1
|
Rajput M, Malik IA, Methi A, Cortés Silva JA, Fey D, Wirths O, Fischer A, Wilting J, von Arnim CAF. Cognitive decline and neuroinflammation in a mouse model of obesity: An accelerating role of ageing. Brain Behav Immun 2025; 125:226-239. [PMID: 39730092 DOI: 10.1016/j.bbi.2024.12.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024] Open
Abstract
Obesity, a pandemic, worldwide afflicts almost one billion people. Obesity and ageing share several pathological pathways leading to neurological disorders. However, due to a lack of suitable animal models, the long-term effects of obesity on age-related disorders- cognitive impairment and dementia have not yet been thoroughly investigated. Therefore, the current investigation focuses on developing a suitable model to explore the effects of obese-ageing. It also aims to determine whether obesity affects cognitive abilities in an age-dependent manner, and to identify a potential biomarker(s) for cognitive decline. Cognitive tests were carried out on 6-months and 1-year-old melanocortin-4 receptor (Mc4r)-deficient-obese and lean (wildtype) mice. Additionally, brains and sera were harvested for molecular, histological and serological analyses from 6, 12, and 24-months-old mice. Finally, RT-PCR was carried out after hippocampal mRNA sequencing. The cognitive tests revealed that 1-year-old obese mice have cognitive impairment along with underlying neurodegenerative changes, such as enlarged lateral ventricles. Serum neurofilament light chain (sNfL) levels were also elevated. Lipid accumulation and neuroinflammation were apparent besides, a compromised blood-brain barrier (BBB) indicated by altered junction protein gene expression. Differentially-expressed genes associated with cognitive decline were identified by mRNA sequencing of hippocampi. One such gene, Secreted Phosphoprotein 1 (Spp1) had markedly increased expression in cognitively-impaired obese mice. Our findings present an obese-aged mouse model of cognitive decline with neuroinflammation, reduced BBB-integrity and predisposing neurodegenerative changes. Obese-ageing accelerates the progression of cognitive impairment. Furthermore, Spp1 appears to be a potential biomarker for early diagnosis of neuropathological disorders.
Collapse
Affiliation(s)
- Mansi Rajput
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany.
| | - Ihtzaz Ahmed Malik
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany.
| | - Aditi Methi
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany.
| | - Jonathan Alexis Cortés Silva
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany.
| | - Dorothea Fey
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Oliver Wirths
- Department of Psychiatry, University Medical Center Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany.
| | - André Fischer
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany; Department of Psychiatry, University Medical Center Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany.
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical Center Goettingen, Kreuzbergring 36, D-37075 Goettingen, Germany.
| | - Christine A F von Arnim
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
2
|
Wang Y, Yang T, Mo H, Yao M, Song Q, Yu H, Du Y, Li Y, Yu J, Wang L. Identification and functional analysis of six melanocortin-4-receptor-like (MC4R-like) mutations in goldfish (Carassius auratus). Gen Comp Endocrinol 2025; 360:114639. [PMID: 39536983 DOI: 10.1016/j.ygcen.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Melanocortin receptor-4 (MC4R) belongs to the G protein-coupled receptor family, characterized by a classical structure of seven transmembrane domains (7TMD). They play an important role in food intake and weight regulation. In the present study, we identified melanocortin-4-receptor-like (caMC4RL) mutants of goldfish from the Qian River in the Qin Ling region and characterized their functional properties, including the constitutive activities of the mutants, ligand-induced cAMP and ERK1/2 accumulation, and AMPK activation. The results show that six caMC4RL mutants were identified in goldfish from the Qian River in the Qin Ling region, and are located in the conserved position of the Cyprinidae MC4Rs. The mutations (E57K, P296S, and R302T/K) result in the loss of Gs signaling function. The mutations (P296 and R302T/K) exhibited biased signaling in response to ACTH stimulation in the MAPK/ERK pathway. In addition, the E57K mutant may play a role in weight regulation and could serve as molecular markers for molecular breeding. These data will provide fundamental information for functional studies of teleost GPCR mutants and MC4R isoforms.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianze Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haolin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingchuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huixia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyou Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024; 15:11811-11833. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Carniglia L, Turati J, Saba J, López Couselo F, Romero AC, Caruso C, Durand D, Lasaga M. Melanocortin-receptor 4 activation modulates proliferation and differentiation of rat postnatal hippocampal neural precursor cells. Neuropharmacology 2024; 257:110058. [PMID: 38960135 DOI: 10.1016/j.neuropharm.2024.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Postnatal hippocampal neurogenesis is essential for learning and memory. Hippocampal neural precursor cells (NPCs) can be induced to proliferate and differentiate into either glial cells or dentate granule cells. Notably, hippocampal neurogenesis decreases dramatically with age, partly due to a reduction in the NPC pool and a decrease in their proliferative activity. Alpha-melanocyte-stimulating hormone (α-MSH) improves learning, memory, neuronal survival and plasticity. Here, we used postnatally-isolated hippocampal NPCs from Wistar rat pups (male and female combined) to determine the role of the melanocortin analog [Nle4, D-Phe7]-α-MSH (NDP-MSH) in proliferation and fate acquisition of NPCs. Incubation of growth-factor deprived NPCs with 10 nM NDP-MSH for 6 days increased the proportion of Ki-67- and 5-bromo-2'-deoxyuridine (BrdU)-positive cells, compared to the control group, and these effects were blocked by the MC4R antagonist JKC-363. NDP-MSH also increased the proportion of glial fibrillar acidic protein (GFAP)/Ki-67, GFAP/sex-determining region Y-box2 (SOX2) and neuroepithelial stem cell protein (NESTIN)/Ki-67-double positive cells (type-1 and type-2 precursors). Finally, NDP-MSH induced peroxisome proliferator-activated receptor (PPAR)-γ protein expression, and co-incubation with the PPAR-γ inhibitor GW9662 prevented the effect of NDP-MSH on NPC proliferation and differentiation. Our results indicate that in vitro activation of MC4R in growth-factor-deprived postnatal hippocampal NPCs induces proliferation and promotes the relative expansion of the type-1 and type-2 NPC pool through a PPAR-γ-dependent mechanism. These results shed new light on the mechanisms underlying the beneficial effects of melanocortins in hippocampal plasticity and provide evidence linking the MC4R and PPAR-γ pathways in modulation of hippocampal NPC proliferation and differentiation.
Collapse
Affiliation(s)
- Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Juan Turati
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Clara Romero
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Oya M, Miyasaka Y, Nakamura Y, Tanaka M, Suganami T, Mashimo T, Nakamura K. Age-related ciliopathy: Obesogenic shortening of melanocortin-4 receptor-bearing neuronal primary cilia. Cell Metab 2024; 36:1044-1058.e10. [PMID: 38452767 DOI: 10.1016/j.cmet.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Obesity is often associated with aging. However, the mechanism of age-related obesity is unknown. The melanocortin-4 receptor (MC4R) mediates leptin-melanocortin anti-obesity signaling in the hypothalamus. Here, we discovered that MC4R-bearing primary cilia of hypothalamic neurons progressively shorten with age in rats, correlating with age-dependent metabolic decline and increased adiposity. This "age-related ciliopathy" is promoted by overnutrition-induced upregulation of leptin-melanocortin signaling and inhibited or reversed by dietary restriction or the knockdown of ciliogenesis-associated kinase 1 (CILK1). Forced shortening of MC4R-bearing cilia in hypothalamic neurons by genetic approaches impaired neuronal sensitivity to melanocortin and resulted in decreased brown fat thermogenesis and energy expenditure and increased appetite, finally developing obesity and leptin resistance. Therefore, despite its acute anti-obesity effect, chronic leptin-melanocortin signaling increases susceptibility to obesity by promoting the age-related shortening of MC4R-bearing cilia. This study provides a crucial mechanism for age-related obesity, which increases the risk of metabolic syndrome.
Collapse
Affiliation(s)
- Manami Oya
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yoshiko Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan; Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya 464-8601, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
6
|
Guo H, Xin Y, Wang S, Zhang X, Ren Y, Qiao B, Li H, Wu J, Hao X, Xu L, Yan Y, Zhang H. Hypothalamic POMC neuron-specific knockout of MC4R affects insulin sensitivity by regulating Kir2.1. Mol Med 2024; 30:34. [PMID: 38448811 PMCID: PMC10918880 DOI: 10.1186/s10020-024-00804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Imbalance in energy regulation is a major cause of insulin resistance and diabetes. Melanocortin-4 receptor (MC4R) signaling at specific sites in the central nervous system has synergistic but non-overlapping functions. However, the mechanism by which MC4R in the arcuate nucleus (ARC) region regulates energy balance and insulin resistance remains unclear. METHODS The MC4Rflox/flox mice with proopiomelanocortin (POMC) -Cre mice were crossed to generate the POMC-MC4Rflox/+ mice. Then POMC-MC4Rflox/+ mice were further mated with MC4Rflox/flox mice to generate the POMC-MC4Rflox/flox mice in which MC4R is selectively deleted in POMC neurons. Bilateral injections of 200 nl of AAV-sh-Kir2.1 (AAV-sh-NC was used as control) were made into the ARC of the hypothalamus. Oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure were measured by using the CLAMS; Total, visceral and subcutaneous fat was analyzed using micro-CT. Co-immunoprecipitation assays (Co-IP) were used to analyze the interaction between MC4R and Kir2.1 in GT1-7 cells. RESULTS POMC neuron-specific ablation of MC4R in the ARC region promoted food intake, impaired energy expenditure, leading to increased weight gain and impaired systemic glucose homeostasis. Additionally, MC4R ablation reduced the activation of POMC neuron, and is not tissue-specific for peripheral regulation, suggesting the importance of its central regulation. Mechanistically, sequencing analysis and Co-IP assay demonstrated a direct interaction of MC4R with Kir2.1. Knockdown of Kir2.1 in POMC neuron-specific ablation of MC4R restored the effect of MC4R ablation on energy expenditure and systemic glucose homeostasis, indicating by reduced body weight and ameliorated insulin resistance. CONCLUSION Hypothalamic POMC neuron-specific knockout of MC4R affects energy balance and insulin sensitivity by regulating Kir2.1. Kir2.1 represents a new target and pathway that could be targeted in obesity.
Collapse
Affiliation(s)
- Hengru Guo
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Ying Xin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Saifei Wang
- Department of Endocrinology, Third People's Hospital, Zhengzhou, China
| | - Xiaoning Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yanqi Ren
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Bo Qiao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Wu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Hao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Lijun Xu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yushan Yan
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Haohao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Huang L, Deng X, Yang X, Tang Z, Fan S, Zhou Z, Tao M, Liu S. Cloning, distribution, and effects of growth regulation of MC3R and MC4R in red crucian carp ( Carassius auratus red var.). Front Endocrinol (Lausanne) 2024; 14:1310000. [PMID: 38322156 PMCID: PMC10846643 DOI: 10.3389/fendo.2023.1310000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
Background Melanocortin-3 and -4 receptors (MC3R and MC4R), G protein-coupled receptors, play vital roles in the regulation of energy homeostasis. To understand the functions of mc3r and mc4r in the energy homeostasis of red crucian carp (Carassius auratus red var., RCC), we cloned mc3r and mc4r, analyzed the tissue expression and localization of the genes, and investigated the effects of knockout of mc3r (mc3r +/-) and mc4r (mc4r +/-) in RCC. Results The full-length cDNAs of RCC mc3r and mc4r were 1459 base pairs (bp) and 1894 bp, respectively. qRT-PCR indicated that mc3r and mc4r were profusely expressed in the brain, but lower expressed in the periphery tissues. ISH revealed that mc3r and mc4r were located in NPP, NPO, NAPv, NSC, NAT, NRL, NLTl, and NLTp of the brain, suggesting that mc3r and mc4r might regulate many physiological and behavioral aspects in RCC. To further verify the roles of mc3r and mc4r in energy homeostasis, the mc3r+/- and mc4r+/- fish were obtained by the CRISPR/Cas9 system. The average body weights, total lengths, body depths, and food intake of mc4r+/- fish were significantly higher than those of mc3r+/- and the normal wild-type (WT) fish, but there was no difference between the mc3r+/- and WT fish, indicating that the RCC phenotype and food intake were mainly influenced by mc4r but not mc3r. Interestingly, mc4r+/- fish displayed more visceral fat mass than mc3r+/- and WT fish, and mc3r+/- fish also exhibited slightly more visceral fat mass compared to WT. RNA-seq of the liver and muscle revealed that a large number of differentially expressed genes (DEGs) differed in WT vs. mc3r+/-, WT vs. mc4r+/-, and mc3r+/- vs. mc4r+/-, mainly related to lipid, glucose, and energy metabolism. The KEGG enrichment analysis revealed that DEGs were mainly enriched in pathways such as steroid biosynthesis, fatty acid metabolism, fatty acid biosynthesis, glycolysis/gluconeogenesis, wnt signaling pathway, PPAR signaling pathway, and MAPK signaling pathway, thereby affecting lipid accumulation and growth. Conclusion In conclusion, these results will assist in the further investigation of the molecular mechanisms in which MC3R and MC4R were involved in the regulation of energy homeostasis in fish.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
8
|
Gozen O, Aypar B, Ozturk Bintepe M, Tuzcu F, Balkan B, Koylu EO, Kanit L, Keser A. Chronic Nicotine Consumption and Withdrawal Regulate Melanocortin Receptor, CRF, and CRF Receptor mRNA Levels in the Rat Brain. Brain Sci 2024; 14:63. [PMID: 38248278 PMCID: PMC10813117 DOI: 10.3390/brainsci14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Alterations in the various neuropeptide systems in the mesocorticolimbic circuitry have been implicated in negative effects associated with drug withdrawal. The corticotropin-releasing factor (CRF) and α-melanocyte-stimulating hormone are two peptides that may be involved. This study investigated the regulatory effects of chronic nicotine exposure and withdrawal on the mRNA levels of melanocortin receptors (MC3R, MC4R), CRF, and CRF receptors (CRFR1 and CRFR2) expressed in the mesocorticolimbic system. Rats were given drinking water with nicotine or without nicotine (control group) for 12 weeks, after which they continued receiving nicotine (chronic exposure) or were withdrawn from nicotine for 24 or 48 h. The animals were decapitated following behavioral testing for withdrawal signs. Quantitative real-time PCR analysis demonstrated that nicotine exposure (with or without withdrawal) increased levels of CRF and CRFR1 mRNA in the amygdala, CRF mRNA in the medial prefrontal cortex, and CRFR1 mRNA in the septum. Nicotine withdrawal also enhanced MC3R and MC4R mRNA levels in different brain regions, while chronic nicotine exposure was associated with increased MC4R mRNA levels in the nucleus accumbens. These results suggest that chronic nicotine exposure and withdrawal regulate CRF and melanocortin signaling in the mesocorticolimbic system, possibly contributing to negative affective state and nicotine addiction.
Collapse
Affiliation(s)
- Oguz Gozen
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Buket Aypar
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
| | - Meliha Ozturk Bintepe
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
| | - Fulya Tuzcu
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
| | - Burcu Balkan
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Ersin O. Koylu
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Aysegul Keser
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
9
|
Metzger PJ, Zhang A, Carlson BA, Sun H, Cui Z, Li Y, Jahnke MT, Layton DR, Gupta MB, Liu N, Kostenis E, Gavrilova O, Chen M, Weinstein LS. A human obesity-associated MC4R mutation with defective Gq/11α signaling leads to hyperphagia in mice. J Clin Invest 2024; 134:e165418. [PMID: 38175730 PMCID: PMC10869179 DOI: 10.1172/jci165418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Melanocortin 4 receptor (MC4R) mutations are the most common cause of human monogenic obesity and are associated with hyperphagia and increased linear growth. While MC4R is known to activate Gsα/cAMP signaling, a substantial proportion of obesity-associated MC4R mutations do not affect MC4R/Gsα signaling. To further explore the role of specific MC4R signaling pathways in the regulation of energy balance, we examined the signaling properties of one such mutant, MC4R (F51L), as well as the metabolic consequences of MC4RF51L mutation in mice. The MC4RF51L mutation produced a specific defect in MC4R/Gq/11α signaling and led to obesity, hyperphagia, and increased linear growth in mice. The ability of a melanocortin agonist to acutely inhibit food intake when delivered to the paraventricular nucleus (PVN) was lost in MC4RF51L mice, as well as in WT mice in which a specific Gq/11α inhibitor was delivered to the PVN; this provided evidence that a Gsα-independent signaling pathway, namely Gq/11α, significantly contributes to the actions of MC4R on food intake and linear growth. These results suggest that a biased MC4R agonist that primarily activates Gq/11α may be a potential agent to treat obesity with limited untoward cardiovascular and other side effects.
Collapse
Affiliation(s)
| | | | | | - Hui Sun
- Metabolic Diseases Branch and
| | - Zhenzhong Cui
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | | | | | | | - Naili Liu
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|
10
|
Bisht P, Rathore C, Rathee A, Kabra A. Astrocyte Activation and Drug Target in Pathophysiology of Multiple Sclerosis. Methods Mol Biol 2024; 2761:431-455. [PMID: 38427254 DOI: 10.1007/978-1-0716-3662-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease, which is also referred to as an autoimmune disorder with chronic inflammatory demyelination affecting the core system that is the central nervous system (CNS). Demyelination is a pathological manifestation of MS. It is the destruction of myelin sheath, which is wrapped around the axons, and it results in the loss of synaptic connections and conduction along the axon is also compromised. Various attempts are made to understand MS and demyelination using various experimental models out of them. The most popular model is experimental autoimmune encephalomyelitis (EAE), in which autoimmunity against CNS components is induced in experimental animals by immunization with self-antigens derived from basic myelin protein. Astrocytes serve as a dual-edged sword both in demyelination and remyelination. Various drug targets have also been discussed that can be further explored for the treatment of MS. An extensive literature research was done from various online scholarly and research articles available on PubMed, Google Scholar, and Elsevier. Keywords used for these articles were astrocyte, demyelination, astrogliosis, and reactive astrocytes. This includes articles being the most relevant information to the area compiled to compose a current review.
Collapse
Affiliation(s)
- Preeti Bisht
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Ankit Rathee
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| |
Collapse
|
11
|
Roth CL, Zenno A. Treatment of hypothalamic obesity in people with hypothalamic injury: new drugs are on the horizon. Front Endocrinol (Lausanne) 2023; 14:1256514. [PMID: 37780616 PMCID: PMC10533996 DOI: 10.3389/fendo.2023.1256514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Hypothalamic obesity (HO) is a complex and rare disorder affecting multiple regulatory pathways of energy intake and expenditure in the brain as well as the regulation of the autonomic nervous system and peripheral hormonal signaling. It can be related to monogenic obesity syndromes which often affect the central leptin-melanocortin pathways or due to injury of the hypothalamus from pituitary and hypothalamic tumors, such as craniopharyngioma, surgery, trauma, or radiation to the hypothalamus. Traditional treatments of obesity, such as lifestyle intervention and specific diets, are still a therapeutic cornerstone, but often fail to result in meaningful and sustained reduction of body mass index. This review will give an update on pharmacotherapies of HO related to hypothalamic injury. Recent obesity drug developments are promising for successful obesity intervention outcomes.
Collapse
Affiliation(s)
- Christian L. Roth
- Seattle Children’s Research Institute, Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Anna Zenno
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Gebrie A. The melanocortin receptor signaling system and its role in neuroprotection against neurodegeneration: Therapeutic insights. Ann N Y Acad Sci 2023; 1527:30-41. [PMID: 37526975 DOI: 10.1111/nyas.15048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The melanocortin signaling system consists of the melanocortin peptides, their distinctive receptors, accessory proteins, and endogenous antagonists. Melanocortin peptides are small peptide hormones that have been studied in a variety of physiological and pathological conditions. There are five types of melanocortin receptors, and they are distributed within the central nervous system and in several tissues of the periphery. The G protein-coupled melanocortin receptors typically signal through adenylyl cyclase and other downstream signaling pathways. Depending on the ligand, surface expression of melanocortin receptor, receptor occupancy period, related proteins, the type of cell, and other parameters, the signaling pathways are complicated and pleiotropic. While it is known that all five melanocortin receptors are coupled to Gs, they can also occasionally couple to Gq or Gi. Both direct and indirect neuroprotection are induced by the melanocortin signaling system. Targeting several of the components of the melanocortin signaling system (ligands, receptors, accessory proteins, signaling effectors, and regulators) may provide therapeutic opportunities. Activation of the melanocortin system improves different functional traits in neurodegenerative diseases. There is a potential for additional melanocortin system interventions by interfering with dimerization or dissociation. This review aims to discuss the melanocortin receptor signaling system and its role in neuroprotection, as well as its therapeutic potential.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
13
|
Wei R, Li D, Jia S, Chen Y, Wang J. MC4R in Central and Peripheral Systems. Adv Biol (Weinh) 2023; 7:e2300035. [PMID: 37043700 DOI: 10.1002/adbi.202300035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Indexed: 04/14/2023]
Abstract
Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
14
|
Wang C, Wang X, Hu W. Molecular and cellular regulation of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1215772. [PMID: 37465124 PMCID: PMC10351381 DOI: 10.3389/fendo.2023.1215772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in the form of heat, in contrast to the characteristics of white adipocytes that store energy. Increasing energy expenditure by activating brown adipocytes or inducing beige adipocytes is a potential therapeutic strategy for treating obesity and type 2 diabetes. Thus, a better understanding of the underlying mechanisms of thermogenesis provides novel therapeutic interventions for metabolic diseases. In this review, we summarize the recent advances in the molecular regulation of thermogenesis, focusing on transcription factors, epigenetic regulators, metabolites, and non-coding RNAs. We further discuss the intercellular and inter-organ crosstalk that regulate thermogenesis, considering the heterogeneity and complex tissue microenvironment of thermogenic fat.
Collapse
Affiliation(s)
- Cuihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xianju Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Shoemaker AH, Tamaroff J. Approach to the Patient With Hypothalamic Obesity. J Clin Endocrinol Metab 2023; 108:1236-1242. [PMID: 36413492 PMCID: PMC10306088 DOI: 10.1210/clinem/dgac678] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Hypothalamic obesity (HO) is defined as abnormal weight gain due to physical destruction of the hypothalamus. Suprasellar tumors, most commonly craniopharyngiomas, are a classic cause of HO. HO often goes unnoticed initially as patients, families, and medical teams are focused on oncologic treatments and management of panhypopituitarism. HO is characterized by rapid weight gain in the first year after hypothalamic destruction followed by refractory obesity due to an energy imbalance of decreased energy expenditure without decreased food intake. Currently available pharmacotherapies are less effective in HO than in common obesity. While not a cure, dietary interventions, pharmacotherapy, and bariatric surgery can mitigate the effects of HO. Early recognition of HO is necessary to give an opportunity to intervene before substantial weight gain occurs. Our goal for this article is to review the pathophysiology of HO and to discuss available treatment options and future directions for prevention and treatment.
Collapse
Affiliation(s)
- Ashley H Shoemaker
- Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jaclyn Tamaroff
- Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
16
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
17
|
Singh U, Saito K, Khan MZ, Jiang J, Toth BA, Rodeghiero SR, Dickey JE, Deng Y, Deng G, Kim YC, Cui H. Collateralizing ventral subiculum melanocortin 4 receptor circuits regulate energy balance and food motivation. Physiol Behav 2023; 262:114105. [PMID: 36736416 PMCID: PMC9981473 DOI: 10.1016/j.physbeh.2023.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Hippocampal dysfunction is associated with major depressive disorder, a serious mental illness characterized by not only depressed mood but also appetite disturbance and dysregulated body weight. However, the underlying mechanisms by which hippocampal circuits regulate metabolic homeostasis remain incompletely understood. Here we show that collateralizing melanocortin 4 receptor (MC4R) circuits in the ventral subiculum (vSUB), one of the major output structures of the hippocampal formation, affect food motivation and energy balance. Viral-mediated cell type- and projection-specific input-output circuit mapping revealed that the nucleus accumbens shell (NAcSh)-projecting vSUBMC4R+ neurons send extensive collateral projections of to various hypothalamic nuclei known to be important for energy balance, including the arcuate, ventromedial and dorsomedial nuclei, and receive monosynaptic inputs mainly from the ventral CA1 and the anterior paraventricular nucleus of thalamus. Chemogenetic activation of NAcSh-projecting vSUBMC4R+neurons lead to increase in motivation to obtain palatable food without noticeable effect on homeostatic feeding. Viral-mediated restoration of MC4R signaling in the vSUB partially restores obesity in MC4R-null mice without affecting anxiety- and depression-like behaviors. Collectively, these results delineate vSUBMC4R+ circuits to the unprecedented level of precision and identify the vSUBMC4R signaling as a novel regulator of food reward and energy balance.
Collapse
Affiliation(s)
- Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Michael Z. Khan
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A. Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R. Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E. Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Young-Cho Kim
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
18
|
Semple EA, Harberson MT, Xu B, Rashleigh R, Cartwright TL, Braun JJ, Custer AC, Liu C, Hill JW. Melanocortin 4 receptor signaling in Sim1 neurons permits sexual receptivity in female mice. Front Endocrinol (Lausanne) 2023; 14:983670. [PMID: 37033219 PMCID: PMC10080118 DOI: 10.3389/fendo.2023.983670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Female sexual dysfunction affects approximately 40% of women in the United States, yet few therapeutic options exist for these patients. The melanocortin system is a new treatment target for hypoactive sexual desire disorder (HSDD), but the neuronal pathways involved are unclear. Methods In this study, the sexual behavior of female MC4R knockout mice lacking melanocortin 4 receptors (MC4Rs) was examined. The mice were then bred to express MC4Rs exclusively on Sim1 neurons (tbMC4RSim1 mice) or on oxytocin neurons (tbMC4ROxt mice) to examine the effect on sexual responsiveness. Results MC4R knockout mice were found to approach males less and have reduced receptivity to copulation, as indicated by a low lordosis quotient. These changes were independent of body weight. Lordosis behavior was normalized in tbMC4RSim1 mice and improved in tbMC4ROxt mice. In contrast, approach behavior was unchanged in tbMC4RSim1 mice but greatly increased in tbMC4ROxt animals. The changes were independent of melanocortin-driven metabolic effects. Discussion These results implicate MC4R signaling in Oxt neurons in appetitive behaviors and MC4R signaling in Sim1 neurons in female sexual receptivity, while suggesting melanocortin-driven sexual function does not rely on metabolic neural circuits.
Collapse
Affiliation(s)
- Erin A. Semple
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Mitchell T. Harberson
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Baijie Xu
- Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, United States
| | - Rebecca Rashleigh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Tori L. Cartwright
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Jessica J. Braun
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Amy C. Custer
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Chen Liu
- Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, United States
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
| |
Collapse
|
19
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
20
|
Affiliation(s)
- Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), Lille, France
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Hall MAL, Kohut-Jackson AL, Peyla AC, Friedman GD, Simco NJ, Borland JM, Meisel RL. Melanocortin receptor 3 and 4 mRNA expression in the adult female Syrian hamster brain. Front Mol Neurosci 2023; 16:1038341. [PMID: 36910260 PMCID: PMC9995703 DOI: 10.3389/fnmol.2023.1038341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Melanocortin 3 receptors (MC3R) and melanocortin 4 receptors (MC4R) are vital in regulating a variety of functions across many species. For example, the dysregulation of these receptors results in obesity and dysfunction in sexual behaviors. Only a handful of studies have mapped the expression of MC3R and MC4R mRNA across the central nervous system, with the primary focus on mice and rats. Because Syrian hamsters are valuable models for functions regulated by melanocortin receptors, our current study maps the distribution of MC3R and MC4R mRNA in the Syrian hamster telencephalon, diencephalon, and midbrain using RNAscope. We found that the expression of MC3R mRNA was lowest in the telencephalon and greatest in the diencephalon, whereas the expression of MC4R mRNA was greatest in the midbrain. A comparison of these findings to previous studies found that MC3R and MC4R expression is similar in some brain regions across species and divergent in others. In addition, our study identifies novel brain regions for the expression of MC3Rs and MC4Rs, and identifies cells that co-express bothMC3 and MC4 receptors within certain brain regions.
Collapse
Affiliation(s)
- Megan A. L. Hall
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | | | | | | | | | |
Collapse
|
22
|
Li L, Liang J, Zhang C, Liu T, Zhang C. Peripheral actions and direct central-local communications of melanocortin 4 receptor signaling. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:45-51. [PMID: 33621697 PMCID: PMC9923399 DOI: 10.1016/j.jshs.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Melanocortin 4 receptor (MC4R), the most important monogenetic cause of human metabolic disorders, has been of great interest to many researchers in the field of energy homeostasis and public health. Because MC4R is a vital pharmaceutical target for maintaining controllable appetite and body weight for professional athletes, previous studies have mainly focused on the central, rather than the peripheral, roles of MC4R. Thus, the local expression of MC4R and its behavioral regulation remain unclear. In an attempt to shed light on different directions for future studies of MC4R signaling, we review a series of recent and important studies exploring the peripheral functions of MC4R and the direct physiological interaction between peripheral organs and central MC4R neurons in this article.
Collapse
Affiliation(s)
- Lei Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinye Liang
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Cong Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
23
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Romano A, Gaetani S, Micioni Di Bonaventura MV, Cifani C. Investigating the role of the central melanocortin system in stress and stress-related disorders. Pharmacol Res 2022; 185:106521. [DOI: 10.1016/j.phrs.2022.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
24
|
Thurston L, Hunjan T, Mills EG, Wall MB, Ertl N, Phylactou M, Muzi B, Patel B, Alexander EC, Suladze S, Modi M, Eng PC, Bassett PA, Abbara A, Goldmeier D, Comninos AN, Dhillo WS. Melanocortin 4 receptor agonism enhances sexual brain processing in women with hypoactive sexual desire disorder. J Clin Invest 2022; 132:152341. [PMID: 36189794 PMCID: PMC9525110 DOI: 10.1172/jci152341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Hypoactive sexual desire disorder (HSDD) is characterized by a persistent deficiency of sexual fantasies and desire for sexual activity, causing marked distress and interpersonal difficulty. It is the most prevalent female sexual health problem globally, affecting approximately 10% of women, but has limited treatment options. Melanocortin 4 receptor (MC4R) agonists have emerged as a promising therapy for women with HSDD, through unknown mechanisms. Studying the pathways involved is crucial for our understanding of normal and abnormal sexual behavior. METHODS Using psychometric, functional neuroimaging, and hormonal analyses, we conducted a randomized, double-blinded, placebo-controlled, crossover clinical study to assess the effects of MC4R agonism compared with placebo on sexual brain processing in 31 premenopausal heterosexual women with HSDD. RESULTS MC4R agonism significantly increased sexual desire for up to 24 hours after administration compared with placebo. During functional neuroimaging, MC4R agonism enhanced cerebellar and supplementary motor area activity and deactivated the secondary somatosensory cortex, specifically in response to visual erotic stimuli, compared with placebo. In addition, MC4R agonism enhanced functional connectivity between the amygdala and the insula during visual erotic stimuli compared with placebo. CONCLUSION These data suggest that MC4R agonism enhanced sexual brain processing by reducing self-consciousness, increasing sexual imagery, and sensitizing women with HSDD to erotic stimuli. These findings provide mechanistic insight into the action of MC4R agonism in sexual behavior and are relevant to the ongoing development of HSDD therapies and MC4R agonist development more widely. TRIAL REGISTRATION ClinicalTrials.gov NCT04179734. FUNDING This is an investigator-sponsored study funded by AMAG Pharmaceuticals Inc., the Medical Research Council (MRC) (MR/T006242/1), and the National Institute for Health Research (NIHR) (CS-2018-18-ST2-002 and RP-2014-05-001).
Collapse
Affiliation(s)
- Layla Thurston
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Tia Hunjan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Matthew B Wall
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.,Invicro, a Konica Minolta Company, London, United Kingdom
| | - Natalie Ertl
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.,Invicro, a Konica Minolta Company, London, United Kingdom
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Beatrice Muzi
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Bijal Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Emma C Alexander
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Sofiya Suladze
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Manish Modi
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Pei C Eng
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | | | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - David Goldmeier
- Jane Wadsworth Sexual Function Clinic, St. Mary's Hospital and
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
25
|
Parent MB. Using Postmeal Measures and Manipulations to Investigate Hippocampal Mnemonic Control of Eating Behavior. Neuroscience 2022; 497:228-238. [PMID: 34998891 PMCID: PMC9256844 DOI: 10.1016/j.neuroscience.2021.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Episodic meal-related memories provide the brain with a powerful mechanism for tracking and controlling eating behavior because they contain a detailed record of recent energy intake that likely outlasts the physiological signals generated by feeding bouts. This review briefly summarizes evidence from human participants showing that episodic meal-related memory limits later eating behavior and then describes our research aimed at investigating whether hippocampal neurons mediate the inhibitory effects of meal-related memory on subsequent feeding. Our approach has been inspired by pioneering work conducted by Ivan Izquierdo and others who used posttraining manipulations to investigate memory consolidation. This review describes the rationale and value of posttraining manipulations, how Izquierdo used them to demonstrate that dorsal hippocampal (dHC) neurons are critical for memory consolidation, and how we have adapted this strategy to investigate whether dHC neurons are necessary for mnemonic control of energy intake. I describe our evidence showing that ingestion activates the molecular processes necessary for synaptic plasticity and memory during the early postprandial period, when the memory of the meal would be undergoing consolidation, and then summarize our findings showing that neural activity in dHC neurons is critical during the early postprandial period for limiting future intake. Collectively, our evidence supports the hypothesis that dHC neurons mediate the inhibitory effects of ingestion-related memory on future intake and demonstrates that post-experience memory modulation is not confined to artificial laboratory memory tasks.
Collapse
Affiliation(s)
- M B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303, USA.
| |
Collapse
|
26
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
27
|
Copperi F, Kim JD, Diano S. Melanocortin Signaling Connecting Systemic Metabolism With Mood Disorders. Biol Psychiatry 2022; 91:879-887. [PMID: 34344535 PMCID: PMC8643363 DOI: 10.1016/j.biopsych.2021.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 11/02/2022]
Abstract
Obesity and mood disorders are often overlapping pathologies that are prevalent public health concerns. Many studies have indicated a positive correlation between depression and obesity, although weight loss and decreased appetite are also recognized as features of depression. Accordingly, DSM-5 defines two subtypes of depression associated with changes in feeding: melancholic depression, characterized by anhedonia and associated with decreased feeding and appetite; and atypical depression, characterized by fatigue, sleepiness, hyperphagia, and weight gain. The central nervous system plays a key role in the regulation of feeding and mood, thus suggesting that overlapping neuronal circuits may be involved in their modulation. However, these circuits have yet to be completely characterized. The central melanocortin system, a circuitry characterized by the expression of specific peptides (pro-opiomelanocortins, agouti-related protein, and neuropeptide Y) and their melanocortin receptors, has been shown to be a key player in the regulation of feeding. In addition, the melanocortin system has also been shown to affect anxiety and depressive-like behavior, thus suggesting a possible role of the melanocortin system as a biological substrate linking feeding and depression. However, more studies are needed to fully understand this complex system and its role in regulating metabolic and mood disorders. In this review, we will discuss the current literature on the role of the melanocortin system in human and animal models in feeding and mood regulation, providing evidence of the biological interplay between anxiety, major depressive disorders, appetite, and body weight regulation.
Collapse
Affiliation(s)
- Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York; Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
28
|
Mishra I, Xie WR, Bournat JC, He Y, Wang C, Silva ES, Liu H, Ku Z, Chen Y, Erokwu BO, Jia P, Zhao Z, An Z, Flask CA, He Y, Xu Y, Chopra AR. Protein tyrosine phosphatase receptor δ serves as the orexigenic asprosin receptor. Cell Metab 2022; 34:549-563.e8. [PMID: 35298903 PMCID: PMC8986618 DOI: 10.1016/j.cmet.2022.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
Asprosin is a fasting-induced glucogenic and centrally acting orexigenic hormone. The olfactory receptor Olfr734 is known to be the hepatic receptor for asprosin that mediates its effects on glucose production, but the receptor for asprosin's orexigenic function has been unclear. Here, we have identified protein tyrosine phosphatase receptor δ (Ptprd) as the orexigenic receptor for asprosin. Asprosin functions as a high-affinity Ptprd ligand in hypothalamic AgRP neurons, regulating the activity of this circuit in a cell-autonomous manner. Genetic ablation of Ptprd results in a strong loss of appetite, leanness, and an inability to respond to the orexigenic effects of asprosin. Ablation of Ptprd specifically in AgRP neurons causes resistance to diet-induced obesity. Introduction of the soluble Ptprd ligand-binding domain in the circulation of mice suppresses appetite and blood glucose levels by sequestering plasma asprosin. Identification of Ptprd as the orexigenic asprosin receptor creates a new avenue for the development of anti-obesity therapeutics.
Collapse
Affiliation(s)
- Ila Mishra
- Harrington Discovery Institute, Cleveland, OH, USA
| | - Wei Rose Xie
- Harrington Discovery Institute, Cleveland, OH, USA
| | - Juan C Bournat
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Hailan Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zhiqiang Ku
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Bernadette O Erokwu
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiqiang An
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chris A Flask
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Yanlin He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Atul R Chopra
- Harrington Discovery Institute, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
29
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
30
|
Dickinson SY, Kelly DA, Padilla SL, Bergan JF. From Reductionism Toward Integration: Understanding How Social Behavior Emerges From Integrated Circuits. Front Integr Neurosci 2022; 16:862437. [PMID: 35431824 PMCID: PMC9010670 DOI: 10.3389/fnint.2022.862437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Complex social behaviors are emergent properties of the brain's interconnected and overlapping neural networks. Questions aimed at understanding how brain circuits produce specific and appropriate behaviors have changed over the past half century, shifting from studies of gross anatomical and behavioral associations, to manipulating and monitoring precisely targeted cell types. This technical progression has enabled increasingly deep insights into the regulation of perception and behavior with remarkable precision. The capacity of reductionist approaches to identify the function of isolated circuits is undeniable but many behaviors require rapid integration of diverse inputs. This review examines progress toward understanding integrative social circuits and focuses on specific nodes of the social behavior network including the medial amygdala, ventromedial hypothalamus (VMH) and medial preoptic area of the hypothalamus (MPOA) as examples of broad integration between multiple interwoven brain circuits. Our understanding of mechanisms for producing social behavior has deepened in conjunction with advances in technologies for visualizing and manipulating specific neurons and, here, we consider emerging strategies to address brain circuit function in the context of integrative anatomy.
Collapse
Affiliation(s)
- Sarah Y. Dickinson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Diane A. Kelly
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Stephanie L. Padilla
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joseph F. Bergan
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
31
|
Bouret SG. Developmental programming of hypothalamic melanocortin circuits. Exp Mol Med 2022; 54:403-413. [PMID: 35474338 PMCID: PMC9076880 DOI: 10.1038/s12276-021-00625-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/14/2023] Open
Abstract
The melanocortin system plays a critical role in the central regulation of food intake and energy balance. This system consists of neurons producing pro-opiomelanocortin (POMC), melanocortin receptors (MC4Rs), and the endogenous antagonist agouti-related peptide (AgRP). Pomc and Mc4r deficiency in rodents and humans causes early onset of obesity, whereas a loss of Agrp function is associated with leanness. Accumulating evidence shows that many chronic diseases, including obesity, might originate during early life. The melanocortin system develops during a relatively long period beginning during embryonic life with the birth of POMC and AgRP neurons and continuing postnatally with the assembly of their neuronal circuitry. The development of the melanocortin system requires the tight temporal regulation of molecular factors, such as transcription factors and axon guidance molecules, and cellular mechanisms, such as autophagy. It also involves a complex interplay of endocrine and nutritional factors. The disruption of one or more of these developmental factors can lead to abnormal maturation and function of the melanocortin system and has profound metabolic consequences later in life.
Collapse
Affiliation(s)
- Sebastien G Bouret
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, UMR-S 1172, Lille, 59000, France.
- University of Lille, FHU 1,000 Days for Health, Lille, 59000, France.
| |
Collapse
|
32
|
Melanocortin-4 receptor signaling in the central amygdala mediates chronic inflammatory pain effects on nociception. Neuropharmacology 2022; 210:109032. [PMID: 35304172 DOI: 10.1016/j.neuropharm.2022.109032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 11/24/2022]
Abstract
Chronic inflammatory pain represents one of the largest subsets of chronic pain diagnoses, which affect nearly a quarter of individuals in the United States and cost nearly $600 billion dollars annually. Chronic pain leads to persistent sensory hypersensitivities, as well as emotional and cognitive disturbances. Evidence suggests that melanocortin 4 receptors (MC4Rs) mediate pain-signaling and pain-like behaviors via actions at various nodes in the pain-neural axis, but the field lacks a complete understanding of the potential role of MC4Rs in chronic inflammatory pain in males and females. The central amygdala (CeA) expresses high quantities of MC4R and receives pain-related information from the periphery, and in vivo CeA manipulations alter nociceptive behavior in pain-naïve and in animals with chronic pain. Here, we tested the hypothesis that MC4Rs in the CeA modulate thermal nociception and mechanical sensitivity, as well as pain avoidance, in male and female Wistar rats, using a model of chronic inflammatory pain (Complete Freud's Adjuvant; CFA). First, we report that CFA produces long-lasting hyperalgesia in adult male and female Wistar rats, and long-lasting pain avoidance in male Wistar rats. Second, we report that MC4R antagonism in the CeA reduces thermal nociception and mechanical sensitivity in male and female Wistar rats treated with CFA. Finally, we report that MC4R antagonism in the CeA reduces pain avoidance in male, and that this effect is not due to drug effects on locomotor activity. Our results indicate that a model of chronic inflammatory pain produces long-lasting increases in pain-like behaviors in adult male and female Wistar rats, and that antagonism of MC4Rs in the CeA reverses those effects.
Collapse
|
33
|
Rasmussen JM, Thompson PM, Entringer S, Buss C, Wadhwa PD. Fetal programming of human energy homeostasis brain networks: Issues and considerations. Obes Rev 2022; 23:e13392. [PMID: 34845821 DOI: 10.1111/obr.13392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
In this paper, we present a transdisciplinary framework and testable hypotheses regarding the process of fetal programming of energy homeostasis brain circuitry. Our model proposes that key aspects of energy homeostasis brain circuitry already are functional by the time of birth (with substantial interindividual variation); that this phenotypic variation at birth is an important determinant of subsequent susceptibility for energy imbalance and childhood obesity risk; and that this brain circuitry exhibits developmental plasticity, in that it is influenced by conditions during intrauterine life, particularly maternal-placental-fetal endocrine, immune/inflammatory, and metabolic processes and their upstream determinants. We review evidence that supports the scientific premise for each element of this formulation, identify future research directions, particularly recent advances that may facilitate a better quantification of the ontogeny of energy homeostasis brain networks, highlight animal and in vitro-based approaches that may better address the determinants of interindividual variation in energy homeostasis brain networks, and discuss the implications of this formulation for the development of strategies targeted towards the primary prevention of childhood obesity.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA.,Department of Obstetrics and Gynecology, University of California, Irvine, California, USA.,Department of Epidemiology, University of California, Irvine, California, USA
| |
Collapse
|
34
|
Gillis RA, Dezfuli G, Bellusci L, Vicini S, Sahibzada N. Brainstem Neuronal Circuitries Controlling Gastric Tonic and Phasic Contractions: A Review. Cell Mol Neurobiol 2022; 42:333-360. [PMID: 33813668 PMCID: PMC9595174 DOI: 10.1007/s10571-021-01084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV.
Collapse
Affiliation(s)
- Richard A Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Lorenza Bellusci
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA.
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| |
Collapse
|
35
|
Allen AT, Heaton EC, Shapiro LP, Butkovich LM, Yount ST, Davies RA, Li DC, Swanson AM, Gourley SL. Inter-individual variability amplified through breeding reveals control of reward-related action strategies by Melanocortin-4 Receptor in the dorsomedial striatum. Commun Biol 2022; 5:116. [PMID: 35136204 PMCID: PMC8825839 DOI: 10.1038/s42003-022-03043-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
In day-to-day life, we often must choose between pursuing familiar behaviors or adjusting behaviors when new strategies might be more fruitful. The dorsomedial striatum (DMS) is indispensable for arbitrating between old and new action strategies. To uncover molecular mechanisms, we trained mice to generate nose poke responses for food, then uncoupled the predictive relationship between one action and its outcome. We then bred the mice that failed to rapidly modify responding. This breeding created offspring with the same tendencies, failing to inhibit behaviors that were not reinforced. These mice had less post-synaptic density protein 95 in the DMS. Also, densities of the melanocortin-4 receptor (MC4R), a high-affinity receptor for α-melanocyte-stimulating hormone, predicted individuals' response strategies. Specifically, high MC4R levels were associated with poor response inhibition. We next found that reducing Mc4r in the DMS in otherwise typical mice expedited response inhibition, allowing mice to modify behavior when rewards were unavailable or lost value. This process required inputs from the orbitofrontal cortex, a brain region canonically associated with response strategy switching. Thus, MC4R in the DMS appears to propel reward-seeking behavior, even when it is not fruitful, while moderating MC4R presence increases the capacity of mice to inhibit such behaviors.
Collapse
Affiliation(s)
- Aylet T Allen
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth C Heaton
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Lauren P Shapiro
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - Laura M Butkovich
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sophie T Yount
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - Rachel A Davies
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Dan C Li
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Andrew M Swanson
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA.
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
36
|
Hou ZS, Wen HS. Neuropeptide Y and melanocortin receptors in fish: regulators of energy homeostasis. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:42-51. [PMID: 37073356 PMCID: PMC10077275 DOI: 10.1007/s42995-021-00106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 04/19/2021] [Indexed: 05/03/2023]
Abstract
Energy homeostasis, which refers to the physiological processes that the energy intake is exquisitely coordinated with energy expenditure, is critical for survival. Therefore, multiple and complex mechanisms have been involved in the regulation of energy homeostasis. The central melanocortin system plays an important role in modulating energy homeostasis. This system includes the orexigenic neurons, expressing neuropeptide Y/Agouti-related protein (NPY/AgRP), and the anorexigenic neurons expressing proopiomelanocortin (POMC). The downstream receptors of NPY, AgRP and post-translational products of POMC are G protein-coupled receptors (GPCRs). This review summarizes the compelling evidence demonstrating that NPY and melanocortin receptors are involved in energy homeostasis. Subsequently, the comparative studies on physiology and pharmacology of NPY and melanocortin receptors in humans, rodents and teleosts are summarized. Also, we provide a strategy demonstrating the potential application of the new ligands and/or specific variants of melanocortin system in aquaculture.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
37
|
Singh U, Jiang J, Saito K, Toth BA, Dickey JE, Rodeghiero SR, Deng Y, Deng G, Xue B, Zhu Z, Zingman LV, Geerling JC, Cui H. Neuroanatomical organization and functional roles of PVN MC4R pathways in physiological and behavioral regulations. Mol Metab 2022; 55:101401. [PMID: 34823066 PMCID: PMC8689242 DOI: 10.1016/j.molmet.2021.101401] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The paraventricular nucleus of hypothalamus (PVN), an integrative center in the brain, orchestrates a wide range of physiological and behavioral responses. While the PVN melanocortin 4 receptor (MC4R) signaling (PVNMC4R+) is involved in feeding regulation, the neuroanatomical organization of PVNMC4R+ connectivity and its role in other physiological regulations are incompletely understood. Here we aimed to better characterize the input-output organization of PVNMC4R+ neurons and test their physiological functions beyond feeding. METHODS Using a combination of viral tools, we mapped PVNMC4R+ circuits and tested the effects of chemogenetic activation of PVNMC4R+ neurons on thermoregulation, cardiovascular control, and other behavioral responses beyond feeding. RESULTS We found that PVNMC4R+ neurons innervate many different brain regions that are known to be important not only for feeding but also for neuroendocrine and autonomic control of thermoregulation and cardiovascular function, including but not limited to the preoptic area, median eminence, parabrachial nucleus, pre-locus coeruleus, nucleus of solitary tract, ventrolateral medulla, and thoracic spinal cord. Contrary to these broad efferent projections, PVNMC4R+ neurons receive monosynaptic inputs mainly from other hypothalamic nuclei (preoptic area, arcuate and dorsomedial hypothalamic nuclei, supraoptic nucleus, and premammillary nucleus), the circumventricular organs (subfornical organ and vascular organ of lamina terminalis), the bed nucleus of stria terminalis, and the parabrachial nucleus. Consistent with their broad efferent projections, chemogenetic activation of PVNMC4R+ neurons not only suppressed feeding but also led to an apparent increase in heart rate, blood pressure, and brown adipose tissue temperature. These physiological changes accompanied acute transient hyperactivity followed by hypoactivity and resting-like behavior. CONCLUSIONS Our results elucidate the neuroanatomical organization of PVNMC4R+ circuits and shed new light on the roles of PVNMC4R+ pathways in autonomic control of thermoregulation, cardiovascular function, and biphasic behavioral activation.
Collapse
Affiliation(s)
- Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Joel C Geerling
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
38
|
Narjabadifam M, Bonyadi M, Rafat SA, Mahdavi R, Aliasghari F. Association study of rs17782313 polymorphism near MC4R gene with obesity/overweight, BMI, and hedonic hunger among women from Northwestern Iran. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Obesity, as a medical condition, results from interactions between environmental and genetic factors. The rs17782313 polymorphism, located 188kb downstream of the Melanocortin 4 Receptor (MC4R) gene, is one of the essential candidate genetic markers that has shown the highest association with obesity in different populations. OBJECTIVE: This study aimed to investigate the possible associations of rs17782313 polymorphism near the MC4R gene with obesity/overweight, body mass index (BMI), and hedonic hunger among women from the Iranian Azeri ethnic group. METHODS: Five hundred sixty-three women, composed of 396 patients with obesity/overweight and 167 unrelated healthy controls, were genotyped for the rs17782313 polymorphism by applying the polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) method. RESULTS: This population was in Hardy-Weinberg equilibrium (P = 0.878). The study confirmed a significant association of rs17782313 with obesity, where subjects carrying the C/C genotype had higher odds of obesity (OR = 2.681, P = 0.005, 95%CI:1.340–5.365). Also, C allele carriers have statistically significantly higher BMI scores than those carrying the T allele (P = 0.029). However, no significant associations were found among PFS scores and genotypic/allelic groups of rs17782313 polymorphism (P = 0.368). CONCLUSIONS: Our findings suggest that rs17782313 polymorphism is strongly associated with obesity and BMI but not with hedonic hunger among Northwest Iran women. Moreover, the sequencing data analysis in several homozygous and heterozygous carriers of the C allele led to identifying a novel frameshift variant with TCT deletion (rs534212081) in the 166 upstream of rs17782313, which has not been reported so far.
Collapse
Affiliation(s)
- Mahan Narjabadifam
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Morteza Bonyadi
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Aliasghari
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Sharfman N, Gilpin NW. The Role of Melanocortin Plasticity in Pain-Related Outcomes After Alcohol Exposure. Front Psychiatry 2021; 12:764720. [PMID: 34803772 PMCID: PMC8599269 DOI: 10.3389/fpsyt.2021.764720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The global COVID-19 pandemic has shone a light on the rates and dangers of alcohol misuse in adults and adolescents in the US and globally. Alcohol exposure during adolescence causes persistent molecular, cellular, and behavioral changes that increase the risk of alcohol use disorder (AUD) into adulthood. It is established that alcohol abuse in adulthood increases the likelihood of pain hypersensitivity and the genesis of chronic pain, and humans report drinking alcohol to relieve pain symptoms. However, the longitudinal effects of alcohol exposure on pain and the underlying CNS signaling that mediates it are understudied. Specific brain regions mediate pain effects, alcohol effects, and pain-alcohol interactions, and neural signaling in those brain regions is modulated by neuropeptides. The CNS melanocortin system is sensitive to alcohol and modulates pain sensitivity, but this system is understudied in the context of pain-alcohol interactions. In this review, we focus on the role of melanocortin signaling in brain regions sensitive to alcohol and pain, in particular the amygdala. We also discuss interactions of melanocortins with other peptide systems, including the opioid system, as potential mediators of pain-alcohol interactions. Therapeutic strategies that target the melanocortin system may mitigate the negative consequences of alcohol misuse during adolescence and/or adulthood, including effects on pain-related outcomes.
Collapse
Affiliation(s)
- Nathan Sharfman
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nicholas W. Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Alcohol and Drug Abuse Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA, United States
| |
Collapse
|
40
|
Wang N, Tong R, Xu J, Tian Y, Pan J, Cui J, Chen H, Peng Y, Fei S, Yang S, Wang L, Yao J, Cui W. PDX1 and MC4R genetic polymorphisms are associated with type 2 diabetes mellitus risk in the Chinese Han population. BMC Med Genomics 2021; 14:249. [PMID: 34696776 PMCID: PMC8543917 DOI: 10.1186/s12920-021-01037-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a complex metabolic disease that is caused by a complex interplay between genetic and environmental factors. This research aimed to investigate the association of genetic polymorphisms in PDX1 and MC4R with T2DM risk. METHODS The genotypes of 10 selected SNPs in PDX1 and MC4R were identified using the Agena MassARRAY platform. We utilized odds ratio (OR) and 95% confidence intervals (CIs) to assess the correlation between genetic polymorphisms and T2DM risk. RESULTS We found that PDX1-rs9581943 decreased susceptibility to T2DM among in a Chinese Han population (OR = 0.76, p = 0.045). We also found that selected genetic polymorphisms in PDX1 and MC4R could modify the risk of T2DM, which might also be influenced by age, sex, BMI, smoking status, and drinking status (p < 0.05). CONCLUSIONS We concluded that PDX1 and MC4R genetic variants were significantly associated with T2DM risk in a Chinese Han population. These single polymorphic markers may be considered to be new targets in the assessment and prevention of T2DM among Chinese Han people.
Collapse
Affiliation(s)
- Ning Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Rui Tong
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jing Xu
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yanni Tian
- Department of Oncology, East Branch of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710089, Shaanxi, China
| | - Juan Pan
- Department of Endocrinology, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Jiaqi Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Huan Chen
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yanqi Peng
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Sijia Fei
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Shujun Yang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Lu Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Juanchuan Yao
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
41
|
Bruschetta G, Jin S, Liu ZW, Kim JD, Diano S. MC 4R Signaling in Dorsal Raphe Nucleus Controls Feeding, Anxiety, and Depression. Cell Rep 2021; 33:108267. [PMID: 33053350 DOI: 10.1016/j.celrep.2020.108267] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder is associated with weight loss and decreased appetite; however, the signaling that connects these conditions is unclear. Here, we show that MC4R signaling in the dorsal raphe nucleus (DRN) affects feeding, anxiety, and depression. DRN infusion of α-MSH decreases DRN neuronal activation and feeding. DRN MC4R is expressed in GABAergic PRCP-producing neurons. DRN selective knockdown of PRCP (PrcpDRNKD), an enzyme inactivating α-MSH, decreases feeding and DRN neuronal activation. Interestingly, PrcpDRNKD mice present lower DRN serotonin levels and depressive-like behavior. Similarly, PRCP-ablated MC4R mice (PrcpMC4RKO) show metabolic and behavioral phenotypes comparable to those of PrcpDRNKD mice. Selective PRCP re-expression in DRN MC4R neurons of PrcpMC4RKO mice partially reverses feeding, while fully restoring mood behaviors. Chemogenetic inhibition of DRN MC4R neurons induces anxiety, depression, and reduced feeding, whereas chemogenetic activation reverses these effects. Our results indicate that MC4R signaling in DRN plays a role in feeding, anxiety, and depression.
Collapse
Affiliation(s)
- Giuseppe Bruschetta
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Program of Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sungho Jin
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Program of Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhong-Wu Liu
- Program of Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jung Dae Kim
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Program of Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sabrina Diano
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Program of Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Kabahizi A, Wallace B, Lieu L, Chau D, Dong Y, Hwang ES, Williams KW. Glucagon-like peptide-1 (GLP-1) signalling in the brain: From neural circuits and metabolism to therapeutics. Br J Pharmacol 2021; 179:600-624. [PMID: 34519026 PMCID: PMC8820188 DOI: 10.1111/bph.15682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022] Open
Abstract
Glucagon‐like‐peptide‐1 (GLP‐1) derived from gut enteroendocrine cells and a discrete population of neurons in the caudal medulla acts through humoral and neural pathways to regulate satiety, gastric motility and pancreatic endocrine function. These physiological attributes contribute to GLP‐1 having a potent therapeutic action in glycaemic regulation and chronic weight management. In this review, we provide an overview of the neural circuits targeted by endogenous versus exogenous GLP‐1 and related drugs. We also highlight candidate subpopulations of neurons and cellular mechanisms responsible for the acute and chronic effects of GLP‐1 and GLP‐1 receptor agonists on energy balance and glucose metabolism. Finally, we present potential future directions to translate these findings towards the development of effective therapies for treatment of metabolic disease.
Collapse
Affiliation(s)
- Anita Kabahizi
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Briana Wallace
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Linh Lieu
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Dominic Chau
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Yanbin Dong
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Eun-Sang Hwang
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Kevin W Williams
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
43
|
Zhao J, Jiang L, Uehara M, Banouni N, Al Dulaijan BS, Azzi J, Ichimura T, Li X, Jarolim P, Fiorina P, Tullius SG, Madsen JC, Kasinath V, Abdi R. ACTH treatment promotes murine cardiac allograft acceptance. JCI Insight 2021; 6:e143385. [PMID: 34236047 PMCID: PMC8410061 DOI: 10.1172/jci.insight.143385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Heart transplantation is the optimal therapy for patients with end-stage heart disease, but its long-term outcome remains inadequate. Recent studies have highlighted the importance of the melanocortin receptors (MCRs) in inflammation, but how MCRs regulate the balance between alloreactive T cells and Tregs, and whether they impact chronic heart transplant rejection, is unknown. Here, we found that Tregs express MC2R, and MC2R expression was highest among all MCRs by Tregs. Our data indicate that adrenocorticotropic hormone (ACTH), the sole ligand for MC2R, promoted the formation of Tregs by increasing the expression of IL-2Rα (CD25) in CD4+ T cells and activation of STAT5 in CD4+CD25+ T cells. ACTH treatment also improved the survival of heart allografts and increased the formation of Tregs in CD28KO mice. ACTH treatment synergized with the tolerogenic effect of CTLA-4–Ig, resulting in long-term survival of heart allografts and an increase in intragraft Tregs. ACTH administration also demonstrated higher prolongation of heart allograft survival in transgenic mouse recipients with both complete KO and conditional KO of PI3Kγ in T cells. Finally, ACTH treatment reduced chronic rejection markedly. These data demonstrate that ACTH treatment improved heart transplant outcomes, and this effect correlated with an increase in Tregs.
Collapse
Affiliation(s)
- Jing Zhao
- Transplantation Research Center.,Renal Division, and
| | - Liwei Jiang
- Transplantation Research Center.,Renal Division, and
| | - Mayuko Uehara
- Transplantation Research Center.,Renal Division, and
| | - Naima Banouni
- Transplantation Research Center.,Renal Division, and
| | | | - Jamil Azzi
- Transplantation Research Center.,Renal Division, and
| | | | - Xiaofei Li
- Transplantation Research Center.,Renal Division, and
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Fiorina
- Department of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,International Center for Type 1 Diabetes, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy.,Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, and.,Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Reza Abdi
- Transplantation Research Center.,Renal Division, and
| |
Collapse
|
44
|
Münzberg H, Floyd E, Chang JS. Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige? Physiology (Bethesda) 2021; 36:246-255. [PMID: 34159808 DOI: 10.1152/physiol.00038.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity research progresses in understanding neuronal circuits and adipocyte biology to regulate metabolism. However, the interface of neuro-adipocyte interaction is less studied. We summarize the current knowledge of adipose tissue innervation and interaction with adipocytes and emphasize adipocyte transitions from white to brown adipocytes and vice versa. We further highlight emerging concepts for the differential neuronal regulation of brown/beige versus white adipocyte and the interdependence of both for metabolic regulation.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Ji Suk Chang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
45
|
Deng Y, Deng G, Grobe JL, Cui H. Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Front Physiol 2021; 12:691226. [PMID: 34262481 PMCID: PMC8274634 DOI: 10.3389/fphys.2021.691226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is commonly associated with sympathetic overdrive, which is one of the major risk factors for the development of cardiovascular diseases, such as hypertension and heart failure. Over the past few decades, there has been a growing understanding of molecular mechanisms underlying obesity development with central origin; however, the relative contribution of these molecular changes to the regulation of cardiovascular function remains vague. A variety of G-protein coupled receptors (GPCRs) and their downstream signaling pathways activated in distinct hypothalamic neurons by different metabolic hormones, neuropeptides and monoamine neurotransmitters are crucial not only for the regulation of appetite and metabolic homeostasis but also for the sympathetic control of cardiovascular function. In this review, we will highlight the main GPCRs and associated hypothalamic nuclei that are important for both metabolic homeostasis and cardiovascular function. The potential downstream molecular mediators of these GPCRs will also be discussed.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- FOE Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
46
|
Pho H, Berger S, Freire C, Kim LJ, Shin MK, Streeter SR, Hosamane N, Cabassa ME, Anokye-Danso F, Dergacheva O, Amorim MR, Fleury-Curado T, Jun JC, Schwartz AR, Ahima RS, Mendelowitz D, Polotsky VY. Leptin receptor expression in the dorsomedial hypothalamus stimulates breathing during NREM sleep in db/db mice. Sleep 2021; 44:6149135. [PMID: 33624805 PMCID: PMC8193564 DOI: 10.1093/sleep/zsab046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY OBJECTIVES Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH). We hypothesized that leptin receptor LepRb-deficient db/db mice have obesity hypoventilation and that restoration of leptin signaling in the DMH will increase ventilation during sleep in these animals. METHODS We measured arterial blood gas in unanesthetized awake db/db mice. We subsequently infected these animals with Ad-LepRb or control Ad-mCherry virus into the DMH and measured ventilation during sleep as well as CO2 production after intracerebroventricular (ICV) infusions of phosphate-buffered saline or leptin. RESULTS Awake db/db mice had elevated CO2 levels in the arterial blood. Ad-LepRb infection resulted in LepRb expression in the DMH neurons in a similar fashion to wildtype mice. In LepRb-DMH db/db mice, ICV leptin shortened REM sleep and increased inspiratory flow, tidal volume, and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in these animals. CONCLUSION Leptin stimulates breathing and treats obesity hypoventilation acting on LepRb-positive neurons in the DMH.
Collapse
Affiliation(s)
- Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stone R Streeter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nishitha Hosamane
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meaghan E Cabassa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Mateus R Amorim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomaz Fleury-Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. Vsevolod (Seva) Y. Polotsky, Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Johns Hopkins Asthma and Allergy Center, Rm 4B65, Baltimore, MD 21224.
| |
Collapse
|
47
|
Deal CK, Volkoff H. Response of the thyroid axis and appetite-regulating peptides to fasting and overfeeding in goldfish (Carassius auratus). Mol Cell Endocrinol 2021; 528:111229. [PMID: 33662475 DOI: 10.1016/j.mce.2021.111229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
The thyroid axis is a major regulator of metabolism and energy homeostasis in vertebrates. There is conclusive evidence in mammals for the involvement of the thyroid axis in the regulation of food intake, but in fish, this link is unclear. In order to assess the effects of nutritional status on the thyroid axis in goldfish, Carassius auratus, we examined brain and peripheral transcripts of genes associated with the thyroid axis [thyrotropin-releasing hormone (TRH), thyrotropin-releasing hormone receptors (TRH-R type 1 and 2), thyroid stimulating hormone beta (TSHβ), deiodinase enzymes (DIO2, DIO3) and UDP-glucoronsyltransferase (UGT)] and appetite regulators [neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related peptide (AgRP) and cholecystokinin (CCK)] in fasted and overfed fish for 7 and 14 day periods. We show that the thyroid axis responds to overfeeding, with an increase of brain TRH and TSHβ mRNA expression after 14 days, suggesting that overfeeding might activate the thyroid axis. In fasted fish, hepatic DIO3 and UGT transcripts were downregulated from 7 to 14 days, suggesting a time-dependent inhibition of thyroid hormone degradation pathways. Nutritional status had no effect on circulating levels of thyroid hormone. Central appetite-regulating peptides exhibited temporal changes in mRNA expression, with decreased expression of the appetite-inhibiting peptide POMC from 7 to 14 days for both fasted and overfed fish, with no change in central NPY or AgRP, or intestinal CCK transcript expression. Compared to control fish, fasting increased AgRP mRNA expression at both 7 and 14 days, and POMC expression was higher than controls only at 7 days. Our results indicate that nutritional status time-dependently affects the thyroid axis and appetite regulators, although no clear correlation between thyroid physiology and appetite regulators could be established. Our study helps to fill a knowledge gap in current fish endocrinological research on the effects of energy balance on thyroid metabolism and function.
Collapse
Affiliation(s)
- Cole K Deal
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Helene Volkoff
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Departments of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
48
|
Wang Y, Bernard A, Comblain F, Yue X, Paillart C, Zhang S, Reiter JF, Vaisse C. Melanocortin 4 receptor signals at the neuronal primary cilium to control food intake and body weight. J Clin Invest 2021; 131:142064. [PMID: 33938449 DOI: 10.1172/jci142064] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/18/2021] [Indexed: 01/02/2023] Open
Abstract
The melanocortin 4 receptor (MC4R) plays a critical role in the long-term regulation of energy homeostasis, and mutations in the MC4R are the most common cause of monogenic obesity. However, the precise molecular and cellular mechanisms underlying the maintenance of energy balance within MC4R-expressing neurons are unknown. We recently reported that the MC4R localizes to the primary cilium, a cellular organelle that allows for partitioning of incoming cellular signals, raising the question of whether the MC4R functions in this organelle. Here, using mouse genetic approaches, we found that cilia were required specifically on MC4R-expressing neurons for the control of energy homeostasis. Moreover, these cilia were critical for pharmacological activators of the MC4R to exert an anorexigenic effect. The MC4R is expressed in multiple brain regions. Using targeted deletion of primary cilia, we found that cilia in the paraventricular nucleus of the hypothalamus (PVN) were essential to restrict food intake. MC4R activation increased adenylyl cyclase (AC) activity. As with the removal of cilia, inhibition of AC activity in the cilia of MC4R-expressing neurons of the PVN caused hyperphagia and obesity. Thus, the MC4R signaled via PVN neuron cilia to control food intake and body weight. We propose that defects in ciliary localization of the MC4R cause obesity in human inherited obesity syndromes and ciliopathies.
Collapse
Affiliation(s)
- Yi Wang
- Department of Medicine and The Diabetes Center and
| | | | | | - Xinyu Yue
- Department of Medicine and The Diabetes Center and
| | | | - Sumei Zhang
- Department of Medicine and The Diabetes Center and
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, UCSF, San Francisco, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| | | |
Collapse
|
49
|
Neuroendocrine control of appetite and metabolism. Exp Mol Med 2021; 53:505-516. [PMID: 33837263 PMCID: PMC8102538 DOI: 10.1038/s12276-021-00597-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Body homeostasis is predominantly controlled by hormones secreted by endocrine organs. The central nervous system contains several important endocrine structures, including the hypothalamic-pituitary axis. Conventionally, neurohormones released by the hypothalamus and the pituitary gland (hypophysis) have received much attention owing to the unique functions of the end hormones released by their target peripheral organs (e.g., glucocorticoids released by the adrenal glands). Recent advances in mouse genetics have revealed several important metabolic functions of hypothalamic neurohormone-expressing cells, many of which are not readily explained by the action of the corresponding classical downstream hormones. Notably, the newly identified functions are better explained by the action of conventional neurotransmitters (e.g., glutamate and GABA) that constitute a neuronal circuit. In this review, we discuss the regulation of appetite and metabolism by hypothalamic neurohormone-expressing cells, with a focus on the distinct contributions of neurohormones and neurotransmitters released by these neurons.
Collapse
|
50
|
Sun H, Meng K, Hou L, Shang L, Yan J. Melanocortin receptor-4 mediates the anorectic effect induced by the nucleus tractus solitarius injection of glucagon-like Peptide-2 in fasted rats. Eur J Pharmacol 2021; 901:174072. [PMID: 33823184 DOI: 10.1016/j.ejphar.2021.174072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is secreted from enteroendocrine L-type cells of the gut and also released from preproglucagonergic (PPG) neurons in the nucleus tractus solitarius (NTS) and adjacent medial reticular nucleus of the brain stem. The neurons in the NTS express GLP-2, and the neurons send extensive projections to the hypothalamus. Recent studies show that the intracerebroventricular administration of GLP-2 significantly suppresses food intake in animals and some evidence suggest that the melanocortin receptor-4 (MC4-R) signaling in the hypothalamus is required for intracerebroventricular GLP-2-mediated inhibition of feeding. There is proopiomelanocortin (POMC) positive neurons expressing MC4-R in the NTS. Suppression of MC4-R expressing neurons in the brain stem inhibits gastric emptying. In this study, we tested the effects of NTS GLP-2R activation and blockade on feeding behavior and evaluated the endogenous melanocortin system's role in the NTS in mediating effects of GLP-2 on feeding behavior in fed and fasted rats. Our results demonstrated that microinjection of GLP-2 into the NTS suppressed food intake in fasted-refeeding rats but did not affect food intake in free-feeding rats, and this inhibition was blocked by pretreatment of either Exendin (9-39) or SHU 9119, suggesting the GLP-2 system in the NTS exerts an inhibitory action on food intake. MC4-R mediates this action in the NTS.
Collapse
Affiliation(s)
- Huiling Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology College, Xi'an Jiaotong University, 98 Xi Wu Road, Xi'an, Shaanxi, 710004, China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China
| | - Kai Meng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China
| | - Lin Hou
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, N7 8BD, UK.
| | - Jianqun Yan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology College, Xi'an Jiaotong University, 98 Xi Wu Road, Xi'an, Shaanxi, 710004, China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|