1
|
Rangel-Pozzo A, Dos Santos FF, Dettori T, Giulietti M, Frau DV, Galante PAF, Vanni R, Pathak A, Fischer G, Gartner J, Caria P, Mai S. Three-dimensional nuclear architecture distinguishes thyroid cancer histotypes. Int J Cancer 2023; 153:1842-1853. [PMID: 37539710 DOI: 10.1002/ijc.34667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Molecular markers can serve as diagnostic tools to support pathological analysis in thyroid neoplasms. However, because the same markers can be observed in some benign thyroid lesions, additional approaches are necessary to differentiate thyroid tumor subtypes, prevent overtreatment and tailor specific clinical management. This applies particularly to the recently described variant of thyroid cancer referred to as noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). This variant has an estimated prevalence of 4.4% to 9.1% of all papillary thyroid carcinomas worldwide. We studied 60 thyroid lesions: 20 classical papillary thyroid carcinoma (CPTC), 20 follicular variant of PTC (FVPTC) and 20 NIFTP. We examined morphological and molecular features to identify parameters that can differentiate NIFTP from the other PTC subtypes. When blindly investigating the nuclear architecture of thyroid neoplasms, we observed that NIFTP has significantly longer telomeres than CPTC and FVPTC. Super-resolved 3D-structured illumination microscopy demonstrated that NIFTP is heterogeneous and that its nuclei contain more densely packed DNA and smaller interchromatin spaces than CPTC and FVPTC, a pattern that resembles normal thyroid tissue. These data are consistent with the observed indolent biological behavior and favorable prognosis associated with NIFTP, which lacks BRAFV600E mutations. Of note, next-generation thyroid oncopanel sequencing was unable to distinguish the thyroid cancer histotypes in our study cohort. In summary, our data suggest that 3D nuclear architecture can be a powerful analytical tool to diagnose and guide clinical management of NIFTP.
Collapse
Affiliation(s)
- Aline Rangel-Pozzo
- CancerCare Manitoba Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | - Filipe F Dos Santos
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, Brazil
- Department of Biochemistry, Chemistry Institute, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | - Roberta Vanni
- University of Cagliari, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Alok Pathak
- Department of Surgery, University of Manitoba, Winnipeg, Canada
| | - Gabor Fischer
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - John Gartner
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Sabine Mai
- CancerCare Manitoba Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Nacchio M, Pisapia P, Pepe F, Russo G, Vigliar E, Porcelli T, Luongo C, Iaccarino A, Pagni F, Salvatore D, Troncone G, Malapelle U, Bellevicine C. Predictive molecular pathology in metastatic thyroid cancer: the role of RET fusions. Expert Rev Endocrinol Metab 2022; 17:167-178. [PMID: 35404189 DOI: 10.1080/17446651.2022.2060819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rearranged during transfection (RET) gene fusions are detected in 10-20% of thyroid cancer patients. Recently, RET fusion-positive metastatic thyroid cancers have attracted much attention owing to the FDA approval of two highly selective anti-RET tyrosine kinase inhibitors, namely, selpercatinib, and pralsetinib. AREAS COVERED This review summarizes the available evidence on the biological and predictive role of RET gene fusions in thyroid carcinoma patients and the latest screening assays currently used to detect these genomic alterations in histological and cytological specimens. EXPERT OPINION Management of advanced thyroid carcinoma has significantly evolved over the last decade thanks to the approval of three multikinase inhibitors, i.e. sorafenib, lenvatinib, cabozantinib, and of two selective RET-tyrosine inhibitors, i.e. selpercatinib and pralsetinib. In this setting, the detection of RET-fusions in advanced thyroid cancer specimens through the use of next-generation sequencing has become a commonly used strategy in clinical practice to select the best treatment options.
Collapse
Affiliation(s)
- Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Cheng L, Zhang S, Wang L, MacLennan GT, Davidson DD. Fluorescence in situ hybridization in surgical pathology: principles and applications. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:73-99. [PMID: 28451457 PMCID: PMC5402181 DOI: 10.1002/cjp2.64] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Identification of recurrent tumour‐specific chromosomal translocations and novel fusion oncogenes has important diagnostic, therapeutic and prognostic implications. Over the past decade, fluorescence in situ hybridization (FISH) analysis of tumour samples has been one of the most rapidly growing areas in genomic medicine and surgical pathology practice. Unlike traditional cytogenetics, FISH affords a rapid analysis of formalin‐fixed, paraffin‐embedded cells within a routine pathology practice workflow. As more diagnostic and treatment decisions are based on results of FISH, demand for the technology will become more widespread. Common FISH‐detected alterations are chromosome deletions, gains, translocations, amplifications and polysomy. These chromosome alterations may have diagnostic and therapeutic implications for many tumour types. Integrating genomic testing into cancer treatment decisions poses many technical challenges, but rapid progress is being made to overcome these challenges in precision medicine. FISH assessment of chromosomal changes relevant to differential diagnosis and cancer treatment decisions has become an important tool for the surgical pathologist. The aim of this review is to provide a theoretical and practical survey of FISH detected translocations with a focus on strategies for clinical application in surgical pathology practice.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisINUSA.,Department of UrologyIndiana University School of MedicineIndianapolisINUSA
| | - Shaobo Zhang
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Lisha Wang
- Michigan Center for Translational PathologyUniversity of MichiganAnn ArborMIUSA
| | - Gregory T MacLennan
- Departments of Pathology and Laboratory MedicineCase Western Reserve UniversityClevelandOHUSA
| | - Darrell D Davidson
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
4
|
Caria P, Cantara S, Frau DV, Pacini F, Vanni R, Dettori T. Genetic Heterogeneity of HER2 Amplification and Telomere Shortening in Papillary Thyroid Carcinoma. Int J Mol Sci 2016; 17:E1759. [PMID: 27775641 PMCID: PMC5085783 DOI: 10.3390/ijms17101759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 02/05/2023] Open
Abstract
Extensive research is dedicated to understanding if sporadic and familial papillary thyroid carcinoma are distinct biological entities. We have previously demonstrated that familial papillary thyroid cancer (fPTC) cells exhibit short relative telomere length (RTL) in both blood and tissues and that these features may be associated with chromosome instability. Here, we investigated the frequency of HER2 (Human Epidermal Growth Factor Receptor 2) amplification, and other recently reported genetic alterations in sporadic PTC (sPTC) and fPTC, and assessed correlations with RTL and BRAF mutational status. We analyzed HER2 gene amplification and the integrity of ALK, ETV6, RET, and BRAF genes by fluorescence in situ hybridization in isolated nuclei and paraffin-embedded formalin-fixed sections of 13 fPTC and 18 sPTC patients. We analyzed BRAFV600E mutation and RTL by qRT-PCR. Significant HER2 amplification (p = 0.0076), which was restricted to scattered groups of cells, was found in fPTC samples. HER2 amplification in fPTCs was invariably associated with BRAFV600E mutation. RTL was shorter in fPTCs than sPTCs (p < 0.001). No rearrangements of other tested genes were observed. These findings suggest that the association of HER2 amplification with BRAFV600E mutation and telomere shortening may represent a marker of tumor aggressiveness, and, in refractory thyroid cancer, may warrant exploration as a site for targeted therapy.
Collapse
Affiliation(s)
- Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy.
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena 53100, Italy.
| | - Daniela Virginia Frau
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy.
| | - Furio Pacini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena 53100, Italy.
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy.
| | - Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato 09042, Italy.
| |
Collapse
|