11420241 DOI: 10.1038/s41467-024-52500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Cytotherapy is a strategy to deliver modified cells to a diseased tissue, but targeting solid tumours remains challenging. Here we design macrophages, harbouring a surface glypican-3-targeting peptide and carrying a cargo to combat solid tumours. The anchored targeting peptide facilitates tumour cell recognition by the engineered macrophages, thus enhancing specific targeting and phagocytosis of tumour cells expressing glypican-3. These macrophages carry a cargo of the TLR7/TLR8 agonist R848 and INCB024360, a selective indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor, wrapped in C16-ceramide-fused outer membrane vesicles (OMV) of Escherichia coli origin (RILO). The OMVs facilitate internalization through caveolin-mediated endocytosis, and to maintain a suitable nanostructure, C16-ceramide induces membrane invagination and exosome generation, leading to the release of cargo-packed RILOs through exosomes. RILO-loaded macrophages exert therapeutic efficacy in mice bearing H22 hepatocellular carcinomas, which express high levels of glypican-3. Overall, we lay down the proof of principle for a cytotherapeutic strategy to target solid tumours and could complement conventional treatment.
Collapse
Affiliation(s)
- Jinhu Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Huajun Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Tong Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Xinyan Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Shujun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Meichen Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Weiwei Mu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Shuang Liang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Shunli Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Shijun Yuan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Qinglin Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Panpan Gu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Nan Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Qingping Ma
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Jie Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Xinke Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China
| | - Na Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China.
| | - Yongjun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Recent updates on chimeric antigen receptor T cell therapy for hepatocellular carcinoma. Cancer Gene Ther 2021; 28:1075-1087. [PMID: 33500535 DOI: 10.1038/s41417-020-00259-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/30/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is novel tumor immunotherapy that enables T cells to specifically recognize tumor-associated antigens through genetic engineering technology, thus exerting antitumor effects, and it has achieved encouraging outcomes in leukemia and lymphoma. Building on excellent progress, CAR-T therapy is also expected to work well in solid tumors. Hepatocellular carcinoma (HCC), the most common primary liver cancer, is usually diagnosed at an advanced stage. Current management options for HCC remain limited, and although previous studies have indicated the feasibility of CAR-T cells, ideal therapeutic effects have not yet been achieved. This is, in part, due to the heterogeneity of tumor antigens, high intratumor pressure, immunosuppressive microenvironment, CAR-T cell exhaustion, and serious adverse reactions, which compromise the therapeutic efficiency of CAR-T immunotherapy in HCC. To overcoming these challenges, many ongoing preclinical and clinical studies were conducted. This review summarizes current CAR-T therapy targets in the treatment of HCC, discusses current obstacles and possible solutions in the process, and describes potential strategies to improve the efficacy of CAR-T cells for patients with HCC.
Collapse
|
3
|
Shyu S, Ali SZ. Significance of hepatocyte atypia in liver fine needle aspiration. Diagn Cytopathol 2021; 50:186-195. [PMID: 34459153 DOI: 10.1002/dc.24851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022]
Abstract
Fine needle aspiration (FNA) of the liver is frequently the diagnostic procedure of choice for sampling hepatic lesions. One of the main diagnostic challenges in the interpretation of liver FNA is distinguishing dysplastic lesions and well-differentiated hepatocellular carcinoma (WD-HCC) from benign processes, as they share significant cytomorphologic overlap. Furthermore, the diagnosis of HCC often requires evaluation of stroma for invasion, which may not be present on cytology and small needle biopsy specimens. A reporting system for liver cytopathology has yet to be instituted. Without standardized and well-defined criteria for hepatocyte atypia, we recommend limiting the use of atypia in evaluation of liver FNA specimens to describe a diagnosis of exclusion, in which all known benign and neoplastic processes have been ruled out. The cytologic findings on the FNA of a liver nodule may be best reported as atypical hepatocytes in the absence of a core needle biopsy or cell block sufficient to render a definitive diagnosis of HCC.
Collapse
Affiliation(s)
- Susan Shyu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Syed Z Ali
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Ning J, Jiang S, Li X, Wang Y, Deng X, Zhang Z, He L, Wang D, Jiang Y. GPC3 affects the prognosis of lung adenocarcinoma and lung squamous cell carcinoma. BMC Pulm Med 2021; 21:199. [PMID: 34112123 PMCID: PMC8194200 DOI: 10.1186/s12890-021-01549-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/30/2021] [Indexed: 12/25/2022] Open
Abstract
Background Glypican 3 (GPC3) is a heparin sulphate proteoglycan whose expression is associated with several malignancies. However, its expression in non-small-cell lung carcinoma (NSCLC) is limited and ambiguous. This study aimed to comprehensively evaluate the expression of GPC3 in NSCLC and develop a risk-score model for predicting the prognosis of NSCLC. Methods The gene expression profiles of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were downloaded from the UCSC Xena database. Using the limma package, the differentially expressed genes (DEGs) between different comparison groups were analysed and the differential expression of GPC3 was calculated. A functional enrichment analysis was conducted for GPC3-associated genes using the DAVID tool. For the GPC3-associated genes shared by the four comparison groups, a protein–protein interaction network was built using the Cytoscape software. After conducting a survival analysis and a Cox regression analysis, the genes found to be significantly correlated with prognosis were selected to construct a risk-score model. Besides, the gene and protein levels of GPC3 were examined by quantitative reverse transcriptase-PCR (qRT-PCR) and immunohistochemistry (IHC) in LUSC tissues and paracancer tissues. Results The differential expression of GPC3 was significant (adjusted P < 0.05) in the NSCLC vs. normal, LUAD vs. normal, LUSC versus normal, and LUAD versus. LUSC comparison groups. GPC3 directly interacted with SERPINA1, MFI2, and FOXM1. Moreover, GPC3 expression was significantly correlated with pathologic N, pathologic T, gender, and tumour stage in LUAD samples. Finally, the risk-score model (involving MFI2, FOXM1, and GPC3) for LUAD and that (involving SERPINA1 and FOXM1) for LUSC were established separately. The qRT-PCR result showed that GPC3 expression was much higher in the LUSC tissues than that in the normal group. The IHC results further showed that GPC3 is highly expressed in LUSC tissues, but low in paracancer tissues. Conclusion The three-gene risk-score model for LUAD and the two-gene risk-score model for LUSC might be valuable in improving the prognosis of these carcinomas.
Collapse
Affiliation(s)
- Jing Ning
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Department of General Medicine (VIP Ward) and Department of Tumor Supportive and Palliative Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Shenyi Jiang
- Department of General Practice, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Yang Wang
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xuhong Deng
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhiqiang Zhang
- The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, China
| | - Lijie He
- The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, China
| | - Daqing Wang
- The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, China.
| | - Youhong Jiang
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
5
|
Glypican-3 targeted delivery of 89Zr and 90Y as a theranostic radionuclide platform for hepatocellular carcinoma. Sci Rep 2021; 11:3731. [PMID: 33580090 PMCID: PMC7881163 DOI: 10.1038/s41598-021-82172-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Glypican-3 (GPC3) is a tumor associated antigen expressed by hepatocellular carcinoma (HCC) cells. This preclinical study evaluated the efficacy of a theranostic platform using a GPC3-targeting antibody αGPC3 conjugated to zirconium-89 (89Zr) and yttrium-90 (90Y) to identify, treat, and assess treatment response in a murine model of HCC. A murine orthotopic xenograft model of HCC was generated. Animals were injected with 89Zr-labeled αGPC3 and imaged with a small-animal positron emission/computerized tomography (PET/CT) imaging system (immuno-PET) before and 30 days after radioimmunotherapy (RIT) with 90Y-labeled αGPC3. Serum alpha fetoprotein (AFP), a marker of tumor burden, was measured. Gross tumor volume (GTV) and SUVmax by immuno-PET was measured using fixed intensity threshold and manual segmentation methods. Immuno-PET GTV measurements reliably quantified tumor burden prior to RIT, strongly correlating with serum AFP (R2 = 0.90). Serum AFP was significantly lower 30 days after RIT in 90Y-αGPC3 treated animals compared to those untreated (p = 0.01) or treated with non-radiolabeled αGPC3 (p = 0.02). Immuno-PET GTV measurements strongly correlated with tumor burden after RIT (R2 = 0.87), and GTV of animals treated with 90Y-αGPC3 was lower than in animals who did not receive treatment or were treated with non-radiolabeled αGPC3, although this only trended toward statistical significance. A theranostic platform utilizing GPC3 targeted 89Zr and 90Y effectively imaged, treated, and assessed response after radioimmunotherapy in a GPC3-expressing HCC xenograft model.
Collapse
|
6
|
Razavi A, Keshavarz-Fathi M, Pawelek J, Rezaei N. Chimeric antigen receptor T-cell therapy for melanoma. Expert Rev Clin Immunol 2021; 17:209-223. [PMID: 33481629 DOI: 10.1080/1744666x.2021.1880895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In recent years, chimeric antigen receptor (CAR) T cell therapy has emerged as a cancer treatment. After initial therapeutic success for hematologic malignancies, this approach has been extended for the treatment of solid tumors including melanoma. AREAS COVERED T cells need to be reprogramed to recognize specific antigens expressed only in tumor cells, a difficult problem since cancer cells are simply transformed normal cells. Tumor antigens, namely, CSPG4, CD70, and GD2 have been targeted by CAR-T cells for melanoma. Moreover, different co-stimulatory signaling domains need to be selected to direct T cell fate. In this review, various approaches for the treatment of melanoma and their effectiveness are comprehensively reviewed and the current status, challenges, and future perspective of CAR-T cell therapy for melanoma are discussed. Literature search was accomplished in three databases (PubMed, Google scholar, and Clinicaltrials.gov). Published papers and clinical trials were screened and relevant documents were included by checking pre-defined eligibility criteria. EXPERT OPINION Despite obstacles and the risk of adverse events, CAR T cell therapy could be used for patients with treatment-resistant cancer. Clinical trials are underway to determine the efficacy of this approach for the treatment of melanoma.
Collapse
Affiliation(s)
- Azadehsadat Razavi
- Department of Animal Biology, Faculty of Biology Sciences, University of Kharazmi, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - John Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
7
|
Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J Cancer 2020; 11:2008-2021. [PMID: 32127929 PMCID: PMC7052944 DOI: 10.7150/jca.39972] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma is the most common type. The pathogenesis of hepatocellular carcinoma is concealed, its progress is rapid, its prognosis is poor, and the mortality rate is high. Therefore, novel molecular targets for hepatocellular carcinoma early diagnosis and development of targeted therapy are critically needed. Glypican-3, a cell-surface glycoproteins in which heparan sulfate glycosaminoglycan chains are covalently linked to a protein core, is overexpressed in HCC tissues but not in the healthy adult liver. Thus, Glypican-3 is becoming a promising candidate for liver cancer diagnosis and immunotherapy. Up to now, Glypican-3 has been a reliable immunohistochemical marker for hepatocellular carcinoma diagnosis, and soluble Glypican-3 in serum has becoming a promising marker for liquid biopsy. Moreover, various immunotherapies targeting Glypican-3 have been developed, including Glypican-3 vaccines, anti- Glypican-3 immunotoxin and chimeric-antigen-receptor modified cells. In this review, we summarize and analyze the structure and physicochemical properties of Glypican-3 molecules, then review their biological functions and applications in clinical diagnosis, and explore the diagnosis and treatment strategies based on Glypican-3.
Collapse
Affiliation(s)
- Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianming Zheng
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yangfang Liu
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37:163. [PMID: 30031396 PMCID: PMC6054736 DOI: 10.1186/s13046-018-0817-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Gajendra Shrestha
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
- Thunder Biotech, Highland, UT USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|
9
|
Chen IP, Ariizumi SI, Nakano M, Yamamoto M. Positive glypican-3 expression in early hepatocellular carcinoma predicts recurrence after hepatectomy. J Gastroenterol 2014; 49:117-25. [PMID: 23532638 PMCID: PMC3895193 DOI: 10.1007/s00535-013-0793-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/07/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Glypican-3 (GPC3) is a new prognostic factor after curative hepatectomy in patients with hepatocellular carcinoma (HCC), and the expression of GPC3 is known to be associated with postoperative metastasis. However, the role of GPC3 in patients with early HCC remains unknown. METHODS We retrospectively studied 55 patients with early HCC (total 99 nodules) who underwent initial hepatectomy between 1995 and 2010. Clinicopathological features and surgical outcomes were compared in relation to GPC3 expression. RESULTS The GPC3-positive expression was seen in 28 of 55 patients (50.9 %) with early HCC (44 of 99 nodules). The GPC3-positive expression was significantly associated with hepatitis C virus (HCV) infection (P = 0.0019) and with multiple early HCCs (P < 0.0001). The 5-year disease-free survival rate was significantly lower in patients with GPC3-positive early HCC (27 %) than in patients with GPC3-negative early HCC (62 %, P = 0.0036). The GPC3 expression was a significant independent prognostic factor for disease-free survival. However, it showed no significant difference in overall survival. CONCLUSIONS The GPC3 expression is capable to be a new prognostic factor for disease-free survival in patients with early HCC.
Collapse
Affiliation(s)
- I-Pei Chen
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666 Japan
| | - Shun-ichi Ariizumi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666 Japan
| | - Masayuki Nakano
- Department of Pathology, Ofuna Chuo Hospital, Ofuna, Kamakura, Kanagawa Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666 Japan
| |
Collapse
|
10
|
Lin Q, Xiong LW, Pan XF, Gen JF, Bao GL, Sha HF, Feng JX, Ji CY, Chen M. Expression of GPC3 protein and its significance in lung squamous cell carcinoma. Med Oncol 2011; 29:663-9. [PMID: 21556932 DOI: 10.1007/s12032-011-9973-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/29/2011] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to investigate GPC3 gene expression in lung squamous cell carcinoma tissue and its correlation with clinical and tumor characteristics. Using RT-PCR, the presence of GPC3 gene expression was detected in cancer tissue and adjacent normal tissue in 66 cases of lung squamous cell carcinoma and positive rates were calculated. Using Western blot, changes in GPC3 protein expression were detected in lung squamous cell carcinoma and adjacent normal tissues. The percentage of tissue samples expressing GPC3 mRNA was significantly higher in lung squamous cell carcinoma than in adjacent normal tissue (P < 0.05). This percentage was also significantly higher for cases with lymph node metastasis than for those without lymph node metastasis (P < 0.05). Further, the percentage of samples expressing GPC3 mRNA was higher with lowering degrees of tumor differentiation (P < 0.05). Rates of GPC3 expression were, however, independent of patient gender, age, and tumor size (P > 0.05). The expression of GPC3 protein in lung squamous cell carcinoma was significantly higher than that in adjacent normal tissues (P < 0.05). The expression in cases with lymph node metastasis was significantly higher than in those without lymph node metastasis (P < 0.05), and GPC3 protein expression increased with lowering degrees of tumor differentiation (P < 0.05). Further investigation is warranted for the association of initiation, development, invasion, and metastasis of disease.
Collapse
Affiliation(s)
- Qiang Lin
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, No. 241, West Huaihai Rd, Shanghai 200030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ho M, Kim H. Glypican-3: a new target for cancer immunotherapy. Eur J Cancer 2010; 47:333-8. [PMID: 21112773 DOI: 10.1016/j.ejca.2010.10.024] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/27/2010] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a common malignant cancer worldwide. There is an urgent need to identify new molecular targets for the development of novel therapeutic approaches. Herein, we review the structure, function and biology of glypican-3 (GPC3) and its role in human cancer with a focus on its potential as a therapeutic target for immunotherapy. GPC3 is a cell-surface protein that is over-expressed in HCC. Loss-of-function mutations of GPC3 cause Simpson-Golabi-Behmel syndrome (SGBS), a rare X-linked overgrowth condition. GPC3 binds Wnt and Hedgehog (Hh) signalling proteins. GPC3 is also able to bind basic growth factors such as fibroblast growth factor 2 through its heparan sulphate glycan chains. GPC3 is a promising candidate for liver cancer therapy given that it shows high expression in HCC. An anti-GPC3 monoclonal antibody has shown anti-cancer activity in mice and its humanised IgG molecule is currently undergoing clinical evaluation in patients with HCC. There is also evidence that soluble GPC3 may be a useful serum biomarker for HCC.
Collapse
Affiliation(s)
- Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
| | | |
Collapse
|