1
|
Piecoro DW, Allison DB. Precision Medicine in Cytopathology. Surg Pathol Clin 2024; 17:329-345. [PMID: 39129134 DOI: 10.1016/j.path.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the last decade, cancer diagnostics has undergone a notable transformation with increasing complexity. Minimally invasive diagnostic tests, driven by advanced imaging and early detection protocols, are redefining patient care and reducing the need for more invasive procedures. Modern cytopathologists now safeguard patient samples for vital biomarker and molecular testing. In this article, we explore ancillary testing modalities and the role of biomarkers in organ-specific contexts, underscoring the transformative impact of precision medicine. Finally, the advent of more than 80 Food and Drug Administration-approved predictive biomarkers signals a new era, guiding cancer care toward personalized and targeted strategies.
Collapse
Affiliation(s)
- Dava W Piecoro
- Department of Pathology and Laboratory Medicine, 800 Rose Street, MS117, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Derek B Allison
- Department of Pathology and Laboratory Medicine, 800 Rose Street, MS117, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Markey Cancer Center, Lexington, KY 40536, USA; Department of Urology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
2
|
Karcini A, Mercier NR, Lazar IM. Proteomic assessment of SKBR3/HER2+ breast cancer cellular response to Lapatinib and investigational Ipatasertib kinase inhibitors. Front Pharmacol 2024; 15:1413818. [PMID: 39268460 PMCID: PMC11391243 DOI: 10.3389/fphar.2024.1413818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Modern cancer treatment strategies aim at achieving cancer remission by using targeted and personalized therapies, as well as harnessing the power of the immune system to recognize and eradicate the cancer cells. To overcome a relatively short-lived response due to resistance to the administered drugs, combination therapies have been pursued. Objective The objective of this study was to use high-throughput data generation technologies such as mass spectrometry and proteomics to investigate the broader implications, and to expand the outlook, of such therapeutic approaches. Specifically, we investigated the systems-level response of a breast cancer cell line model to a mixture of kinase inhibitors that has not been adopted yet as a standard therapeutic regime. Methods Two critical pathways that sustain the growth and survival of cancer cells, EGFR and PI3K/AKT, were inhibited in SKBR3/HER2+ breast cancer cells with Lapatinib (Tyr kinase inhibitor) and Ipatasertib (Ser/Thr kinase inhibitor), and the landscape of the affected biological processes was investigated with proteomic technologies. Results Over 800 proteins matched by three unique peptide sequences were affected by exposing the cells to the drugs. The work corroborated the anti-proliferative activity of Lapatinib and Ipatasertib and uncovered a range of impacted cancer-supportive hallmark processes, among which immune response, adhesion, and migration emerged as particularly relevant to the ability of drugs to effectively suppress the proliferation and dissemination of cancer cells. Changes in the expression of key cancer drivers such as oncogenes, tumor suppressors, EMT and angiogenesis regulators underscored the inhibitory effectiveness of drugs on cancer proliferation. The supplementation of Lapatinib with Ipatasertib further affected additional transcription factors and proteins involved in gene expression, trafficking, DNA repair, and development of multidrug resistance. Furthermore, over fifty of the impacted proteins represent approved or investigational targets in the DrugBank database, which through their protein-protein interaction networks can inform the selection of effective therapeutic partners. Conclusion Altogether, the exposure of SKBR3/HER2+ cells to Lapatinib and Ipatasertib kinase inhibitors uncovered a broad plethora of yet untapped opportunities that can be further explored for enhancing the anti-cancer effects of each drug as well as of many other multi-drug therapies that target the EGFR/ERBB2 and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nicole R. Mercier
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Division of Systems Biology, Virginia Tech, Blacksburg, VA, United States
- Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Karcini A, Mercier NR, Lazar IM. Proteomic Assessment of SKBR3/HER2+ Breast Cancer Cellular Response to Lapatinib and Investigational Ipatasertib Kinase Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587656. [PMID: 38617302 PMCID: PMC11014527 DOI: 10.1101/2024.04.02.587656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Modern cancer treatment approaches aim at achieving cancer remission by using targeted and personalized therapies, as well as harnessing the power of the immune system to recognize and eliminate the cancer cells. To overcome a relatively short-lived response due to the development of resistance to the administered drugs, combination therapies have been pursued, as well. To expand the outlook of combination therapies, the objective of this study was to use high-throughput data generation technologies such as mass spectrometry and proteomics to investigate the response of HER2+ breast cancer cells to a mixture of two kinase inhibitors that has not been adopted yet as a standard treatment regime. The broader landscape of biological processes that are affected by inhibiting two major pathways that sustain the growth and survival of cancer cells, i.e., EGFR and PI3K/AKT, was investigated by treating SKBR3/HER2+ breast cancer cells with Lapatinib or a mixture of Lapatinib/Ipatasertib small molecule drugs. Changes in protein expression and/or activity in response to the drug treatments were assessed by using two complementary quantitative proteomic approaches based on peak area and peptide spectrum match measurements. Over 900 proteins matched by three unique peptide sequences (FDR<0.05) were affected by the exposure of cells to the drugs. The work corroborated the anti-proliferative activity of Lapatinib and Ipatasertib, and, in addition to cell cycle and growth arrest processes enabled the identification of several multi-functional proteins with roles in cancer-supportive hallmark processes. Among these, immune response, adhesion and migration emerged as particularly relevant to the ability to effectively suppress the proliferation and dissemination of cancer cells. The supplementation of Lapatinib with Ipatasertib further affected the expression or activity of additional transcription factors and proteins involved in gene expression, trafficking, DNA repair, and development of multidrug resistance. Furthermore, over fifty of the affected proteins represented approved or investigational targets in the DrugBank database, which through their protein-protein interaction networks can inform the selection of effective therapeutic partners. Altogether, our findings exposed a broad plethora of yet untapped opportunities that can be further explored for enhancing the anti-cancer effects of each drug as well as of many other multi-drug therapies that target the EGFR/ERBB2 and PI3K/AKT pathways. The data are available via ProteomeXchange with identifier PXD051094.
Collapse
Affiliation(s)
- Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060; Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
| | - Nicole R. Mercier
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060; Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060; Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
- Division of Systems Biology, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
- Carilion School of Medicine, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
| |
Collapse
|
4
|
Battistella A, Tacelli M, Mapelli P, Schiavo Lena M, Andreasi V, Genova L, Muffatti F, De Cobelli F, Partelli S, Falconi M. Recent developments in the diagnosis of pancreatic neuroendocrine neoplasms. Expert Rev Gastroenterol Hepatol 2024; 18:155-169. [PMID: 38647016 DOI: 10.1080/17474124.2024.2342837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Pancreatic Neuroendocrine Neoplasms (PanNENs) are characterized by a highly heterogeneous clinical and biological behavior, making their diagnosis challenging. PanNENs diagnostic work-up mainly relies on biochemical markers, pathological examination, and imaging evaluation. The latter includes radiological imaging (i.e. computed tomography [CT] and magnetic resonance imaging [MRI]), functional imaging (i.e. 68Gallium [68 Ga]Ga-DOTA-peptide PET/CT and Fluorine-18 fluorodeoxyglucose [18F]FDG PET/CT), and endoscopic ultrasound (EUS) with its associated procedures. AREAS COVERED This review provides a comprehensive assessment of the recent advancements in the PanNENs diagnostic field. PubMed and Embase databases were used for the research, performed from inception to October 2023. EXPERT OPINION A deeper understanding of PanNENs biology, recent technological improvements in imaging modalities, as well as progresses achieved in molecular and cytological assays, are fundamental players for the achievement of early diagnosis and enhanced preoperative characterization of PanNENs. A multimodal diagnostic approach is required for a thorough disease assessment.
Collapse
Affiliation(s)
- Anna Battistella
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Tacelli
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreato-biliary Endoscopy and EUS Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Valentina Andreasi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luana Genova
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Muffatti
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy
- Radiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Partelli
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Conti Bellocchi MC, Bernuzzi M, Brillo A, Bernardoni L, Amodio A, De Pretis N, Frulloni L, Gabbrielli A, Crinò SF. EUS-FNA versus EUS-FNB in Pancreatic Solid Lesions ≤ 15 mm. Diagnostics (Basel) 2024; 14:427. [PMID: 38396466 PMCID: PMC10888305 DOI: 10.3390/diagnostics14040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
A small tumor size may impact the diagnostic performance of endoscopic ultrasound-guided tissue acquisition (EUS-TA) for diagnosing solid pancreatic lesions (SPLs). We aimed to compare the diagnostic yield of EUS-guided fine-needle aspiration (FNA) and biopsy (FNB) in SPLs with a diameter ≤ 15 mm. Consecutive patients who underwent EUS-TA for SPLs ≤ 15 mm between January 2015 and December 2022 in a tertiary referral center were retrospectively evaluated. The primary endpoint was diagnostic accuracy. The final diagnosis was based on surgical pathology or disease evolution after a minimum follow-up of 6 months. Inadequate samples were all considered false negatives for the study. Secondary outcomes included sample adequacy, factors impacting accuracy, and safety. We included 368 patients (52.4% male; mean age: 60.2 years) who underwent FNA in 72 cases and FNB in 296. The mean size of SPLs was 11.9 ± 2.6 mm. More than three passes were performed in 5.7% and 61.5% of patients in the FNB and FNA groups, respectively (p < 0.0001). FNB outperformed FNA in terms of diagnostic accuracy (89.8% vs. 79.1%, p = 0.013) and sample adequacy (95.9% vs. 86.1%, p < 0.001). On multivariate analysis, using FNA (OR: 2.10, 95% CI: 1.07-4.48) and a final diagnosis (OR: 3.56, 95% CI: 1.82-6.94) of benign conditions negatively impacted accuracy. Overall, the adverse event rate was 0.8%, including one pancreatitis in the FNA group and one pancreatitis and one bleeding in the FNB group, all mild and conservatively managed. EUS-TA for SPLs ≤ 15 mm has a high diagnostic yield and safety. This study suggests the superiority of FNB over FNA, with better performance even with fewer passes performed.
Collapse
Affiliation(s)
- Maria Cristina Conti Bellocchi
- Diagnostic and Interventional Endoscopy of the Pancreas, Pancreas Institute, G.B. Rossi University Hospital, 37134 Verona, Italy; (L.B.); (S.F.C.)
| | - Micol Bernuzzi
- Department of Medicine, Pancreas Institute, G.B. Rossi University Hospital, 37134 Verona, Italy (A.B.); (A.A.); (N.D.P.); (L.F.)
| | - Alessandro Brillo
- Department of Medicine, Pancreas Institute, G.B. Rossi University Hospital, 37134 Verona, Italy (A.B.); (A.A.); (N.D.P.); (L.F.)
| | - Laura Bernardoni
- Diagnostic and Interventional Endoscopy of the Pancreas, Pancreas Institute, G.B. Rossi University Hospital, 37134 Verona, Italy; (L.B.); (S.F.C.)
| | - Antonio Amodio
- Department of Medicine, Pancreas Institute, G.B. Rossi University Hospital, 37134 Verona, Italy (A.B.); (A.A.); (N.D.P.); (L.F.)
| | - Nicolò De Pretis
- Department of Medicine, Pancreas Institute, G.B. Rossi University Hospital, 37134 Verona, Italy (A.B.); (A.A.); (N.D.P.); (L.F.)
| | - Luca Frulloni
- Department of Medicine, Pancreas Institute, G.B. Rossi University Hospital, 37134 Verona, Italy (A.B.); (A.A.); (N.D.P.); (L.F.)
| | - Armando Gabbrielli
- Diagnostic and Interventional Endoscopy of the Pancreas, Pancreas Institute, G.B. Rossi University Hospital, 37134 Verona, Italy; (L.B.); (S.F.C.)
| | - Stefano Francesco Crinò
- Diagnostic and Interventional Endoscopy of the Pancreas, Pancreas Institute, G.B. Rossi University Hospital, 37134 Verona, Italy; (L.B.); (S.F.C.)
| |
Collapse
|
6
|
Neyaz A, Crotty R, Rickelt S, Pankaj A, Stojanova M, Michelakos TP, Sekigami Y, Kontos F, Parrack PH, Patil DT, Heaphy CM, Ferrone CR, Deshpande V. Predicting recurrence in pancreatic neuroendocrine tumours: role of ARX and alternative lengthening of telomeres (ALT). Histopathology 2023; 83:546-558. [PMID: 37455385 DOI: 10.1111/his.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/11/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND While many pancreatic neuroendocrine tumours (PanNET) show indolent behaviour, predicting the biological behaviour of small nonfunctional PanNETs remains a challenge. Nonfunctional PanNETs with an epigenome and transcriptome that resemble islet alpha cells (ARX-positive) are more aggressive than neoplasms that resemble islet beta cells (PDX1-positive). In this study, we explore the ability of immunohistochemistry for ARX and PDX1 and telomere-specific fluorescence in situ hybridisation (FISH) for alternative lengthening of telomeres (ALT) to predict recurrence. METHODS Two hundred fifty-six patients with PanNETs were identified, and immunohistochemistry for ARX and PDX1 was performed. Positive staining was defined as strong nuclear staining in >5% of tumour cells. FISH for ALT was performed in a subset of cases. RESULTS ARX reactivity correlated with worse disease-free survival (DFS) (P = 0.011), while there was no correlation between PDX1 reactivity and DFS (P = 0.52). ALT-positive tumours (n = 63, 31.8%) showed a significantly lower DFS (P < 0.0001) than ALT-negative tumours (n = 135, 68.2%). ARX reactivity correlated with ALT positivity (P < 0.0001). Among nonfunctional tumours, recurrence was noted in 18.5% (30/162) of ARX-positive tumours and 7.5% (5/67) of ARX-negative tumours. Among WHO grade 1 and 2 PanNETs with ≤2 cm tumour size, 14% (6/43) of ARX-positive tumours recurred compared to 0 of 33 ARX-negative tumours and 33.3% (3/9) ALT-positive tumours showed recurrence versus 4.4% (2/45) ALT-negative tumours. CONCLUSION Immunohistochemistry for ARX and ALT FISH status may aid in distinguishing biologically indolent cases from aggressive small low-grade PanNETs, and help to identify patients who may preferentially benefit from surgical intervention.
Collapse
Affiliation(s)
- Azfar Neyaz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Rory Crotty
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Steffen Rickelt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, MA, USA
| | - Amaya Pankaj
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | - Yurie Sekigami
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Paige H Parrack
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Deepa T Patil
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Christopher M Heaphy
- Department of Medicine, Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Vikram Deshpande
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
7
|
Mastrosimini MG, Manfrin E, Remo A, De Bellis M, Parisi A, Pedron S, Luchini C, Brunelli M, Ammendola S, Bernardoni L, Conti Bellocchi MC, Gabbrielli A, Facciorusso A, Pea A, Landoni L, Scarpa A, Crinò SF. Endoscopic ultrasound fine-needle biopsy to assess DAXX/ATRX expression and alternative lengthening of telomeres status in non-functional pancreatic neuroendocrine tumors. Pancreatology 2023:S1424-3903(23)00139-4. [PMID: 37169669 DOI: 10.1016/j.pan.2023.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/02/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND/OBJECTIVES Death domain-associated protein (DAXX) and/or α-thalassemia/mental retardation X-linked (ATRX) chromatin remodeling genes mutations and alternative lengthening of telomeres (ALT) activation are associated with more aggressive behavior of non-functional pancreatic neuroendocrine tumors (NF-PanNETs). We aimed to evaluate the reliability of such markers on endoscopic-ultrasound fine-needle biopsy (EUS-FNB) specimens. METHODS Patients who underwent EUS-FNB and subsequent surgical resection for PanNETs between January 2017 and December 2019 were retrospectively identified. Immunohistochemistry (IHC) to evaluate DAXX/ATRX expression and fluorescence in situ hybridization (FISH) for ALT status were performed. Primary outcome was the concordance rate of markers expression between EUS-FNB and surgical specimens. Secondary aims were association between markers and lesion aggressiveness, their diagnostic performance in predicting aggressiveness, and agreement of preoperative and post-surgical Ki67-based grading. RESULTS Forty-one NF-PanNETs (mean diameter 36.1 ± 26.5 mm) were included. Twenty-four showed features of lesion aggressiveness. Concordance of expressions of DAXX, ATRX, and ALT status between EUS-FNB and surgical specimens were 95.1% (κ = 0.828; p < 0.001), 92.7% (κ = 0.626; p < 0.001), and 100% (κ = 1; p < 0.001), respectively. DAXX/ATRX loss and ALT-positivity were significantly (p < 0.05) associated with metastatic lymphnodes and lymphovascular invasion. The combination of all tumor markers (DAXX/ATRX loss + ALT-positivity + grade 2) reached an accuracy of 73.2% (95%CI 57.1-85.8) in identifying aggressive lesions. Pre- and post-operative ki-67-based grading was concordant in 80.5% of cases (k = 0.573; p < 0.001). CONCLUSION DAXX/ATRX expression and ALT status can be accurately evaluated in a preoperative setting on EUS-FNB samples, potentially improving the identification of patients with increased risk and poorer prognosis.
Collapse
Affiliation(s)
- Maria Gaia Mastrosimini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Erminia Manfrin
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Andrea Remo
- Department of Pathology, ULSS9 "Scaligera", Verona, Italy
| | - Mario De Bellis
- Department of Surgery, Division of General and HPB Surgery, School of Medicine, University of Verona, Verona, Italy
| | - Alice Parisi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Serena Pedron
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Serena Ammendola
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Laura Bernardoni
- Digestive Endoscopy Unit, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | | | - Armando Gabbrielli
- Digestive Endoscopy Unit, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, Section of Gastroenterology, University of Foggia, Foggia, Italy
| | - Antonio Pea
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy; ARC-NET Applied Research on Cancer Centre, University of Verona, Verona, Italy
| | - Stefano Francesco Crinò
- Digestive Endoscopy Unit, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy.
| |
Collapse
|
8
|
Heaphy CM, Singhi AD. Reprint of: The Diagnostic and Prognostic Utility of Incorporating DAXX, ATRX, and Alternative Lengthening of Telomeres (ALT) to the Evaluation of Pancreatic Neuroendocrine Tumors (PanNETs). Hum Pathol 2023; 132:1-11. [PMID: 36702689 DOI: 10.1016/j.humpath.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/26/2023]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of neoplasms with increasing incidence and an ill-defined pathobiology. Although many PanNETs are indolent and remain stable for years, a subset may behave aggressively and metastasize widely. Thus, the increasing and frequent detection of PanNETs presents a treatment dilemma. Current prognostic systems are susceptible to interpretation errors, sampling issues, and do not accurately reflect the clinical behavior of these neoplasms. Hence, additional biomarkers are needed to improve the prognostic stratification of patients diagnosed with a PanNET. Recent studies have identified alterations in death domain-associated protein 6 (DAXX) and alpha-thalassemia/mental retardation X-linked (ATRX), as well as alternative lengthening of telomeres (ALT), as promising prognostic biomarkers. This review summarizes the identification, clinical utility, and specific nuances in testing for DAXX/ATRX by immunohistochemistry and ALT by telomere-specific fluorescence in situ hybridization in PanNETs. Furthermore, a discussion on diagnostic indications for DAXX, ATRX, and ALT status is provided to include the distinction between PanNETs and pancreatic neuroendocrine carcinomas (PanNECs), and determining pancreatic origin for metastatic neuroendocrine tumors in the setting of an unknown primary.
Collapse
Affiliation(s)
- Christopher M Heaphy
- Department of Medicine, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Viol F, Sipos B, Fahl M, Clauditz TS, Amin T, Kriegs M, Nieser M, Izbicki JR, Huber S, Lohse AW, Schrader J. Novel preclinical gastroenteropancreatic neuroendocrine neoplasia models demonstrate the feasibility of mutation-based targeted therapy. Cell Oncol (Dordr) 2022; 45:1401-1419. [PMID: 36269546 PMCID: PMC9747820 DOI: 10.1007/s13402-022-00727-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) form a rare and remarkably heterogeneous group of tumors. Therefore, establishing personalized therapies is eminently challenging. To achieve progress in preclinical drug development, there is an urgent need for relevant tumor models. METHODS We successfully established three gastroenteropancreatic neuroendocrine tumor (GEP-NET) cell lines (NT-18P, NT-18LM, NT-36) and two gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) cell lines (NT-32 and NT-38). We performed a comprehensive characterization of morphology, NET differentiation, proliferation and intracellular signaling pathways of these five cell lines and, in addition, of the NT-3 GEP-NET cell line. Additionally, we conducted panel sequencing to identify genomic alterations suitable for mutation-based targeted therapy. RESULTS We found that the GEP-NEN cell lines exhibit a stable neuroendocrine phenotype. Functional kinome profiling revealed a higher activity of serine/threonine kinases (STK) as well as protein tyrosine kinases (PTK) in the GEP-NET cell lines NT-3 and NT-18LM compared to the GEP-NEC cell lines NT-32 and NT-38. Panel sequencing revealed a mutation in Death Domain Associated Protein (DAXX), sensitizing NT-18LM to the Ataxia telangiectasia and Rad3 related (ATR) inhibitor Berzosertib, and a mutation in AT-Rich Interaction Domain 1A (ARID1A), sensitizing NT-38 to the Aurora kinase A inhibitor Alisertib. Small interfering RNA-mediated knock down of DAXX in the DAXX wild type cell line NT-3 sensitized these cells to Berzosertib. CONCLUSIONS The newly established GEP-NET and GEP-NEC cell lines represent comprehensive preclinical in vitro models suitable to decipher GEP-NEN biology and pathogenesis. Additionally, we present the first results of a GEP-NEN-specific mutation-based targeted therapy. These findings open up new potentialities for personalized therapies in GEP-NEN.
Collapse
Affiliation(s)
- Fabrice Viol
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Bence Sipos
- Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Martina Fahl
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tania Amin
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Nieser
- Center for Genomics and Transcriptomics, Tübingen, Germany
| | - Jakob R Izbicki
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jörg Schrader
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Medicine, Klinikum Nordfriesland, Husum, Germany.
| |
Collapse
|
10
|
Heaphy CM, Singhi AD. The diagnostic and prognostic utility of incorporating DAXX, ATRX, and alternative lengthening of telomeres to the evaluation of pancreatic neuroendocrine tumors. Hum Pathol 2022; 129:11-20. [PMID: 35872157 DOI: 10.1016/j.humpath.2022.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of neoplasms with increasing incidence and an ill-defined pathobiology. Although many PanNETs are indolent and remain stable for years, a subset may behave aggressively and metastasize widely. Thus, the increasing and frequent detection of PanNETs presents a treatment dilemma. Current prognostic systems are susceptible to interpretation errors, sampling issues, and do not accurately reflect the clinical behavior of these neoplasms. Hence, additional biomarkers are needed to improve the prognostic stratification of patients diagnosed with a PanNET. Recent studies have identified alterations in death domain-associated protein 6 (DAXX) and alpha-thalassemia/mental retardation X-linked (ATRX), as well as alternative lengthening of telomeres (ALT), as promising prognostic biomarkers. This review summarizes the identification, clinical utility, and specific nuances in testing for DAXX/ATRX by immunohistochemistry and ALT by telomere-specific fluorescence in situ hybridization in PanNETs. Furthermore, a discussion on diagnostic indications for DAXX, ATRX, and ALT status is provided to include the distinction between PanNETs and pancreatic neuroendocrine carcinomas (PanNECs), and determining pancreatic origin for metastatic neuroendocrine tumors in the setting of an unknown primary.
Collapse
Affiliation(s)
- Christopher M Heaphy
- Department of Medicine, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Chen H, Li Z, Hu Y, Xu X, Ye Z, Lou X, Zhang W, Gao H, Qin Y, Zhang Y, Chen X, Chen J, Tang W, Yu X, Ji S. Maximum Value on Arterial Phase Computed Tomography Predicts Prognosis and Treatment Efficacy of Sunitinib for Pancreatic Neuroendocrine Tumours. Ann Surg Oncol 2022; 30:2988-2998. [PMID: 36310316 DOI: 10.1245/s10434-022-12693-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/06/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE This study was designed to assess the computed tomography maximum (CTmax) value on pretherapeutic arterial phase computed tomography (APCT) images to predict pancreatic neuroendocrine tumours (pNETs) recurrence and clarify its role in predicting the outcome of tumour therapy. METHODS This retrospective study enrolled 250 surgical patients and 24 nonsurgical patients with sunitinib-based treatment in our hospital from 2008 to 2019. CT images were assessed, the maximum value was defined as "CTmax," and recurrence-free survival (RFS) or progression-free survival (PFS) was compared between a high-CTmax group and a low-CTmax group among patients who underwent surgical resection or nonsurgical, sunitinib-based treatment according to the CTmax cutoff value. RESULTS In ROC curve analysis, a CTmax of 108 Hounsfield units, as the cutoff value, achieved an AUC of 0.796 in predicting recurrence. Compared with the low-CTmax group, the high-CTmax group had a longer RFS (p < 0.001). Low CTmax was identified as an independent factor for RFS (p < 0.001) in multivariate analysis; these results were confirmed using the internal validation set. The CTmax value was significantly correlated with the microvascular density (MVD) value (p < 0.001) and the vascular endothelial growth factor receptor 2 (VEGFR2) score (p < 0.001). Furthermore, the high-CTmax group had a better PFS than the low-CTmax group among the sunitinib treatment group (p = 0.007). CONCLUSIONS The tumour CTmax on APCT might be a potential and independent indicator for predicting recurrence in patients who have undergone surgical resection and assessing the efficacy of sunitinib for patients with advanced metastatic pNETs.
Collapse
Affiliation(s)
- Haidi Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zheng Li
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yuheng Hu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zeng Ye
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wuhu Zhang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Heli Gao
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Tang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Insights into Epigenetic Changes Related to Genetic Variants and Cells-of-Origin of Pancreatic Neuroendocrine Tumors: An Algorithm for Practical Workup. Cancers (Basel) 2022; 14:cancers14184444. [PMID: 36139607 PMCID: PMC9496769 DOI: 10.3390/cancers14184444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic neuroendocrine tumors are composite entities due to their heterogeneity illustrated in clinical behavior, mutational pattern, and site of origin. Pancreatic neuroendocrine tumors display a low mutation burden with frequently epigenetic alterations, such as histone modifications, chromatin remodeling, or DNA methylation status. Using the epigenomic data of the pancreatic neuroendocrine tumors converged to the identification of molecularly distinct subgroups. Furthermore, epigenetic signatures could be used as biomarkers due to their link to cell lineages and genetic driver mutations. We integrated the current knowledge on genetic and epigenetic alterations involved in endocrine lineage associated with these neoplasms to present a pathway-based overview. In this review, we suggest a simplified algorithm on how to manage pancreatic neuroendocrine tumors from a practical perspective based on pathologist ’analysis. Abstract Current knowledge on the molecular landscape of pancreatic neuroendocrine tumors (PanNETs) has advanced significantly. Still, the cellular origin of PanNETs is uncertain and the associated mechanisms remain largely unknown. DAXX/ATRX and MEN1 are the three most frequently altered genes that drive PanNETs. They are recognized as a link between genetics and epigenetics. Moreover, the acknowledged impact on DNA methylation by somatic mutations in MEN1 is a valid hallmark of epigenetic mechanism. DAXX/ATRX and MEN1 can be studied at the immunohistochemical level as a reliable surrogate for sequencing. DAXX/ATRX mutations promote alternative lengthening of telomeres (ALT) activation, determined by specific fluorescence in situ hybridization (FISH) analysis. ALT phenotype is considered a significant predictor of worse prognosis and a marker of pancreatic origin. Additionally, ARX/PDX1 expression is linked to important epigenomic alterations and can be used as lineage associated immunohistochemical marker. Herein, ARX/PDX1 association with DAXX/ATRX/MEN1 and ALT can be studied through pathological assessment, as these biomarkers may provide important clues to the mechanism underlying disease pathogenesis. In this review, we present an overview of a new approach to tumor stratification based on genetic and epigenetic characteristics as well as cellular origin, with prognostic consequences.
Collapse
|
13
|
Thompson ED, Zhang ML, VandenBussche CJ. The Diagnostic Challenge of Evaluating Small Biopsies from the Pancreatobiliary System. Surg Pathol Clin 2022; 15:435-453. [PMID: 36049827 DOI: 10.1016/j.path.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Examination of fine needle aspirations and small core biopsies of the pancreas can be an extremely difficult and treacherous area for the diagnostic pathologist. The pancreas often yields small and often fragmented specimens, which, in combination with the morphologic overlap between numerous neoplastic and nonneoplastic mimickers, generate multiple potential diagnostic pitfalls. The authors review this challenging topic and provide insight into resolving these pitfalls using morphologic pattern recognition and ancillary testing.
Collapse
Affiliation(s)
- Elizabeth D Thompson
- Department of Pathology, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD, USA
| | - M Lisa Zhang
- Department of Pathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 USA
| | - Christopher J VandenBussche
- Department of Pathology, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD, USA.
| |
Collapse
|
14
|
Hackeng WM, Assi HA, Westerbeke FHM, Brosens LAA, Heaphy CM. Prognostic and Predictive Biomarkers for Pancreatic Neuroendocrine Tumors. Surg Pathol Clin 2022; 15:541-554. [PMID: 36049835 DOI: 10.1016/j.path.2022.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) represent a clinically challenging disease because these tumors vary in clinical presentation, natural history, and prognosis. Novel prognostic biomarkers are needed to improve patient stratification and treatment options. Several putative prognostic and/or predictive biomarkers (eg, alternative lengthening of telomeres, alpha-thalassemia/mental retardation, X-linked (ATRX)/Death Domain Associated Protein (DAXX) loss) have been independently validated. Additionally, recent transcriptomic and epigenetic studies focusing on endocrine differentiation have identified PanNET subtypes that display similarities to either α-cells or β-cells and differ in clinical outcomes. Thus, future prospective studies that incorporate genomic and epigenetic biomarkers are warranted and have translational potential for individualized therapeutic and surveillance strategies.
Collapse
Affiliation(s)
- Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Hussein A Assi
- Department of Medicine, Boston University School of Medicine, 820 Harrison Avenue, FGH 2011, Boston, MA 02118, USA
| | - Florine H M Westerbeke
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Christopher M Heaphy
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Room 444, Boston, MA 02118, USA; Department of Pathology & Laboratory Medicine, Boston University School of Medicine, 650 Albany Street, Room 444, Boston, MA 02118, USA.
| |
Collapse
|
15
|
Hackeng WM, Brosens LAA, Kim JY, O'Sullivan R, Sung YN, Liu TC, Cao D, Heayn M, Brosnan-Cashman J, An S, Morsink FHM, Heidsma CM, Valk GD, Vriens MR, Nieveen van Dijkum E, Offerhaus GJA, Dreijerink KMA, Zeh H, Zureikat AH, Hogg M, Lee K, Geller D, Marsh JW, Paniccia A, Ongchin M, Pingpank JF, Bahary N, Aijazi M, Brand R, Chennat J, Das R, Fasanella KE, Khalid A, McGrath K, Sarkaria S, Singh H, Slivka A, Nalesnik M, Han X, Nikiforova MN, Lawlor RT, Mafficini A, Rusev B, Corbo V, Luchini C, Bersani S, Pea A, Cingarlini S, Landoni L, Salvia R, Milione M, Milella M, Scarpa A, Hong SM, Heaphy CM, Singhi AD. Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut 2022; 71:961-973. [PMID: 33849943 PMCID: PMC8511349 DOI: 10.1136/gutjnl-2020-322595] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Recent studies have found aristaless-related homeobox gene (ARX)/pancreatic and duodenal homeobox 1 (PDX1), alpha-thalassemia/mental retardation X-linked (ATRX)/death domain-associated protein (DAXX) and alternative lengthening of telomeres (ALT) to be promising prognostic biomarkers for non-functional pancreatic neuroendocrine tumours (NF-PanNETs). However, they have not been comprehensively evaluated, especially among small NF-PanNETs (≤2.0 cm). Moreover, their status in neuroendocrine tumours (NETs) from other sites remains unknown. DESIGN An international cohort of 1322 NETs was evaluated by immunolabelling for ARX/PDX1 and ATRX/DAXX, and telomere-specific fluorescence in situ hybridisation for ALT. This cohort included 561 primary NF-PanNETs, 107 NF-PanNET metastases and 654 primary, non-pancreatic non-functional NETs and NET metastases. The results were correlated with numerous clinicopathological features including relapse-free survival (RFS). RESULTS ATRX/DAXX loss and ALT were associated with several adverse prognostic findings and distant metastasis/recurrence (p<0.001). The 5-year RFS rates for patients with ATRX/DAXX-negative and ALT-positive NF-PanNETs were 40% and 42% as compared with 85% and 86% for wild-type NF-PanNETs (p<0.001 and p<0.001). Shorter 5-year RFS rates for ≤2.0 cm NF-PanNETs patients were also seen with ATRX/DAXX loss (65% vs 92%, p=0.003) and ALT (60% vs 93%, p<0.001). By multivariate analysis, ATRX/DAXX and ALT status were independent prognostic factors for RFS. Conversely, classifying NF-PanNETs by ARX/PDX1 expression did not independently correlate with RFS. Except for 4% of pulmonary carcinoids, ATRX/DAXX loss and ALT were only identified in primary (25% and 29%) and NF-PanNET metastases (62% and 71%). CONCLUSIONS ATRX/DAXX and ALT should be considered in the prognostic evaluation of NF-PanNETs including ≤2.0 cm tumours, and are highly specific for pancreatic origin among NET metastases of unknown primary.
Collapse
Affiliation(s)
- Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joo Young Kim
- Department of Pathology, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Roderick O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - You-Na Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St, Louis, MO, USA
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St, Louis, MO, USA
| | - Michelle Heayn
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Soyeon An
- Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Folkert H M Morsink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Charlotte M Heidsma
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Gerlof D Valk
- Department of Endocrinology and Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno R Vriens
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - G Johan A Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Koen M A Dreijerink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Endocrinology and Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Herbert Zeh
- Department of Clinical Sciences, Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melissa Hogg
- Department of Surgery, NorthShore University Health System, Evanston, IL, USA
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Wallis Marsh
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melanie Ongchin
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - James F Pingpank
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nathan Bahary
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Muaz Aijazi
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Randall Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jennifer Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rohit Das
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Savreet Sarkaria
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Harkirat Singh
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael Nalesnik
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiaoli Han
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rita Teresa Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Mafficini
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Boris Rusev
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
| | - Samantha Bersani
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Antonio Pea
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Sara Cingarlini
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Roberto Salvia
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Milione
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Michele Milella
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ENETS Center of Excellence, University and Hospital Trust of Verona, Verona, Italy
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Couvelard A, Cros J. An update on the development of concepts, diagnostic criteria, and challenging issues for neuroendocrine neoplasms across different digestive organs. Virchows Arch 2022; 480:1129-1148. [PMID: 35278097 DOI: 10.1007/s00428-022-03306-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/11/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022]
Abstract
Digestive neuroendocrine neoplasms (NENs) are a group of heterogeneous neoplasms found throughout the digestive tract, with different behaviour and genetic background. In the last few years, nomenclature and WHO/UICC classifications of digestive NENs have changed, and molecular classifications have emerged, especially in pancreatic locations. Increasing patho-molecular details are needed to diagnose the different categories of NEN, including the use of helpful immunohistochemical markers. In this review, we address these topics in three successive chapters. We first briefly review recent updates in classifications, discuss important grading and proliferating issues and advances in the molecular understanding of NEN. Then, we provide an update on diagnosis, including the most important differential diagnoses of NEN, with a focus on high-grade neoplasms and mixed tumours. Finally, we highlight a variety of currently used and next-generation predictive and prognostic biomarkers as well as biomarkers of tumour origin and describe some site specificities of gastrointestinal NEN. We specifically focus on biomarkers available to pathologists with the potential to change the way patients with NEN are diagnosed and treated.
Collapse
Affiliation(s)
- Anne Couvelard
- Department of Pathology of Bichat and Beaujon AP-HP Hospitals, ENETS Centre of Excellence, Université Paris Cité, 46 Rue Henri Huchard, 75018, Paris, France.
| | - Jérôme Cros
- Department of Pathology of Bichat and Beaujon AP-HP Hospitals, ENETS Centre of Excellence, Université Paris Cité, 46 Rue Henri Huchard, 75018, Paris, France
| |
Collapse
|
17
|
Pancreatic Neuroendocrine Neoplasms: Updates on Genomic Changes in Inherited Tumour Syndromes and Sporadic Tumours Based on WHO Classification. Crit Rev Oncol Hematol 2022; 172:103648. [PMID: 35248713 DOI: 10.1016/j.critrevonc.2022.103648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are the neuroendocrine neoplasms with greatest rate of increase in incidence. Approximately 10% of PanNENs arise as inherited tumour syndromes which include multiple endocrine neoplasia type 1, multiple endocrine neoplasia type 4, von Hippel-Lindau syndrome, neurofibromatosis type1, tuberous sclerosis complex 1/2, Cowden syndrome, and Glucagon cell hyperplasia and neoplasia as well as familial insulinomatosis. In sporadic PanNENs, driver mutations in MEN1, DAXX/ATRX and mTOR pathway genes are associated with development and progression in pancreatic neuroendocrine tumours. The other changes are in VEGF pathway, Notch pathway, germline mutations in MUTYH, CHEK2, BRCA2, PHLDA3 as well as other genetic alterations. On the other hand, pancreatic neuroendocrine carcinomas share similar genetic alterations with ductal adenocarcinomas, e.g., TP53, RB1 or KRAS. In addition, microRNA and changes in immune microenvironment were noted in PanNENs. Updates on these genetic knowledges contribute to the development of management strategies for patients with PanNENs.
Collapse
|
18
|
Dreijerink KM, Hackeng WM, Singhi AD, Heaphy CM, Brosens LA. Clinical implications of cell-of-origin epigenetic characteristics in non-functional pancreatic neuroendocrine tumors. J Pathol 2022; 256:143-148. [PMID: 34750813 DOI: 10.1002/path.5834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Primary non-functional pancreatic neuroendocrine tumors (NF-PanNETs) are a heterogeneous group of neuroendocrine neoplasms that display highly variable clinical behavior. Therefore, NF-PanNETs often present clinical teams with a dilemma: the uncertain metastatic potential of the tumor has to be weighed against the morbidity associated with surgical resection. Thus, rather than utilizing current radiologic thresholds, there is an urgent need for improved prognostic biomarkers. Recent studies aimed at understanding the epigenetic underpinnings of NF-PanNETs have led to the identification of tumor subgroups based on histone modification and DNA methylation patterns. These molecular profiles tend to resemble the cellular origins of PanNETs. Subsequent retrospective analyses have demonstrated that these molecular signatures are of prognostic value and, importantly, may be useful in the preoperative setting. These studies have highlighted that sporadic NF-PanNETs displaying biomarkers associated with disease progression and poor prognosis, such as alternative lengthening of telomeres, inactivating alpha thalassemia/mental retardation X-linked (ATRX) or death domain-associated protein (DAXX) gene mutations, or copy number variations, more often display alpha cell characteristics. Conversely, NF-PanNETs with beta cell characteristics often lack these unfavorable biomarkers. Alternative lengthening of telomeres, transcription factor protein expression, and possibly DNA methylation can be assessed in endoscopic ultrasound-guided tumor biopsies. Prospective studies focusing on cell-of-origin and epigenetic profile-driven decision making prior to surgery are likely to be routinely implemented into clinical practice in the near future. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Koen Ma Dreijerink
- Amsterdam Center for Endocrine and Neuroendocrine Tumors, Department of Endocrinology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christopher M Heaphy
- Departments of Medicine and Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Lodewijk Aa Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Ciobanu OA, Martin S, Fica S. Perspectives on the diagnostic, predictive and prognostic markers of neuroendocrine neoplasms (Review). Exp Ther Med 2021; 22:1479. [PMID: 34765020 PMCID: PMC8576627 DOI: 10.3892/etm.2021.10914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of rare tumors with different types of physiology and prognosis. Therefore, prognostic information, including morphological differentiation, grade, tumor stage and primary location, are invaluable and contribute to the formulation of treatment decisions. Biomarkers that are currently used, including chromogranin A (CgA), serotonin and neuron-specific enolase, are singular parameters that cannot be used to accurately predict variables associated with tumor growth, including proliferation, metabolic rate and metastatic potential. In addition, site-specific biomarkers, such as insulin and gastrin, cannot be applied to all types of NENs. The clinical application of broad-spectrum markers, as it is the case for CgA, remains controversial despite being widely used. Due to limitations of the currently available mono-analyte biomarkers, recent studies were conducted to explore novel parameters for NEN diagnosis, prognosis, therapy stratification and evaluation of treatment response. Identification of prognostic factors for predicting NEN outcome is a critical requirement for the planning of adequate clinical management. Advances in ‘liquid’ biopsies and genomic analysis techniques, including microRNA, circulating tumor DNA or circulating tumor cells and sophisticated biomathematical analysis techniques, such as NETest or molecular image-based biomarkers, are currently under investigation as potentially novel tools for the management of NENs in the future. Despite these recent findings yielding promising observations, further research is necessary. The present review therefore summarizes the existing knowledge and recent advancements in the exploration of biochemical markers for NENs, with focus on gastroenteropancreatic-neuroendocrine tumors.
Collapse
Affiliation(s)
- Oana Alexandra Ciobanu
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Sorina Martin
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Simona Fica
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| |
Collapse
|
20
|
Luchini C, Lawlor RT, Bersani S, Vicentini C, Paolino G, Mattiolo P, Pea A, Cingarlini S, Milella M, Scarpa A. Alternative Lengthening of Telomeres (ALT) in Pancreatic Neuroendocrine Tumors: Ready for Prime-Time in Clinical Practice? Curr Oncol Rep 2021; 23:106. [PMID: 34269919 PMCID: PMC8285324 DOI: 10.1007/s11912-021-01096-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW Alternative lengthening of telomeres (ALT) is a telomerase-independent mechanism used by some types of malignancies, including pancreatic neuroendocrine tumors, to overcome the issue of telomere shortening, thus supporting tumor growth and cell proliferation. This review is focused on the most important achievements and opportunities deriving from ALT assessment in PanNET onco-pathology, highlighting the most promising fields in which such biomarker could be implemented in clinical practice. RECENT FINDINGS In pancreatic neuroendocrine tumors (PanNET), ALT is strongly correlated with the mutational status of two chromatin remodeling genes, DAXX and ATRX. Recent advances in tumor biology permitted to uncover important roles of ALT in the landscape of PanNET, potentially relevant for introducing this biomarker into clinical practice. Indeed, ALT emerged as a reliable indicator of worse prognosis for PanNET, helping in clinical stratification and identification of "high-risk" patients. Furthermore, it is a very specific marker supporting the pancreatic origin of neuroendocrine neoplasms and can be used for improving the diagnostic workflow of patients presenting with neuroendocrine metastasis from unknown primary. The activation of this process can be determined by specific FISH analysis. ALT should be introduced in clinical practice for identifying "high-risk" PanNET patients and improving their clinical management, and as a marker of pancreatic origin among neuroendocrine tumors.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Rita T Lawlor
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Samantha Bersani
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Caterina Vicentini
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Gaetano Paolino
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonio Pea
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Sara Cingarlini
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Milella
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy. .,ARC-Net Research Centre, University and Hospital Trust of Verona, 37134, Verona, Italy.
| |
Collapse
|
21
|
Heaphy CM, VandenBussche CJ. Prognostic biomarkers in pancreatic neuroendocrine tumors. Cancer Cytopathol 2021; 129:841-843. [PMID: 34242496 DOI: 10.1002/cncy.22457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022]
|
22
|
MacKenzie D, Watters AK, To JT, Young MW, Muratori J, Wilkoff MH, Abraham RG, Plummer MM, Zhang D. ALT Positivity in Human Cancers: Prevalence and Clinical Insights. Cancers (Basel) 2021; 13:2384. [PMID: 34069193 PMCID: PMC8156225 DOI: 10.3390/cancers13102384] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
Many exciting advances in cancer-related telomere biology have been made in the past decade. Of these recent advances, great progress has also been made with respect to the Alternative Lengthening of Telomeres (ALT) pathway. Along with a better understanding of the molecular mechanism of this unique telomere maintenance pathway, many studies have also evaluated ALT activity in various cancer subtypes. We first briefly review and assess a variety of commonly used ALT biomarkers. Then, we provide both an update on ALT-positive (ALT+) tumor prevalence as well as a systematic clinical assessment of the presently studied ALT+ malignancies. Additionally, we discuss the pathogenetic alterations in ALT+ cancers, for example, the mutation status of ATRX and DAXX, and their correlations with the activation of the ALT pathway. Finally, we highlight important ALT+ clinical associations within each cancer subtype and subdivisions within, as well as their prognoses. We hope this alternative perspective will allow scientists, clinicians, and drug developers to have greater insight into the ALT cancers so that together, we may develop more efficacious treatments and improved management strategies to meet the urgent needs of cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria M. Plummer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (D.M.J.); (A.K.W.); (J.T.T.); (M.W.Y.); (J.M.); (M.H.W.); (R.G.A.)
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (D.M.J.); (A.K.W.); (J.T.T.); (M.W.Y.); (J.M.); (M.H.W.); (R.G.A.)
| |
Collapse
|
23
|
Abstract
Uterine leiomyosarcomas (uLMS) are aggressive tumors arising from the smooth muscle layer of the uterus. We analyzed 83 uLMS sample genetics, including 56 from Yale and 27 from The Cancer Genome Atlas (TCGA). Among them, a total of 55 Yale samples including two patient-derived xenografts (PDXs) and 27 TCGA samples have whole-exome sequencing (WES) data; 10 Yale and 27 TCGA samples have RNA-sequencing (RNA-Seq) data; and 11 Yale and 10 TCGA samples have whole-genome sequencing (WGS) data. We found recurrent somatic mutations in TP53, MED12, and PTEN genes. Top somatic mutated genes included TP53, ATRX, PTEN, and MEN1 genes. Somatic copy number variation (CNV) analysis identified 8 copy-number gains, including 5p15.33 (TERT), 8q24.21 (C-MYC), and 17p11.2 (MYOCD, MAP2K4) amplifications and 29 copy-number losses. Fusions involving tumor suppressors or oncogenes were deetected, with most fusions disrupting RB1, TP53, and ATRX/DAXX, and one fusion (ACTG2-ALK) being potentially targetable. WGS results demonstrated that 76% (16 of 21) of the samples harbored chromoplexy and/or chromothripsis. Clinically actionable mutational signatures of homologous-recombination DNA-repair deficiency (HRD) and microsatellite instability (MSI) were identified in 25% (12 of 48) and 2% (1 of 48) of fresh frozen uLMS, respectively. Finally, we found olaparib (PARPi; P = 0.002), GS-626510 (C-MYC/BETi; P < 0.000001 and P = 0.0005), and copanlisib (PIK3CAi; P = 0.0001) monotherapy to significantly inhibit uLMS-PDXs harboring derangements in C-MYC and PTEN/PIK3CA/AKT genes (LEY11) and/or HRD signatures (LEY16) compared to vehicle-treated mice. These findings define the genetic landscape of uLMS and suggest that a subset of uLMS may benefit from existing PARP-, PIK3CA-, and C-MYC/BET-targeted drugs.
Collapse
|
24
|
Ishii T, Katanuma A, Toyonaga H, Chikugo K, Nasuno H, Kin T, Hayashi T, Takahashi K. Role of Endoscopic Ultrasound in the Diagnosis of Pancreatic Neuroendocrine Neoplasms. Diagnostics (Basel) 2021; 11:diagnostics11020316. [PMID: 33672085 PMCID: PMC7919683 DOI: 10.3390/diagnostics11020316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Although pancreatic neuroendocrine neoplasms (PNENs) are relatively rare tumors, their number is increasing with advances in diagnostic imaging modalities. Even small lesions that are difficult to detect using computed tomography or magnetic resonance imaging can now be detected with endoscopic ultrasound (EUS). Contrast-enhanced EUS is useful, and not only diagnosis but also malignancy detection has become possible by evaluating the vascularity of tumors. Pathological diagnosis using EUS with fine-needle aspiration (EUS-FNA) is useful when diagnostic imaging is difficult. EUS-FNA can also be used to evaluate the grade of malignancy. Pooling the data of the studies that compared the PNENs grading between EUS-FNA samples and surgical specimens showed a concordance rate of 77.5% (κ-statistic = 0.65, 95% confidence interval = 0.59–0.71, p < 0.01). Stratified analysis for small tumor size (2 cm) showed that the concordance rate was 84.5% and the kappa correlation index was 0.59 (95% confidence interval = 0.43–0.74, p < 0.01). The evolution of ultrasound imaging technologies such as contrast-enhanced and elastography and the artificial intelligence that analyzes them, the evolution of needles, and genetic analysis, will further develop the diagnosis and treatment of PNENs in the future.
Collapse
Affiliation(s)
- Tatsuya Ishii
- Correspondence: ; Tel.: +81-11-681-8111; Fax: +81-11-685-2967
| | | | | | | | | | | | | | | |
Collapse
|
25
|
da Silva GG, Morais KS, Arcanjo DS, de Oliveira DM. Clinical Relevance of Alternative Lengthening of Telomeres in Cancer. Curr Top Med Chem 2020; 20:485-497. [PMID: 31924155 DOI: 10.2174/1568026620666200110112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
The alternative lengthening of telomere (ALT) is a pathway responsible for cell immortalization in some kinds of tumors. Since the first description of ALT is relatively recent in the oncology field, its mechanism remains elusive, but recent works address ALT-related proteins or cellular structures as potential druggable targets for more specific and efficient antitumor therapies. Moreover, some new generation compounds for antitelomerase therapy in cancer were able to provoke acquisition of ALT phenotype in treated tumors, enhancing the importance of studies on this alternative lengthening of the telomere. However, ALT has been implicated in different - sometimes opposite - outcomes, according to the tumor type studied. Then, in order to design and develop new drugs for ALT+ cancer in an effective way, it is crucial to understand its clinical implications. In this review, we gathered works published in the last two decades to highlight the clinical relevance of ALT on oncology.
Collapse
Affiliation(s)
- Guilherme G da Silva
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Karollyne S Morais
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| | - Daniel S Arcanjo
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Diêgo M de Oliveira
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil.,Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| |
Collapse
|
26
|
Jiang R, Hong X, Zhao Y, Wu W. Application of multiomics sequencing and advances in the molecular mechanisms of pancreatic neuroendocrine neoplasms. Cancer Lett 2020; 499:39-48. [PMID: 33246093 DOI: 10.1016/j.canlet.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/10/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The incidence of pancreatic neuroendocrine neoplasms (PanNENs) has gradually increased. PanNENs comprise two subtypes with different clinical manifestations and molecular mechanisms: functional PanNENs and nonfunctional PanNENs. Excessive hormones and tumor progression severely affect the quality of life of patients or are even life threatening. However, the molecular mechanisms of hormone secretion and tumor progression in PanNENs have not yet been fully elucidated. At present, advancements in sequencing technologies have led to the exploration of new biological markers and an advanced understanding of molecular mechanisms in PanNENs. Multiomics sequencing could reveal differences and similarities in molecular features in different fields. However, sequencing studies of PanNENs are booming and should be summarized to integrate the current findings. In this review, we summarize the current status of multiomics sequencing in PanNENs to further guide its application. We explore mainly advancements in the genome, transcriptome, and DNA methylation fields. In addition, the cell origin of PanNENs, which has been a hot issue in sequencing research, is described in multiple fields.
Collapse
Affiliation(s)
- Rui Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Xiafei Hong
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
27
|
Hussien MT, Shaban S, Temerik DF, Helal SR, Mosad E, Elgammal S, Mostafa A, Hassan E, Ibrahim A. Impact of DAXX and ATRX expression on telomere length and prognosis of breast cancer patients. J Egypt Natl Canc Inst 2020; 32:34. [PMID: 32856116 DOI: 10.1186/s43046-020-00045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomere stability is one of the hallmarks of cancer that promotes cellular longevity, the accumulation of genetic alterations, and tumorigenesis. The loss of death domain-associated protein (DAXX) and α-thalassemia/mental retardation X-linked protein (ATRX) plays a role in telomere lengthening and stability. This study aims to evaluate the prognostic significance of telomere length (TL) and its association with DAXX and ATRX proteins in breast cancer (BC). Our study used the FISH technique to detect peptide nucleic acid (PNA) in the peripheral blood cells of a cohort of BC patients (n = 220) and a control group of apparently healthy individuals (n = 100). Expression of DAXX and ATRX proteins was evaluated using immunohistochemistry (IHC) in all BC tissues. RESULTS Patients with a shorter TL had worse disease-free survival (DFS) and overall survival (OS). There were significant associations between shorter TL and advanced disease stages, lymph node metastasis, and positive HER2/neu expression. DAXX protein expression was significantly correlated with TL. Lower DAXX expression was significantly with shorter DFS. CONCLUSION Assessing TL can be used as a worthy prognostic indicator in BC patients. Specifically, short TL had a poor impact on the prognosis of BC patients. Low DAXX expression is associated with poor outcomes in BC. Further mechanistic studies are warranted to reveal the underlying mechanisms of these associations.
Collapse
Affiliation(s)
- Marwa T Hussien
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Shimaa Shaban
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Doaa F Temerik
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Shaaban R Helal
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Mosad
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Sahar Elgammal
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer Mostafa
- Department of Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Eman Hassan
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Abeer Ibrahim
- Department of Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
28
|
Khanna L, Prasad SR, Sunnapwar A, Kondapaneni S, Dasyam A, Tammisetti VS, Salman U, Nazarullah A, Katabathina VS. Pancreatic Neuroendocrine Neoplasms: 2020 Update on Pathologic and Imaging Findings and Classification. Radiographics 2020; 40:1240-1262. [PMID: 32795239 DOI: 10.1148/rg.2020200025] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are heterogeneous neoplasms with neuroendocrine differentiation that show characteristic clinical, histomorphologic, and prognostic features; genetic alterations; and biologic behavior. Up to 10% of panNENs develop in patients with syndromes that predispose them to cancer, such as multiple endocrine neoplasia type 1, von Hippel-Lindau disease, tuberous sclerosis complex, neurofibromatosis type 1, and glucagon cell adenomatosis. PanNENs are classified as either functioning tumors, which manifest early because of clinical symptoms related to increased hormone production, or nonfunctioning tumors, which often manifest late because of mass effect. PanNENs are histopathologically classified as well-differentiated pancreatic neuroendocrine tumors (panNETs) or poorly differentiated pancreatic neuroendocrine carcinomas (panNECs) according to the 2010 World Health Organization (WHO) classification system. Recent advances in cytogenetics and molecular biology have shown substantial heterogeneity in panNECs, and a new tumor subtype, well-differentiated, high-grade panNET, has been introduced. High-grade panNETs and panNECs are two distinct entities with different pathogenesis, clinical features, imaging findings, treatment options, and prognoses. The 2017 WHO classification system and the eighth edition of the American Joint Committee on Cancer staging system include substantial changes. Multidetector CT, MRI, and endoscopic US help in anatomic localization of the primary tumor, local-regional spread, and metastases. Somatostatin receptor scintigraphy and fluorine 18-fluorodeoxyglucose PET/CT are helpful for functional and metabolic assessment. Knowledge of recent updates in the pathogenesis, classification, and staging of panNENs and familiarity with their imaging findings allow optimal patient treatment. ©RSNA, 2020.
Collapse
Affiliation(s)
- Lokesh Khanna
- From the Departments of Radiology (L.K., A.S., U.S., V.S.K.) and Pathology (V.S.T.), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (S.R.P.); Department of Molecular Biosciences, University of Texas at Austin, Austin, Tex (S.K.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, University of Texas Health Science Center at Houston, Houston, Tex (A.N.)
| | - Srinivasa R Prasad
- From the Departments of Radiology (L.K., A.S., U.S., V.S.K.) and Pathology (V.S.T.), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (S.R.P.); Department of Molecular Biosciences, University of Texas at Austin, Austin, Tex (S.K.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, University of Texas Health Science Center at Houston, Houston, Tex (A.N.)
| | - Abhijit Sunnapwar
- From the Departments of Radiology (L.K., A.S., U.S., V.S.K.) and Pathology (V.S.T.), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (S.R.P.); Department of Molecular Biosciences, University of Texas at Austin, Austin, Tex (S.K.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, University of Texas Health Science Center at Houston, Houston, Tex (A.N.)
| | - Sainath Kondapaneni
- From the Departments of Radiology (L.K., A.S., U.S., V.S.K.) and Pathology (V.S.T.), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (S.R.P.); Department of Molecular Biosciences, University of Texas at Austin, Austin, Tex (S.K.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, University of Texas Health Science Center at Houston, Houston, Tex (A.N.)
| | - Anil Dasyam
- From the Departments of Radiology (L.K., A.S., U.S., V.S.K.) and Pathology (V.S.T.), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (S.R.P.); Department of Molecular Biosciences, University of Texas at Austin, Austin, Tex (S.K.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, University of Texas Health Science Center at Houston, Houston, Tex (A.N.)
| | - Varaha S Tammisetti
- From the Departments of Radiology (L.K., A.S., U.S., V.S.K.) and Pathology (V.S.T.), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (S.R.P.); Department of Molecular Biosciences, University of Texas at Austin, Austin, Tex (S.K.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, University of Texas Health Science Center at Houston, Houston, Tex (A.N.)
| | - Umber Salman
- From the Departments of Radiology (L.K., A.S., U.S., V.S.K.) and Pathology (V.S.T.), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (S.R.P.); Department of Molecular Biosciences, University of Texas at Austin, Austin, Tex (S.K.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, University of Texas Health Science Center at Houston, Houston, Tex (A.N.)
| | - Alia Nazarullah
- From the Departments of Radiology (L.K., A.S., U.S., V.S.K.) and Pathology (V.S.T.), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (S.R.P.); Department of Molecular Biosciences, University of Texas at Austin, Austin, Tex (S.K.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, University of Texas Health Science Center at Houston, Houston, Tex (A.N.)
| | - Venkata S Katabathina
- From the Departments of Radiology (L.K., A.S., U.S., V.S.K.) and Pathology (V.S.T.), University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (S.R.P.); Department of Molecular Biosciences, University of Texas at Austin, Austin, Tex (S.K.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, University of Texas Health Science Center at Houston, Houston, Tex (A.N.)
| |
Collapse
|
29
|
Pulvirenti A, Pea A, Chang DK, Jamieson NB. Clinical and Molecular Risk Factors for Recurrence Following Radical Surgery of Well-Differentiated Pancreatic Neuroendocrine Tumors. Front Med (Lausanne) 2020; 7:385. [PMID: 32850899 PMCID: PMC7419466 DOI: 10.3389/fmed.2020.00385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Well-differentiated pancreatic neuroendocrine tumors are increasingly diagnosed neoplasms. For localized disease, surgery is the first-line therapy and is curative in most cases. However, although recurrence is a rare event, it can still occur up to 10 years from surgery, worsening the prognosis. Many clinical and pathological factors have been associated with recurrence; however, it is currently unclear how to accurately discern patients at risk for relapse of disease from those that should be considered cured. In this review, we focus on clinical, pathological, and molecular factors associated with recurrence and discuss available prediction tools to assess the risk of recurrence following surgery.
Collapse
Affiliation(s)
- Alessandra Pulvirenti
- Unit of General and Pancreatic Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Pea
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Nigel B. Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| |
Collapse
|
30
|
Sadowski SM, Pieterman CRC, Perrier ND, Triponez F, Valk GD. Prognostic factors for the outcome of nonfunctioning pancreatic neuroendocrine tumors in MEN1: a systematic review of literature. Endocr Relat Cancer 2020; 27:R145-R161. [PMID: 32229700 PMCID: PMC7304521 DOI: 10.1530/erc-19-0372] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Metastatic duodenopancreatic neuro-endocrine tumors (dpNETs) are the most important disease-related cause of death in patients with multiple endocrine neoplasia type 1 (MEN1). Nonfunctioning pNETs (NF-pNETs) are highly prevalent in MEN1 and clinically heterogeneous. Therefore, management is controversial. Data on prognostic factors for risk stratification are limited. This systematic review aims to establish the current state of evidence regarding prognostic factors in MEN1-related NF-pNETs. We systematically searched four databases for studies assessing prognostic value of any factor on NF-pNET progression, development of distant metastases, and/or overall survival. In- and exclusion, critical appraisal and data-extraction were performed independently by two authors according to pre-defined criteria. Thirteen studies (370 unique patients) were included. Prognostic factors investigated were tumor size, timing of surgical resection, WHO grade, methylation, p27/p18 expression by immunohistochemistry (IHC), ARX/PDX1 IHC and alternative lengthening of telomeres. Results were complemented with evidence from studies in MEN1-related pNET for which data could not be separately extracted for NF-pNET and data from sporadic NF-pNET. We found that the most important prognostic factors used in clinical decision making in MEN1-related NF-pNETs are tumor size and grade. NF-pNETs <2 cm may be managed with watchful waiting, while surgical resection is advised for NF-pNETs ≥2 cm. Grade 2 NF-pNETs should be considered high risk. The most promising and MEN1-relevant avenues of prognostic research are multi-analyte circulating biomarkers, tissue-based molecular factors and imaging-based prognostication. Multi-institutional collaboration between clinical, translation and basic scientists with uniform data and biospecimen collection in prospective cohorts should advance the field.
Collapse
Affiliation(s)
- S M Sadowski
- Endocrine Surgery, Surgical Oncology Program, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - C R C Pieterman
- Department of Surgical Oncology, Section of Surgical Endocrinology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N D Perrier
- Department of Surgical Oncology, Section of Surgical Endocrinology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - F Triponez
- Thoracic and Endocrine Surgery and Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - G D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
Genetic Analysis of Small Well-differentiated Pancreatic Neuroendocrine Tumors Identifies Subgroups With Differing Risks of Liver Metastases. Ann Surg 2020; 271:566-573. [PMID: 30339629 DOI: 10.1097/sla.0000000000003022] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the key molecular alterations in small primary pancreatic neuroendocrine tumors (PanNETs) associated with the development of liver metastases. BACKGROUND Well-differentiated PanNETs with small size are typically indolent; however, a limited subset metastasize to the liver. METHODS A total of 87 small primary PanNETs (<3 cm), including 32 metastatic cases and 55 nonmetastatic cases after a 5-year follow-up, were immunolabeled for DAXX/ATRX and analyzed for alternative lengthening of telomeres (ALT) by Fluorescence In Situ Hybridization. A subset of these cases, 24 that metastasized and 24 that did not metastasize, were assessed by targeted next-generation sequencing and whole-genome copy number variation. RESULTS In the entire cohort, high Ki-67 (OR 1.369; 95% CI 1.121-1.673; P = 0.002), N-stage (OR 4.568; 95% CI 1.458-14.312; P = 0.009), and ALT-positivity (OR 3.486; 95% CI 1.093-11.115; P = 0.035) were independently associated with liver metastases. In the subset assessed by next-generation sequencing and copy number variation analysis, 3 molecular subtypes with differing risks of liver metastases were identified. Group 1 (n = 15; 73% metastasized) was characterized by recurrent chromosomal gains, CN-LOH, DAXX mutations, and ALT-positivity. Group 2 (n = 19; 42% metastasized, including 5 G1 tumors) was characterized by limited copy number alterations and mutations. Group 3 (n = 14; 35% metastasized) were defined by chromosome 11 loss. CONCLUSIONS We identified genomic patterns of small PanNETs associated with a different risk for liver metastases. Molecular alterations, such as DAXX mutations, chromosomal gains, and ALT, are associated with an increased risk of metastasis in small PanNETs. Therefore, targeted sequencing and/or ALT analysis may help in the clinical decisions for these small PanNETs.
Collapse
|
32
|
Hackeng WM, Morsink FHM, Moons LMG, Heaphy CM, Offerhaus GJA, Dreijerink KMA, Brosens LAA. Assessment of ARX expression, a novel biomarker for metastatic risk in pancreatic neuroendocrine tumors, in endoscopic ultrasound fine-needle aspiration. Diagn Cytopathol 2019; 48:308-315. [PMID: 31846235 PMCID: PMC7079001 DOI: 10.1002/dc.24368] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The transcription factors ARX and PDX1, and alternative lengthening of telomeres (ALT) were recently described as prognostic markers for resected non-functional pancreatic neuroendocrine tumors (PanNETs). ALT positive tumors with ARX expression relapse most often. Currently, tumor size is the only preoperative marker used to decide whether or not to operate, thus additional preoperative prognostic markers are needed. Therefore, it is critical to assess the performance of these biomarkers on preoperative cytologic specimens. METHODS Endoscopic fine-needle aspiration cellblock material and corresponding surgical specimens of 13 patients with PanNETs were assessed for histology, immunohistochemical staining of ARX, PDX1, Synaptophysin, Ki67, and telomere-specific fluorescence in situ hybridization to detect ALT, and then associated with clinicopathological features. Scoring for ARX and PDX1 was performed blinded by two independent observers. RESULTS Of the 13 surgical specimens, 8 were ARX+/PDX1-, 2 ARX-/PDX1+, and 3 ARX+/PDX1+. Concordance between cytologic and surgical specimens for ARX protein expression was 100%, whereas concordance for PDX1, ALT, and WHO tumor grade was 85%, 91%, and 73%, respectively. There was a perfect inter-observer agreement in ARX and PDX1 scoring. CONCLUSION ARX can reliably be determined in cytologic specimens and has low inter-observer variability. For cytology, false-positive PDX1 expression was observed, possibly due to contamination or sampling, while ALT had a false-negative case due to incomplete sampling. As previously observed, tumor grade is underestimated in cytologic specimens. Thus, ARX and ALT are the most promising markers to predict metastatic behavior in PanNETs, thereby warranting further validation in larger studies.
Collapse
Affiliation(s)
- Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert H M Morsink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leon M G Moons
- Department of Gastroenterology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - G Johan A Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen M A Dreijerink
- Department of Endocrinology and Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Challis BG, Casey RT, Grossman A, Newell-Price J, Newey P, Thakker RV. What is the appropriate management of nonfunctioning pancreatic neuroendocrine tumours disclosed on screening in adult patients with multiple endocrine neoplasia type 1? Clin Endocrinol (Oxf) 2019; 91:708-715. [PMID: 31505044 DOI: 10.1111/cen.14094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an inherited tumour syndrome characterised by a predisposition to the development of endocrine tumours of the parathyroid glands, pituitary and pancreas: 30%-80% of patients with MEN1 develop pancreatic neuroendocrine tumours (pNETs), with metastatic tumours and/or their sequelae contributing to increased morbidity and early mortality. The optimal management of nonfunctioning (NF) pNETs in MEN1 remains controversial. Whilst pancreatic resection is widely recommended for tumours >2 cm, for smaller tumours (≤2 cm) a well-established consensus guiding the indications for surgical intervention does not exist. Although total pancreatectomy may be curative for some patients, both short- and long-term complications make this an unsatisfactory option for many patients. For small (<2 cm) MEN1 NF-pNETs, some clinicians advocate surveillance based largely on retrospective data that suggest 50%-80% of these lesions are stable over time and infrequently exhibit accelerated growth rates. It is increasingly recognised, however, that NF-pNETs exhibit unpredictable malignant behaviour that is not determined by tumour size alone, thereby prompting other clinicians to advocate surgery for all MEN1 NF-pNETs, irrespective of size. Such uncertainty poses clinical management challenges with regards to the timing and extent of surgery, which is further hindered by the inability to stratify patients based on predicted tumour behaviour. It is therefore critical that future MEN1 research initiatives include: (a) the discovery of biomarkers that better predict tumour behaviour; (b) the evaluation of medical therapies that may delay, or even prevent, the need for pancreatic surgery; and, ultimately, (c) improvement in the quality of life for individuals with MEN1. Here, based on the published literature, we address the Clinical Question, 'What is the management of NF-pNETs disclosed on screening in adult patients with MEN1?'.
Collapse
Affiliation(s)
- Benjamin G Challis
- Wolfson Diabetes and Endocrinology Clinic, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ruth T Casey
- Wolfson Diabetes and Endocrinology Clinic, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Royal Free Hospital ENETS Centre of Excellence, London, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
| | - John Newell-Price
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Paul Newey
- Division of Molecular & Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, Scotland
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Xiao Y, Yang Y, Wang Y, Li X, Wang W. Five Novel Genes Related to the Pathogenesis and Progression of Pancreatic Neuroendocrine Tumors by Bioinformatics Analysis With RT-qPCR Verification. Front Neurosci 2019; 13:937. [PMID: 31607839 PMCID: PMC6771308 DOI: 10.3389/fnins.2019.00937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Objective To explore novel related genes and potential biomarkers of pancreatic neuroendocrine tumors (PanNETs). Materials and Methods Two data sets from ICGC and two from the NCBI GEO database were used to identify the differentially expressed genes (DEGs) in PanNETs. The common DEGs among the four sources were analyzed; furthermore, the relationship of these gene expression patterns with different PanNET grades, their mutation status and corresponding impact on prognosis, the interaction network, and the relationship with three known PanNET genes (ATRX, DAXX, and MEN1) were analyzed by two other GEO data and cBioPortal database. Finally, the expressions of novel DEGs were validated in Chinese PanNET tissues by RT-qPCR. Results Five new DEGs (ABCC8, PCSK2, IL13RA2, KLKB1, and PART1) and one confirmed DEG-ISL1 were identified. The mutation counts of DEGs increased with the tumor grade increasing from G1 to G3, and PanNET patients present vascular invasion or are deceased. These DEG expression patterns in PanNETs are quite different from that of pancreatic ductal adenocarcinoma and are related to A–D–M (ATRX–DAXX–MEN1) mutation. ABCC8 and KLKB1 are co-occurrence with the A–D–M axis in PanNETs. Importantly, patients with DEG mutations have a lower survival rate. RT-qPCR verification results of KLKB1 (P < 0.01), IL13RA2 (P < 0.01), ABCC8 (P < 0.01), and PART1 (P < 0.0001) expressions in Chinese PanNET tissues are consistent with our database analysis, which were significantly up-regulated. However, the expression of PCSK2 (P < 0.01) was contrary to our bioinformatics analysis, which was significantly down-regulated, suggesting that the expression trend of PCSK2 may be different among different races. These results indicated that these five genes may play an important role in the occurrence and progression of PanNETs. Conclusion Five novel common DEGs identified are related to the development and prognosis of PanNETs and may serve as specific biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuemei Yang
- Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Wang
- Department of Pathology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Xiaoou Li
- Department of Pathology, DaXing Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Sham JG, Gage MM, He J. Contemporary issues in the surgical management of pancreatic neuroendocrine tumours. SURGICAL PRACTICE 2019. [DOI: 10.1111/1744-1633.12349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jonathan G. Sham
- Department of SurgeryJohns Hopkins Hospital Baltimore Maryland USA
| | - Michele M. Gage
- Department of SurgeryJohns Hopkins Hospital Baltimore Maryland USA
| | - Jin He
- Department of SurgeryJohns Hopkins Hospital Baltimore Maryland USA
| |
Collapse
|
36
|
Herrera-Martínez AD, Hofland LJ, Gálvez Moreno MA, Castaño JP, de Herder WW, Feelders RA. Neuroendocrine neoplasms: current and potential diagnostic, predictive and prognostic markers. Endocr Relat Cancer 2019; 26:R157-R179. [PMID: 30615596 DOI: 10.1530/erc-18-0354] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Some biomarkers for functioning and non-functioning neuroendocrine neoplasms (NENs) are currently available. Despite their application in clinical practice, results should be interpreted cautiously. Considering the variable sensitivity and specificity of these parameters, there is an unmet need for novel biomarkers to improve diagnosis and predict patient outcome. Nowadays, several new biomarkers are being evaluated and may become future tools for the management of NENs. These biomarkers include (1) peptides and growth factors; (2) DNA and RNA markers based on genomics analysis, for example, the so-called NET test, which has been developed for analyzing gene transcripts in circulating blood; (3) circulating tumor/endothelial/progenitor cells or cell-free tumor DNA, which represent minimally invasive methods that would provide additional information for monitoring treatment response and (4) improved imaging techniques with novel radiolabeled somatostatin analogs or peptides. Below we summarize some future directions in the development of novel diagnostic and predictive/prognostic biomarkers in NENs. This review is focused on circulating and selected tissue markers.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - María A Gálvez Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Wouter W de Herder
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Richard A Feelders
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
37
|
Abstract
OBJECTIVES DAXX immunohistochemistry (IHC) is often used as a surrogate for sequencing. We aimed to elucidate the sensitivity of IHC for DAXX mutation. METHODS All pancreatic neuroendocrine tumors (PanNETs) with DAXX mutations detected by sequencing and a subset of DAXX wild-type PanNETs were analyzed for DAXX expression by IHC. RESULTS Of 154 PanNETs with MSK-IMPACT testing, 36 (30%) harbored DAXX mutations. DAXX mutations were associated with TSC2 mutations (46% vs 10%, P < 0.0001), tended to co-occur with MEN1 mutations (63% vs 49%, P = 0.11), and tended to be mutually exclusive with ATRX mutations (11% vs 25%, P = 0.053). Of 27 available DAXX mutant PanNETs, 23 lost DAXX expression (85.2%). All 4 DAXX mutants with retained expression harbored DAXX mutations within the SUMO-interacting motif of the last exon. Telomere-specific fluorescence in situ hybridization demonstrated alternative lengthening of telomeres in all 4 cases. Of 20 PanNETs with wild-type DAXX, 19 retained DAXX IHC expression (95%). CONCLUSIONS The sensitivity and specificity of IHC for DAXX mutation are 85% and 95%, respectively. Last exon DAXX mutant PanNETs often show alternative lengthening of telomeres despite retained DAXX expression, likely due to escape of nonmediated decay.
Collapse
|
38
|
Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 2019; 16:81-104. [PMID: 30356138 PMCID: PMC8327299 DOI: 10.1038/s41571-018-0114-z] [Citation(s) in RCA: 702] [Impact Index Per Article: 140.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genomic instability is a key hallmark of cancer that arises owing to defects in the DNA damage response (DDR) and/or increased replication stress. These alterations promote the clonal evolution of cancer cells via the accumulation of driver aberrations, including gene copy-number changes, rearrangements and mutations; however, these same defects also create vulnerabilities that are relatively specific to cancer cells, which could potentially be exploited to increase the therapeutic index of anticancer treatments and thereby improve patient outcomes. The discovery that BRCA-mutant cancer cells are exquisitely sensitive to inhibition of poly(ADP-ribose) polymerase has ushered in a new era of research on biomarker-driven synthetic lethal treatment strategies for different cancers. The therapeutic landscape of antitumour agents targeting the DDR has rapidly expanded to include inhibitors of other key mediators of DNA repair and replication, such as ATM, ATR, CHK1 and CHK2, DNA-PK and WEE1. Efforts to optimize these therapies are ongoing across a range of cancers, involving the development of predictive biomarker assays of responsiveness (beyond BRCA mutations), assessment of the mechanisms underlying intrinsic and acquired resistance, and evaluation of rational, tolerable combinations with standard-of-care treatments (such as chemotherapeutics and radiation), novel molecularly targeted agents and immune-checkpoint inhibitors. In this Review, we discuss the current status of anticancer therapies targeting the DDR.
Collapse
Affiliation(s)
- Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
39
|
Sigel CS. Advances in the cytologic diagnosis of gastroenteropancreatic neuroendocrine neoplasms. Cancer Cytopathol 2018; 126:980-991. [PMID: 30485690 DOI: 10.1002/cncy.22073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 02/01/2023]
Abstract
Two-thirds of neuroendocrine neoplasms arising in the human body originate from the gastrointestinal system or pancreas. Gastroenteropancreatic neuroendocrine neoplasms are heterogeneous, comprising both well differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). The clinical presentation, molecular characteristics, and behavior are distinct for NETs and NECs. Fine-needle aspiration is an important modality for the primary diagnosis and staging of these neoplasms and can provide information of prognostic and therapeutic significance. Our evolving understanding of neuroendocrine neoplasm biology has led to several iterations of classification. In this review, new concepts and issues most relevant to cytology diagnosis of gastroenteropancreatic neuroendocrine neoplasms are discussed, such as newer detection methods that aid in diagnosis and staging, recent changes in World Health Organization classification, practical issues related to grading these neoplasms on cytology, guidelines for diagnostic reporting, and panels of immunohistochemical stains for the diagnosis of metastasis. The current understanding of genetic and epigenetic events related to tumor development and potential applications for cytology also are presented as they relate to prognostication and recent therapeutic advances.
Collapse
Affiliation(s)
- Carlie S Sigel
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
40
|
Iyer S, Agarwal SK. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J Mol Endocrinol 2018; 61:R13-R24. [PMID: 29615472 PMCID: PMC5966343 DOI: 10.1530/jme-18-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation is emerging as a key feature in the molecular characteristics of various human diseases. Epigenetic aberrations can occur from mutations in genes associated with epigenetic regulation, improper deposition, removal or reading of histone modifications, DNA methylation/demethylation and impaired non-coding RNA interactions in chromatin. Menin, the protein product of the gene causative for the multiple endocrine neoplasia type 1 (MEN1) syndrome, interacts with chromatin-associated protein complexes and also regulates some non-coding RNAs, thus participating in epigenetic control mechanisms. Germline inactivating mutations in the MEN1 gene that encodes menin predispose patients to develop endocrine tumors of the parathyroids, anterior pituitary and the duodenopancreatic neuroendocrine tissues. Therefore, functional loss of menin in the various MEN1-associated endocrine cell types can result in epigenetic changes that promote tumorigenesis. Because epigenetic changes are reversible, they can be targeted to develop therapeutics for restoring the tumor epigenome to the normal state. Irrespective of whether epigenetic alterations are the cause or consequence of the tumorigenesis process, targeting the endocrine tumor-associated epigenome offers opportunities for exploring therapeutic options. This review presents epigenetic control mechanisms relevant to the interactions and targets of menin, and the contribution of epigenetics in the tumorigenesis of endocrine cell types from menin loss.
Collapse
Affiliation(s)
- Sucharitha Iyer
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Gaspar TB, Sá A, Lopes JM, Sobrinho-Simões M, Soares P, Vinagre J. Telomere Maintenance Mechanisms in Cancer. Genes (Basel) 2018; 9:E241. [PMID: 29751586 PMCID: PMC5977181 DOI: 10.3390/genes9050241] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour cells can adopt telomere maintenance mechanisms (TMMs) to avoid telomere shortening, an inevitable process due to successive cell divisions. In most tumour cells, telomere length (TL) is maintained by reactivation of telomerase, while a small part acquires immortality through the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. In the last years, a great amount of data was generated, and different TMMs were reported and explained in detail, benefiting from genome-scale studies of major importance. In this review, we address seven different TMMs in tumour cells: mutations of the TERT promoter (TERTp), amplification of the genes TERT and TERC, polymorphic variants of the TERT gene and of its promoter, rearrangements of the TERT gene, epigenetic changes, ALT, and non-defined TMM (NDTMM). We gathered information from over fifty thousand patients reported in 288 papers in the last years. This wide data collection enabled us to portray, by organ/system and histotypes, the prevalence of TERTp mutations, TERT and TERC amplifications, and ALT in human tumours. Based on this information, we discuss the putative future clinical impact of the aforementioned mechanisms on the malignant transformation process in different setups, and provide insights for screening, prognosis, and patient management stratification.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Ana Sá
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - José Manuel Lopes
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - João Vinagre
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
| |
Collapse
|
42
|
Pompili L, Leonetti C, Biroccio A, Salvati E. Diagnosis and treatment of ALT tumors: is Trabectedin a new therapeutic option? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:189. [PMID: 29273061 PMCID: PMC5741932 DOI: 10.1186/s13046-017-0657-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Telomeres are specialized nucleoprotein structures responsible for protecting chromosome ends in order to prevent the loss of genomic information. Telomere maintenance is required for achieving immortality by neoplastic cells. While most cancer cells rely on telomerase re-activation for linear chromosome maintenance and sustained proliferation, a significant population of cancers (10-15%) employs telomerase-independent strategies, collectively referred to as Alternative Lengthening of Telomeres (ALT). ALT mechanisms involve different types of homology-directed telomere recombination and synthesis. These processes are facilitated by loss of the ATRX or DAXX chromatin-remodeling factors and by abnormalities of the telomere nucleoprotein architecture. Although the functional consequences of telomerase and ALT up-regulation are similar in that they both prevent overall telomere shortening in tumors, these telomere maintenance mechanisms (TMMs) differ in several aspects which may account for their differential prognostic significance and response to therapy in various tumor types. Therefore, reliable methods for detecting telomerase activity and ALT are likely to become an important pre-requisite for the use of treatments targeting one or other of these mechanisms. However, the question whether ALT presence can confer sensitivity to rationally designed anti-cancer therapies is still open. Here we review the latest discoveries in terms of mechanisms of ALT activation and maintenance in human tumors, methods for ALT identification in cell lines and human tissues and biomarkers validation. Then, original results on sensitivity to rational based pre-clinical and clinical anti-tumor drugs in ALT vs hTERT positive cells will be presented.
Collapse
Affiliation(s)
- Luca Pompili
- UOSD SAFU, Regina Elena National Cancer Institute, Rome, Italy.,University of Tuscia, Viterbo, Italy
| | - Carlo Leonetti
- UOSD SAFU, Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 53 -, 00144, Rome, Italy
| | - Erica Salvati
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 53 -, 00144, Rome, Italy.
| |
Collapse
|
43
|
Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Biomedicines 2017; 5:biomedicines5040065. [PMID: 29156578 PMCID: PMC5744089 DOI: 10.3390/biomedicines5040065] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments.
Collapse
|