1
|
Beauséjour PA, Veilleux JC, Condamine S, Zielinski BS, Dubuc R. Olfactory Projections to Locomotor Control Centers in the Sea Lamprey. Int J Mol Sci 2024; 25:9370. [PMID: 39273317 PMCID: PMC11395479 DOI: 10.3390/ijms25179370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Although olfaction is well known to guide animal behavior, the neural circuits underlying the motor responses elicited by olfactory inputs are poorly understood. In the sea lamprey, anatomical evidence shows that olfactory inputs project to the posterior tuberculum (PT), a structure containing dopaminergic (DA) neurons homologous to the mammalian ventral tegmental area and the substantia nigra pars compacta. Olfactory inputs travel directly from the medial olfactory bulb (medOB) or indirectly through the main olfactory bulb and the lateral pallium (LPal). Here, we characterized the transmission of olfactory inputs to the PT in the sea lamprey, Petromyzon marinus. Abundant projections from the medOB were observed close to DA neurons of the PT. Moreover, electrophysiological experiments revealed that PT neurons are activated by both the medOB and LPal, and calcium imaging indicated that the olfactory signal is then relayed to the mesencephalic locomotor region to initiate locomotion. In semi-intact preparations, stimulation of the medOB and LPal induced locomotion that was tightly associated with neural activity in the PT. Moreover, PT neurons were active throughout spontaneously occurring locomotor bouts. Altogether, our observations suggest that the medOB and LPal convey olfactory inputs to DA neurons of the PT, which in turn activate the brainstem motor command system to elicit locomotion.
Collapse
Affiliation(s)
| | - Jean-Christophe Veilleux
- Research Group in Adapted Physical Activity, Department of Exercise Sciences, Faculty of Sciences, University of Quebec in Montreal, Montreal, QC H2X 1Y4, Canada
| | - Steven Condamine
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Barbara S Zielinski
- Department of Integrative Biology, Faculty of Science, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Réjean Dubuc
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Group in Adapted Physical Activity, Department of Exercise Sciences, Faculty of Sciences, University of Quebec in Montreal, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
2
|
Beauséjour P, Auclair F, Daghfous G, Ngovandan C, Veilleux D, Zielinski B, Dubuc R. Dopaminergic modulation of olfactory-evoked motor output in sea lampreys (Petromyzon marinus L.). J Comp Neurol 2020; 528:114-134. [PMID: 31286519 PMCID: PMC6899967 DOI: 10.1002/cne.24743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
Detection of chemical cues is important to guide locomotion in association with feeding and sexual behavior. Two neural pathways responsible for odor-evoked locomotion have been characterized in the sea lamprey (Petromyzon marinus L.), a basal vertebrate. There is a medial pathway originating in the medial olfactory bulb (OB) and a lateral pathway originating from the rest of the OB. These olfactomotor pathways are present throughout the life cycle of lampreys, but olfactory-driven behaviors differ according to the developmental stage. Among possible mechanisms, dopaminergic (DA) modulation in the OB might explain the behavioral changes. Here, we examined DA modulation of olfactory transmission in lampreys. Immunofluorescence against DA revealed immunoreactivity in the OB that was denser in the medial part (medOB), where processes were observed close to primary olfactory afferents and projection neurons. Dopaminergic neurons labeled by tracer injections in the medOB were located in the OB, the posterior tuberculum, and the dorsal hypothalamic nucleus, suggesting the presence of both intrinsic and extrinsic DA innervation. Electrical stimulation of the olfactory nerve in an in vitro whole-brain preparation elicited synaptic responses in reticulospinal cells that were modulated by DA. Local injection of DA agonists in the medOB decreased the reticulospinal cell responses whereas the D2 receptor antagonist raclopride increased the response amplitude. These observations suggest that DA in the medOB could modulate odor-evoked locomotion. Altogether, these results show the presence of a DA innervation within the medOB that may play a role in modulating olfactory inputs to the motor command system of lampreys.
Collapse
Affiliation(s)
| | - François Auclair
- Département de neurosciencesUniversité de MontréalMontréalQuébecCanada
| | - Gheylen Daghfous
- Département de neurosciencesUniversité de MontréalMontréalQuébecCanada
- Département des sciences de l'activité physiqueUniversité du Québec à MontréalMontréalQuébecCanada
| | | | - Danielle Veilleux
- Département de neurosciencesUniversité de MontréalMontréalQuébecCanada
| | - Barbara Zielinski
- Department of Biological SciencesUniversity of WindsorWindsorOntarioCanada
| | - Réjean Dubuc
- Département de neurosciencesUniversité de MontréalMontréalQuébecCanada
- Département des sciences de l'activité physiqueUniversité du Québec à MontréalMontréalQuébecCanada
| |
Collapse
|
3
|
Lozano D, Morona R, González A, López JM. Comparative Analysis of the Organization of the Catecholaminergic Systems in the Brain of Holostean Fishes (Actinopterygii/Neopterygii). BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:206-235. [PMID: 31711060 DOI: 10.1159/000503769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
Living holosteans, comprising 8 species of bowfins and gars, form a small monophyletic group of actinopterygian fishes, which are currently considered as the sister group to the enormously numerous teleosts and have largely been neglected in neuroanatomical studies. We have studied the catecholaminergic (CAergic) systems by means of antibodies against tyrosine hydroxylase (TH) and dopamine (DA) in the brain of representative species of the 3 genera included in the 2 orders of holostean fishes: Amia calva (Amiiformes) and Lepisosteus platyrhincus, Lepisosteus oculatus, and Atractosteus spatula (Lepisosteiformes). Different groups of TH/DA-immunoreactive (ir) cells were observed in the olfactory bulb, subpallium, and preoptic area of the telencephalon. Hypothalamic groups were labeled in the suprachiasmatic nucleus, tuberal (only in A. calva), retrotuberal, and retromamillary areas; specifically, the paraventricular organ showed only DA immunoreactivity. In the diencephalon, TH/DA-ir groups were detected in the prethalamus, posterior tubercle, and pretectum. In the caudal hindbrain, the solitary tract nucleus and area postrema presented TH/DA-ir cell groups, and also the spinal cord and the retina. Only in A. calva, particular CAergic cell groups were observed in the habenula, the mesencephalic tegmentum, and in the locus coeruleus. Following a neuromeric analysis, the comparison of these results with those obtained in other classes of fishes and tetrapods shows many common traits of CAergic systems shared by most vertebrates and in addition highlights unique features of actinopterygian fishes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain,
| |
Collapse
|
4
|
López JM, Lozano D, Morona R, González A. Organization of the catecholaminergic systems in two basal actinopterygian fishes, Polypterus senegalus
and Erpetoichthys calabaricus
(Actinopterygii: Cladistia). J Comp Neurol 2018; 527:437-461. [DOI: 10.1002/cne.24548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jesús M. López
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| |
Collapse
|
5
|
Pérez-Fernández J, Megías M, Pombal MA. Expression of a Novel D4 Dopamine Receptor in the Lamprey Brain. Evolutionary Considerations about Dopamine Receptors. Front Neuroanat 2016; 9:165. [PMID: 26778974 PMCID: PMC4701969 DOI: 10.3389/fnana.2015.00165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 12/28/2022] Open
Abstract
Numerous data reported in lampreys, which belong to the phylogenetically oldest branch of vertebrates, show that the dopaminergic system was already well developed at the dawn of vertebrate evolution. The expression of dopamine in the lamprey brain is well conserved when compared to other vertebrates, and this is also true for the D2 receptor. Additionally, the key role of dopamine in the striatum, modulating the excitability in the direct and indirect pathways through the D1 and D2 receptors, has also been recently reported in these animals. The moment of divergence regarding the two whole genome duplications occurred in vertebrates suggests that additional receptors, apart from the D1 and D2 previously reported, could be present in lampreys. We used in situ hybridization to characterize the expression of a novel dopamine receptor, which we have identified as a D4 receptor according to the phylogenetic analysis. The D4 receptor shows in the sea lamprey a more restricted expression pattern than the D2 subtype, as reported in mammals. Its main expression areas are the striatum, lateral and ventral pallial sectors, several hypothalamic regions, habenula, and mesencephalic and rhombencephalic motoneurons. Some expression areas are well conserved through vertebrate evolution, as is the case of the striatum or the habenula, but the controversies regarding the D4 receptor expression in other vertebrates hampers for a complete comparison, especially in rhombencephalic regions. Our results further support that the dopaminergic system in vertebrates is well conserved and suggest that at least some functions of the D4 receptor were already present before the divergence of lampreys.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology - Centro de Investigaciones Biomédicas - Instituto de Investigación Biomédica de Vigo, Uiversity of Vigo Vigo, Spain
| | - Manuel Megías
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology - Centro de Investigaciones Biomédicas - Instituto de Investigación Biomédica de Vigo, Uiversity of Vigo Vigo, Spain
| | - Manuel A Pombal
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology - Centro de Investigaciones Biomédicas - Instituto de Investigación Biomédica de Vigo, Uiversity of Vigo Vigo, Spain
| |
Collapse
|
6
|
Carrera I, Anadón R, Rodríguez-Moldes I. Development of tyrosine hydroxylase-immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system. J Comp Neurol 2012; 520:3574-603. [DOI: 10.1002/cne.23114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
The dopamine D2 receptor gene in lamprey, its expression in the striatum and cellular effects of D2 receptor activation. PLoS One 2012; 7:e35642. [PMID: 22563388 PMCID: PMC3338520 DOI: 10.1371/journal.pone.0035642] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/19/2012] [Indexed: 11/19/2022] Open
Abstract
All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates.
Collapse
|
8
|
Barreiro-Iglesias A, Laramore C, Shifman MI, Anadón R, Selzer ME, Rodicio MC. The sea lamprey tyrosine hydroxylase: cDNA cloning and in situ hybridization study in the brain. Neuroscience 2010; 168:659-69. [PMID: 20417258 DOI: 10.1016/j.neuroscience.2010.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
Lampreys belong to the oldest group of extant vertebrates, the agnathans or cyclostomes. Thus, they occupy a key phylogenetic position near the root of the vertebrate tree, which makes them important to the study of nervous system evolution. Tyrosine hydroxylase is the rate-limiting enzyme of catecholamine biosynthesis and is considered a marker of catecholaminergic neurons. In the present study, we report partial cloning of the sea lamprey tyrosine hydroxylase (TH) cDNA and the pattern of TH transcript expression in the adult brain by means of in situ hybridization. Sea lamprey TH mRNA is characterized by the presence of a large untranslated sequence in the 3' end that contains a typical polyadenylation signal (ATTAAA). The deduced partial TH protein sequence presents a conserved domain with two His residues coordinating Fe(2+) binding and a conserved cofactor binding site. Neurons expressing the TH transcript were observed in the preoptic, postoptic commissure, dorsal hypothalamic, ventral hypothalamic, mammillary and paratubercular nuclei of the prosencephalon. In situ hybridization experiments also confirmed the existence of a catecholaminergic (dopaminergic) striatal population in the brain of the adult sea lamprey. A few granule-like cells in the olfactory bulbs also showed weak TH transcript expression. No cells showing TH transcript expression were observed in the rostral rhombencephalon, which suggests the absence of a locus coeruleus in the sea lamprey. Comparison of the pattern of TH mRNA expression in the prosencephalon between lampreys and teleost fishes revealed both similarities and differences. Our results suggest that the duplication of the TH gene might have occurred before the separation of agnathans and gnathostomes.
Collapse
Affiliation(s)
- A Barreiro-Iglesias
- Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Osório J, Rétaux S. The lamprey in evolutionary studies. Dev Genes Evol 2008; 218:221-35. [PMID: 18274775 DOI: 10.1007/s00427-008-0208-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/22/2008] [Indexed: 12/13/2022]
Abstract
Lampreys are a key species to study the evolution of morphological characters at the dawn of Craniates and throughout the evolution of the craniate's phylum. Here, we review a number of research fields where studies on lampreys have recently brought significant and fundamental insights on the timing and mechanisms of evolution, on the amazing diversification of morphology and on the emergence of novelties among Craniates. We report recent example studies on neural crest, muscle and the acquisition of jaws, where important technical advancements in lamprey developmental biology have been made (morpholino injections, protein-soaked bead applications or even the first transgenesis trials). We describe progress in the understanding and knowledge about lamprey anatomy and physiology (skeleton, immune system and buccal secretion), ecology (life cycle, embryology), phylogeny (genome duplications, monophyly of cyclostomes), paleontology, embryonic development and the beginnings of lamprey genomics. Finally, in a special focus on the nervous system, we describe how changes in signaling, neurogenesis or neuronal migration patterns during brain development may be at the origin of some important differences observed between lamprey and gnathostome brains.
Collapse
Affiliation(s)
- Joana Osório
- UPR 2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred Fessard, C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
10
|
Ménard A, Auclair F, Bourcier-Lucas C, Grillner S, Dubuc R. Descending GABAergic projections to the mesencephalic locomotor region in the lamprey Petromyzon marinus. J Comp Neurol 2007; 501:260-73. [PMID: 17226790 DOI: 10.1002/cne.21258] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mesencephalic locomotor region (MLR) plays a significant role in the control of locomotion in all vertebrate species investigated. Forebrain neurons are likely to modulate MLR activity, but little is known about their inputs. Descending GABAergic projections to the MLR were identified by double-labeling neurons using Neurobiotin injected into the MLR combined with immunofluorescence against GABA. Several GABAergic projections to the MLR were identified in the telencephalon and diencephalon. The most abundant GABAergic projection to the MLR came from the caudal portion of the medial pallium, a region that may have similarities with the amygdala of higher vertebrates. A small population of GABAergic cells projecting to the MLR was found in the striatum and the ventral portion of the lateral pallium, which could respectively correspond to the input and output components of the basal ganglia thought to be involved in the selection of motor programs. Other GABAergic projections were found to come from the thalamus and the hypothalamus, which could take part in the motivational aspect of motor behavior in lampreys. Electrophysiological experiments were also carried out to examine the effects of GABA agonists and antagonists injected into the MLR in a semi-intact lamprey preparation. The GABA agonist inhibited locomotion, whereas the GABA antagonist initiated it. These results suggest that the GABAergic projections to the MLR modulate the activity of MLR neurons, which would be inhibited by GABA at rest.
Collapse
Affiliation(s)
- Ariane Ménard
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
11
|
Osório J, Megías M, Pombal MA, Rétaux S. Dynamic expression of the LIM-homeodomain gene Lhx15 through larval brain development of the sea lamprey (Petromyzon marinus). Gene Expr Patterns 2006; 6:873-8. [PMID: 16597515 DOI: 10.1016/j.modgep.2006.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 10/25/2022]
Abstract
LIM-homeodomain genes encode a family of transcription factors with highly conserved roles in the patterning and regionalisation of the vertebrate brain. The expression of one of those genes, Lhx15, in the embryonic lamprey brain, characterises precise functional subdivisions. In order to analyse the non-embryonic development of the lamprey brain, we chose this gene to perform in situ hybridisations in Petromyzon marinus larvae of different ages. We demonstrate the usefulness of Lhx15 to follow the development and morphogenesis of brain structures and show the dynamical expression of this gene through time. Furthermore, we provide evidence for the evolutionary conservation of the expression of this gene in the spinal cord, notochord and urogenital system.
Collapse
Affiliation(s)
- Joana Osório
- UPR 2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred Fessard, C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | | | |
Collapse
|
12
|
Arenzana FJ, Arévalo R, Sánchez-González R, Clemente D, Aijón J, Porteros A. Tyrosine hydroxylase immunoreactivity in the developing visual pathway of the zebrafish. ACTA ACUST UNITED AC 2006; 211:323-34. [PMID: 16506065 DOI: 10.1007/s00429-006-0084-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2006] [Indexed: 02/04/2023]
Abstract
We analyzed the distribution of tyrosine hydroxylase immunoreactivity in the central nervous zones involved in the processing of visual information during zebrafish ontogeny, employing a segmental approach. In the retina, we observed immunolabeled cells in the inner nuclear layer after hatching. From the juvenile stages onwards, some of these cells presented two immunolabeled processes towards the inner and outer plexiform layers of the retina, which are identified as interplexiform cells. In the adult zebrafish retina, we have identified two cellular types displaying immunoreactivity for tyrosine hydroxylase: interplexiform and amacrine cells. In the optic tectum, derived from the mesencephalon, no immunolabeled neurons were observed in any of the stages analyzed. The periventricular gray zone and the superficial white zone display immunostained neuropile from the end of fry life onwards. At the 30-day postfertilization, the tyrosine hydroxylase immunoreactive neuropile in the optic tectum presents two bands located within the retinorecipient strata and deeper strata, respectively. All diencephalic regions, which receive direct retinal inputs, show immunolabeled cells in the preoptic area, in the pretectum, and in the ventral thalamus from embryonic stages onwards. During the fry development, the immunolabeled neurons can be observed in the periventricular pretectum from 15-days postfertilization and in both the ventrolateral thalamic nucleus and suprachiasmatic nucleus from 30-days postfertilization. The transient expression of tyrosine hydroxylase is observed in fibers of the optic tract during fry and juvenile development. The existence of immunolabeled neuropile in the zebrafish retinorecipient strata could be related to the turnover of retinotectal projections.
Collapse
Affiliation(s)
- F J Arenzana
- Dpto. de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca. Facultad de Medicina, Campus Miguel de Unamuno, Avda. Alfonso X el Sabio, 1., E-37007 , Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Carrera I, Sueiro C, Molist P, Ferreiro S, Adrio F, Rodríguez MA, Anadón R, Rodríguez-Moldes I. Temporal and spatial organization of tyrosine hydroxylase-immunoreactive cell groups in the embryonic brain of an elasmobranch, the lesser-spotted dogfish Scyliorhinus canicula. Brain Res Bull 2005; 66:541-5. [PMID: 16144646 DOI: 10.1016/j.brainresbull.2005.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 11/18/2022]
Abstract
We have studied the development of catecholaminergic (CA) neuronal groups in the brain of the dogfish Scyliorhinus canicula using immunohistochemistry to tyrosine hydroxylase (TH). The earliest TH-immunoreactive (THir) cells were detected in the primordia of the posterior tubercle and suprachiasmatic nuclei (PTN and SCN, respectively) of stage 26 embryos. At stage 28, THir cells were also seen extending between the SCN and the PTN at ventral thalamic levels. At stage 30, some THir cerebrospinal fluid-contacting neurons and migrated THir cells were found in the walls of the posterior recess, and a few weakly THir cells also appeared at the isthmus level (locus coeruleus) and in the caudal rhombencephalic tegmentum. At stage 31, further THir cell groups appeared in the synencephalon and midbrain (ventral tegmental area/substantia nigra, VTA/SN), and the rhombencephalon (viscerosensory and visceromotor columns). At stage 32, the first THir cells appeared in the pallium, the olfactory bulb and the preoptic area. THir cells are seen in the retina from stage 33. The developmental sequence of THir cell groups in dogfish appears to be rather similar to that described for teleosts, apart from the appearance of the VTA/SN and pallial cells, which lack in teleosts.
Collapse
Affiliation(s)
- Ivan Carrera
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abalo XM, Villar-Cheda B, Anadón R, Rodicio MC. Development of the dopamine-immunoreactive system in the central nervous system of the sea lamprey. Brain Res Bull 2005; 66:560-4. [PMID: 16144650 DOI: 10.1016/j.brainresbull.2005.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of dopamine-immunoreactive (DAir) populations in the central nervous system of the sea lamprey, a modern representative of the earliest vertebrates, was studied to achieve further understanding of dopaminergic systems in vertebrates. The first DAir cell groups appeared in the spinal cord, the posterior tubercle nucleus and the dorsal hypothalamic nucleus of prolarval stages. In larvae, new DAir cell groups were observed in the caudal preoptic nucleus, the postoptic commissure nucleus, the postinfundibular commissure nucleus and the caudal rhombencephalon. All these DAir cell groups observed in larvae were also DA-positive in adults, which showed only one new DAir cell group found in the ventral hypothalamic nucleus. Occasional DAir cells were observed in the telencephalon, the ventral thalamus and/or the isthmus of large larvae and adults. From medium-sized larvae to adults, the regions most richly innervated by DAir fibers were the neurohypophysis, the striatum, the pretectum and the midbrain tegmentum. Striking differences are observed between lampreys and other vertebrates in regard to the relative time of appearance of DAir cells, which is probably related with the complex life cycle of the sea lamprey.
Collapse
Affiliation(s)
- Xesús M Abalo
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
16
|
Sueiro C, Carrera I, Rodríguez-Moldes I, Molist P, Anadón R. Development of catecholaminergic systems in the spinal cord of the dogfish Scyliorhinus canicula (Elasmobranchs). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:141-50. [PMID: 12711365 DOI: 10.1016/s0165-3806(03)00062-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of catecholamine-synthesizing cells and fibers in the spinal cord of dogfish (Scyliorhinus canicula L.) was studied by means of immunohistochemistry using antibodies against tyrosine hydroxylase (TH). The only TH-immunoreactive (TH-ir) cells already present in the spinal cord of stage 26 embryos were of cerebrospinal fluid-contacting (CSF-c) type. These cells were the first catecholaminergic neurons of the dogfish CNS. The number of these TH-ir cells increased very considerably in later embryos and adult dogfish. In later embryos (stage 33; prehatching), faintly TH-ir non-CSF-contacting neurons were observed in the ventral horn throughout most of the spinal cord. In adult dogfish, some non-CSF-contacting TH-ir cells were observed ventral or lateral to the central canal. In the rostral spinal cord, the catecholaminergic neurons observed in dorsal regions were continuous with caudal rhombencephalic populations. Numerous TH-ir fibers were observed in the spinal cord of later embryos and in adults, both intrinsic and descending from the brain, innervating many regions of the cord including the dorsal and ventral horns. In addition, some TH-ir fibers innervated the marginal nucleus of the spinal cord. The early appearance of catecholaminergic cells and fibers in the embryonic spinal cord of the dogfish, and the large number of these elements observed in adults, suggests an important role for catecholamines through development and adulthood in sensory and motor functions.
Collapse
Affiliation(s)
- Catalina Sueiro
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|