1
|
Yang L, Li M, Yang L, Wang H, Wan H, Shang Z. Functional connectivity changes in the intra- and inter-brain during the construction of the multi-brain network of pigeons. Brain Res Bull 2020; 161:147-157. [DOI: 10.1016/j.brainresbull.2020.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
|
2
|
von Eugen K, Tabrik S, Güntürkün O, Ströckens F. A comparative analysis of the dopaminergic innervation of the executive caudal nidopallium in pigeon, chicken, zebra finch, and carrion crow. J Comp Neurol 2020; 528:2929-2955. [PMID: 32020608 DOI: 10.1002/cne.24878] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
Despite the long, separate evolutionary history of birds and mammals, both lineages developed a rich behavioral repertoire of remarkably similar executive control generated by distinctly different brains. The seat for executive functioning in birds is the nidopallium caudolaterale (NCL) and the mammalian equivalent is known as the prefrontal cortex (PFC). Both are densely innervated by dopaminergic fibers, and are an integration center of sensory input and motor output. Whereas the variation of the PFC has been well documented in different mammalian orders, we know very little about the NCL across the avian clade. In order to investigate whether this structure adheres to species-specific variations, this study aimed to describe the trajectory of the NCL in pigeon, chicken, carrion crow and zebra finch. We employed immunohistochemistry to map dopaminergic innervation, and executed a Gallyas stain to visualize the dorsal arcopallial tract that runs between the NCL and the arcopallium. Our analysis showed that whereas the trajectory of the NCL in the chicken is highly comparable to the pigeon, the two Passeriformes show a strikingly different pattern. In both carrion crow and zebra finch, we identified four different subareas of high dopaminergic innervation that span the entire caudal forebrain. Based on their sensory input, motor output, and involvement in dopamine-related cognitive control of the delineated areas here, we propose that at least three morphologically different subareas constitute the NCL in these songbirds. Thus, our study shows that comparable to the PFC in mammals, the NCL in birds varies considerably across species.
Collapse
Affiliation(s)
- Kaya von Eugen
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Sepideh Tabrik
- Neurologische Klinik, Universitätsklinikum Bergmannsheil GmbH, Bochum, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Shang Z, Liang Y, Li M, Zhao K, Yang L, Wan H. Sequential neural information processing in nidopallium caudolaterale of pigeons during the acquisition process of operant conditioning. Neuroreport 2019; 30:966-973. [DOI: 10.1097/wnr.0000000000001312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Yan F, Wang W, Cheng H. Bacillus subtilis based probiotic improved bone mass and altered brain serotoninergic and dopaminergic systems in broiler chickens. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Chen Y, Liu X, Li S, Wan H. Decoding Pigeon Behavior Outcomes Using Functional Connections among Local Field Potentials. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018; 2018:3505371. [PMID: 29666632 PMCID: PMC5832173 DOI: 10.1155/2018/3505371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 01/01/2023]
Abstract
Recent studies indicate that the local field potential (LFP) carries information about an animal's behavior, but issues regarding whether there are any relationships between the LFP functional networks and behavior tasks as well as whether it is possible to employ LFP network features to decode the behavioral outcome in a single trial remain unresolved. In this study, we developed a network-based method to decode the behavioral outcomes in pigeons by using the functional connectivity strength values among LFPs recorded from the nidopallium caudolaterale (NCL). In our method, the functional connectivity strengths were first computed based on the synchronization likelihood. Second, the strength values were unwrapped into row vectors and their dimensions were then reduced by principal component analysis. Finally, the behavioral outcomes in single trials were decoded using leave-one-out combined with the k-nearest neighbor method. The results showed that the LFP functional network based on the gamma-band was related to the goal-directed behavior of pigeons. Moreover, the accuracy of the network features (74 ± 8%) was significantly higher than that of the power features (61 ± 12%). The proposed method provides a powerful tool for decoding animal behavior outcomes using a neural functional network.
Collapse
Affiliation(s)
- Yan Chen
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Xinyu Liu
- School of Information Engineering, Huanghuai University, Zhumadian, Henan, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Shan Li
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Hong Wan
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Anselme P, Edeş N, Tabrik S, Güntürkün O. Long-term behavioral sensitization to apomorphine is independent of conditioning and increases conditioned pecking, but not preference, in pigeons. Behav Brain Res 2018; 336:122-134. [DOI: 10.1016/j.bbr.2017.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022]
|
7
|
Liu X, Wan H, Li S, Shang Z, Shi L. The role of nidopallium caudolaterale in the goal-directed behavior of pigeons. Behav Brain Res 2017; 326:112-120. [DOI: 10.1016/j.bbr.2017.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
8
|
Güntürkün O, Bugnyar T. Cognition without Cortex. Trends Cogn Sci 2016; 20:291-303. [DOI: 10.1016/j.tics.2016.02.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
9
|
Kops MS, de Haas EN, Rodenburg TB, Ellen ED, Korte-Bouws GA, Olivier B, Güntürkün O, Korte SM, Bolhuis JE. Selection for low mortality in laying hens affects catecholamine levels in the arcopallium, a brain area involved in fear and motor regulation. Behav Brain Res 2013; 257:54-61. [DOI: 10.1016/j.bbr.2013.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 02/05/2023]
|
10
|
Slaney TR, Mabrouk OS, Porter-Stransky KA, Aragona BJ, Kennedy RT. Chemical gradients within brain extracellular space measured using low flow push-pull perfusion sampling in vivo. ACS Chem Neurosci 2013; 4:321-9. [PMID: 23421683 DOI: 10.1021/cn300158p] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although populations of neurons are known to vary on the micrometer scale, little is known about whether basal concentrations of neurotransmitters also vary on this scale. We used low-flow push-pull perfusion to test if such chemical gradients exist between several small brain nuclei. A miniaturized polyimide-encased push-pull probe was developed and used to measure basal neurotransmitter spatial gradients within brain of live animals with 0.004 mm(3) resolution. We simultaneously measured dopamine (DA), norepinephrine, serotonin (5-HT), glutamate, γ-aminobutyric acid (GABA), aspartate (Asp), glycine (Gly), acetylcholine (ACh), and several neurotransmitter metabolites. Significant differences in basal concentrations between midbrain regions as little as 200 μm apart were observed. For example, dopamine in the ventral tegmental area (VTA) was 4.8 ± 1.5 nM but in the red nucleus was 0.5 ± 0.2 nM. Regions of high glutamate concentration and variability were found within the VTA of some individuals, suggesting hot spots of glutamatergic activity. Measurements were also made within the nucleus accumbens core and shell. Differences were not observed in dopamine and 5-HT in the core and shell; but their metabolites homovanillic acid (460 ± 60 nM and 130 ± 60 nM respectively) and 5-hydroxyindoleacetic acid (720 ± 200 nM and 220 ± 50 nM respectively) did differ significantly, suggesting differences in dopamine and 5-HT activity in these brain regions. Maintenance of these gradients depends upon a variety of mechanisms. Such gradients likely underlie highly localized effects of drugs and control of behavior that have been found using other techniques.
Collapse
Affiliation(s)
- Thomas R. Slaney
- Department of Chemistry, University of Michigan, 930 N. University Ave. Ann
Arbor, Michigan 48109, United States
| | - Omar S. Mabrouk
- Department of Chemistry, University of Michigan, 930 N. University Ave. Ann
Arbor, Michigan 48109, United States
| | - Kirsten A. Porter-Stransky
- Department of Psychology, University of Michigan, 530 Church St., Ann Arbor,
Michigan 48109, United States
| | - Brandon J. Aragona
- Department of Psychology, University of Michigan, 530 Church St., Ann Arbor,
Michigan 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave. Ann
Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Starosta S, Güntürkün O, Stüttgen MC. Stimulus-response-outcome coding in the pigeon nidopallium caudolaterale. PLoS One 2013; 8:e57407. [PMID: 23437383 PMCID: PMC3577703 DOI: 10.1371/journal.pone.0057407] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S-) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments.
Collapse
Affiliation(s)
- Sarah Starosta
- Department of Biopsychology, Faculty of Psychology, University of Bochum, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, University of Bochum, Bochum, Germany
| | - Maik C. Stüttgen
- Department of Biopsychology, Faculty of Psychology, University of Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
12
|
Herold C, Joshi I, Chehadi O, Hollmann M, Güntürkün O. Plasticity in D1-like receptor expression is associated with different components of cognitive processes. PLoS One 2012; 7:e36484. [PMID: 22574169 PMCID: PMC3344878 DOI: 10.1371/journal.pone.0036484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/09/2012] [Indexed: 11/23/2022] Open
Abstract
Dopamine D1-like receptors consist of D1 (D1A) and D5 (D1B) receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression.
Collapse
Affiliation(s)
- Christina Herold
- Institute for Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | | | | | | | | |
Collapse
|
13
|
Cassone VM, Westneat DF. The bird of time: cognition and the avian biological clock. Front Mol Neurosci 2012; 5:32. [PMID: 22461765 PMCID: PMC3309970 DOI: 10.3389/fnmol.2012.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/23/2012] [Indexed: 11/13/2022] Open
Abstract
Avian behavior and physiology are embedded in time at many levels of biological organization. Biological clock function in birds is critical for sleep/wake cycles, but may also regulate the acquisition of place memory, learning of song from tutors, social integration, and time-compensated navigation. This relationship has two major implications. First, mechanisms of the circadian clock should be linked in some way to the mechanisms of all these behaviors. How is not yet clear, and evidence that the central clock has effects is piecemeal. Second, selection acting on characters that are linked to the circadian clock should influence aspects of the clock mechanism itself. Little evidence exists for this in birds, but there have been few attempts to assess this idea. At its core, the avian circadian clock is a multi-oscillator system comprising the pineal gland, the retinae, and the avian homologs of the suprachiasmatic nuclei, whose mutual interactions ensure coordinated physiological functions, which are in turn synchronized to ambient light cycles (LD) via encephalic, pineal, and retinal photoreceptors. At the molecular level, avian biological clocks comprise a genetic network of "positive elements" clock and bmal1 whose interactions with the "negative elements" period 2 (per2), period 3 (per3), and the cryptochromes form an oscillatory feedback loop that circumnavigates the 24 h of the day. We assess the possibilities for dual integration of the clock with time-dependent cognitive processes. Closer examination of the molecular, physiological, and behavioral elements of the circadian system would place birds at a very interesting fulcrum in the neurobiology of time in learning, memory, and navigation.
Collapse
|
14
|
Güntürkün O. The convergent evolution of neural substrates for cognition. PSYCHOLOGICAL RESEARCH 2011; 76:212-9. [DOI: 10.1007/s00426-011-0377-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
15
|
Yamamoto K, Vernier P. The evolution of dopamine systems in chordates. Front Neuroanat 2011; 5:21. [PMID: 21483723 PMCID: PMC3070214 DOI: 10.3389/fnana.2011.00021] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/15/2011] [Indexed: 12/24/2022] Open
Abstract
Dopamine (DA) neurotransmission in the central nervous system (CNS) is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters, and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory–motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2) revealed new populations of DA-synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina, and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g., teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain–hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates.
Collapse
Affiliation(s)
- Kei Yamamoto
- Neurobiology and Development (UPR3294), Institute of Neurobiology Alfred Fessard, CNRS Gif-sur-Yvette, France
| | | |
Collapse
|
16
|
The receptor architecture of the pigeons’ nidopallium caudolaterale: an avian analogue to the mammalian prefrontal cortex. Brain Struct Funct 2011; 216:239-54. [DOI: 10.1007/s00429-011-0301-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/12/2011] [Indexed: 01/09/2023]
|
17
|
Kirsch JA, Vlachos I, Hausmann M, Rose J, Yim MY, Aertsen A, Güntürkün O. Neuronal encoding of meaning: Establishing category-selective response patterns in the avian ‘prefrontal cortex’. Behav Brain Res 2009; 198:214-23. [DOI: 10.1016/j.bbr.2008.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/28/2008] [Accepted: 11/02/2008] [Indexed: 10/21/2022]
|
18
|
Herold C, Diekamp B, Güntürkün O. Stimulation of dopamine D1 receptors in the avian fronto-striatal system adjusts daily cognitive fluctuations. Behav Brain Res 2008; 194:223-9. [DOI: 10.1016/j.bbr.2008.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/08/2008] [Accepted: 07/13/2008] [Indexed: 11/30/2022]
|
19
|
Karakuyu D, Herold C, Güntürkün O, Diekamp B. Differential increase of extracellular dopamine and serotonin in the ‘prefrontal cortex’ and striatum of pigeons during working memory. Eur J Neurosci 2007; 26:2293-302. [PMID: 17908172 DOI: 10.1111/j.1460-9568.2007.05840.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Monoamines, such as dopamine (DA) and serotonin (5-HT), play a central role in the modulation of cognitive processes at the forebrain level. Experimental and clinical studies based on dopaminergic pathology, depletion or medication indicate that DA, in particular, is involved in working memory (WM). However, it is unclear whether DA is indeed related to WM, whether its function is specific to the prefrontal cortex (PFC), and whether other modulators, such as 5-HT, might have similar functions. Therefore, the aims of this study were threefold. First, we analysed whether increased prefrontal DA release is related to WM in general or only to its short-term memory component. Second, we examined whether the DA release during cognitive tasks is specific to prefrontal areas or also occurs in the striatum. Third, we analysed whether prefrontal or striatal 5-HT release accompanies working and short-term memory. We approached these questions by using in vivo microdialysis to analyse the extracellular DA and 5-HT release in the pigeons' 'PFC' and striatum during matching-to-sample tasks with or without a delay. Here, we show that DA has no unitary function but is differentially released during working as well as short-term memory in the pigeons' 'prefrontal' cortex. Striatal DA shows an increased efflux only during WM that involves a delay component. WM is also accompanied by a 'prefrontal' but not a striatal release of 5-HT, whose efflux pattern is thus partly different to that of DA. Our findings thus show a triple dissociation between transmitters, structures and tasks within the avian 'prefronto'-striatal system.
Collapse
Affiliation(s)
- Dilek Karakuyu
- Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
20
|
Güntürkün O. The avian 'prefrontal cortex' and cognition. Curr Opin Neurobiol 2005; 15:686-93. [PMID: 16263260 DOI: 10.1016/j.conb.2005.10.003] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 10/20/2005] [Indexed: 11/16/2022]
Abstract
Both mammals and birds can flexibly organize their behavior over time. In mammals, the mental operations generating this ability are called executive functions and are associated with the prefrontal cortex. The corresponding structure in birds is the nidopallium caudolaterale. Anatomical, neurochemical, electrophysiological and behavioral studies show these structures to be highly similar. The avian forebrain displays no lamination that corresponds to the mammalian neocortex, hence lamination does not seem to be a requirement for higher cognitive functions. Because all other aspects of the neural architecture of the mammalian and the avian prefrontal areas are extremely comparable, the freedom to create different neural architectures that generate prefrontal functions seems to be very limited.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
21
|
Peleg-Raibstein D, Pezze MA, Ferger B, Zhang WN, Murphy CA, Feldon J, Bast T. Activation of dopaminergic neurotransmission in the medial prefrontal cortex by N-methyl-d-aspartate stimulation of the ventral hippocampus in rats. Neuroscience 2005; 132:219-32. [PMID: 15780480 DOI: 10.1016/j.neuroscience.2004.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Many behavioral functions-including sensorimotor, attentional, memory, and emotional processes-have been associated with hippocampal processes and with dopamine transmission in the medial prefrontal cortex (mPFC). This suggests a functional interaction between hippocampus and prefrontal dopamine. The anatomical substrate for such an interaction is the intimate interconnection between the ventral hippocampus and the dopamine innervation of the mPFC. The present study yielded direct neurochemical evidence for an interaction between ventral hippocampus and prefrontal dopamine transmission in rats by demonstrating that subconvulsive stimulation of the ventral hippocampus with N-methyl-d-aspartate (NMDA; 0.5 mug/side) activates dopamine transmission in the mPFC. Postmortem measurements revealed that bilateral NMDA stimulation of the ventral hippocampus, resulting in locomotor hyperactivity, increased the homovanillic acid/dopamine ratio, an index of dopamine transmission, in the mPFC; indices of dopamine transmission in any of five additionally examined forebrain regions (amygdala, nucleus accumbens shell/core, lateral prefrontal cortex, caudate putamen) were unaltered. In vivo microdialysis measurements in freely moving rats corroborated the suggested activation of prefrontal dopamine transmission by demonstrating that unilateral NMDA stimulation of the ventral hippocampus increased extracellular dopamine in the ipsilateral mPFC. The suggested influence of the ventral hippocampus on prefrontal dopamine may be an important mechanism for hippocampo-prefrontal interactions in normal behavioral processes. Moreover, it indicates that aberrant hippocampal activity, as found in neuropsychiatric diseases, such as schizophrenia and mood disorders, may contribute to disruption of certain cognitive and emotional functions which are extremely sensitive to imbalanced prefrontal dopamine transmission.
Collapse
Affiliation(s)
- D Peleg-Raibstein
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Güntürkün O. Avian and mammalian "prefrontal cortices": limited degrees of freedom in the evolution of the neural mechanisms of goal-state maintenance. Brain Res Bull 2005; 66:311-6. [PMID: 16144607 DOI: 10.1016/j.brainresbull.2005.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/01/2004] [Indexed: 11/24/2022]
Abstract
Is it possible to produce the same cognitive function with different brain organizations? This question is approached for working memory, a cognitive entity that is equally organized in birds and mammals. The critical forebrain structure for working memory is the nidopallium caudolaterale (NCL) in birds and the prefrontal cortex (PFC) in mammals. Although both structures share a large number of neural architectural features, they are probably not homologous but represent a remarkable case of convergent evolution. In reviewing the neuronal mechanisms for working memory in birds and mammals it becomes apparent that the similarities of NCL and PFC extend from the neuronal activation patterns during memory tasks down to the biophysical mechanisms of synaptic currents. Both in mammals and birds, dopamine acts via D1-receptors to tune preactivated neurons into sustained high-frequency patterns with which goal states can be held over time until an appropriate response can be generated. The degrees of freedom to create different neural architectures to solve the problem of 'stimulus maintenance' seem to be very small.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Germany.
| |
Collapse
|
23
|
Lissek S, Güntürkün O. Out of Context: NMDA Receptor Antagonism in the Avian 'Prefrontal Cortex' Impairs Context Processing in a Conditional Discrimination Task. Behav Neurosci 2005; 119:797-805. [PMID: 15998201 DOI: 10.1037/0735-7044.119.3.797] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Processing of context information is implicated in prefrontal functions as response selection or attention. N-methyl-D-aspartate (NMDA) receptors in the mammalian prefrontal cortex (PFC) and in the nidopallium caudolaterale (NCL) of birds, the avian functional equivalent of the PFC, are involved in learning, which also requires processing of context. The authors investigated the role of NMDA receptors in the pigeon (Columba livia) NCL for context processing and response selection in a simultaneous-matching-to-sample task with 2 trial types, requiring either processing of context information, delivered by a conditional stimulus (context dependent), or only recall of a stimulus-response association (fixed response). The competitive NMDA antagonist DL-2-amino-5-phosphonovaleric acid impaired performance only in context-dependent trials. Therefore, NMDA receptors in the avian PFC participate in response selection requiring context processing rather than in response selection per se.
Collapse
Affiliation(s)
- Silke Lissek
- Institute for Cognitive Neuroscience, Faculty of Psychology, Department of Biopsychology, Ruhr-Universität Bochum, Bochum, Germany.
| | | |
Collapse
|