1
|
Álvarez-Hernán G, Garrido-Jiménez S, Román ÁC, Carvajal-González JM, Francisco-Morcillo J. Distribution of planar cell polarity proteins in the developing avian retina. Exp Eye Res 2021; 209:108681. [PMID: 34166683 DOI: 10.1016/j.exer.2021.108681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 11/27/2022]
Abstract
Planar cell polarity (PCP) is evolutionary conserved and play a critical role in proper tissue development and function. During central nervous system development, PCP proteins exhibit specific patterns of distribution and are indispensable for axonal growth, dendritogenesis, neuronal migration, and neuronal differentiation. The retina constitutes an excellent model in which to study molecular mechanisms involved in neural development. The analysis of the spatiotemporal expression of PCP proteins in this model constitutes an useful histological approach in order to identify possible roles of these proteins in retinogenesis. Immunohistochemical techniques revealed that Frz6, Celsr1, Vangl1, Pk1, Pk3, and Fat1 were present in emerging axons from recently differentiated ganglion cells in the chicken retina. Except for Vangl1, they were also asymmetrically distributed in differentiated amacrine cells. Pk1 and Pk3 were restricted in the outer nuclear layer to the outer segment of photoreceptors. Vangl1 was also located in the cell somata of Müller glia. Given these findings together, the distribution of PCP proteins in the developing chicken retina suggest essential roles in axonal guidance during early retinogenesis and a possible involvement in the establishment of cell asymmetry and maintenance of retinal cell phenotypes.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jiménez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ángel Carlos Román
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José María Carvajal-González
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| |
Collapse
|
2
|
Thangaraj G, Greif A, Bachmann G, Layer PG. Intricate paths of cells and networks becoming "Cholinergic" in the embryonic chicken retina. J Comp Neurol 2013; 520:3181-93. [PMID: 22886733 DOI: 10.1002/cne.23083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) are the decisive enzymatic activities regulating the availability of acetylcholine (ACh) at a given synaptic or nonsynaptic locus. The only cholinergic cells of the mature inner retina are the so-called starburst amacrine cells (SACs). A type-I SAC, found at the outer border of the inner plexiform layer (IPL), forms a synaptic subband "a" within the IPL, while a type-II SAC located at the inner IPL border projects into subband "d." Applying immunohistochemistry for ChAT and AChE on sections of the chicken retina, we here have revealed intricate relationships of how retinal networks became dominated by AChE or by ChAT reactivities. AChE+ cells were first detectable in an embryonic day (E)4 retina, while ChAT appeared 1 day later in the very same cells; at this stage all are Brn3a+, a marker for ganglion cells (GCs). On either side of a faint AChE+ band, indicating the future IPL, pairs of ChAT+ /AChE- /Brn3a- cells appeared between E7/8. Type-I cells had increased ChAT and lost AChE; type-II cells presented less ChAT, but some AChE on their surfaces. Direct neighbors of SACs tended to express much AChE. Along with maturation, subband "a" presented more ChAT but less AChE; in subband "d" this pattern was reversed. In conclusion, the two retinal cholinergic networks segregate out from one cell pool, become locally opposed to each other, and become dominated by either synthesis or degradation of ACh. These "cholinergic developmental divergences" may also have significant physiologic consequences.
Collapse
Affiliation(s)
- Gopenath Thangaraj
- Technische Universität Darmstadt, Entwicklungsbiologie und Neurogenetik, D-64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
3
|
The maturation of photoreceptors in the avian retina is stimulated by thyroid hormone. Neuroscience 2011; 178:250-60. [PMID: 21256198 DOI: 10.1016/j.neuroscience.2011.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/22/2022]
Abstract
During retinal development, the cell-fate of photoreceptors is committed long before maturation, which entails the expression of opsins and functional transduction of light. The mechanisms that delay the maturation of photoreceptors remain unknown. We have recently reported that immature photoreceptors express the LIM domain transcription factors Islet2 and Lim3, as well as the cell-surface glycoprotein axonin1 [Fischer et al., (2008a) J Comp Neurol 506:584-603]. As the photoreceptors mature to form outer segments and express photopigments, the expression of the Islet2, Lim3 and axonin1 is diminished. The purpose of this study was to investigate whether thyroid hormone (TH) influences the maturation of photoreceptors. We studied the maturation of photoreceptors across the gradient of maturity that exists in far peripheral regions of the post-natal chicken retina [Ghai et al., (2008) Brain Res 1192:76-89]. We found that intraocular injections of TH down-regulated Islet2, Lim3 and axonin1 in photoreceptors in far peripheral regions of the retina. By contrast, TH stimulated the up-regulation of red-green opsin, violet opsin, rhodopsin and calbindin in photoreceptors. We found a correlation between the onset of RLIM (RING finger LIM-domain binding protein) and down-regulation of Islet2 and Lim3 in maturing photoreceptors; RLIM is known to interfere with the transcriptional activity of LIM-domain transcription factors. We conclude that TH stimulates the maturation of photoreceptors in the avian retina. We propose that TH inhibits the expression of Islet2 and Lim3, which thereby permits photoreceptor maturation and the onset of photopigment-expression.
Collapse
|
4
|
Kihara AH, Paschon V, Akamine PS, Saito KC, Leonelli M, Jiang JX, Hamassaki DE, Britto LRG. Differential expression of connexins during histogenesis of the chick retina. Dev Neurobiol 2009; 68:1287-302. [PMID: 18506822 DOI: 10.1002/dneu.20652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gap junction (GJ) channels couple adjacent cells, allowing transfer of second messengers, ions, and molecules up to 1 kDa. These channels are composed by a multigene family of integral membrane proteins called connexins (Cx). In the retina, besides being essential circuit element in the visual processing, GJ channels also play important roles during its development. Herein, we analyzed Cx43, Cx45, Cx50, and Cx56 expression during chick retinal histogenesis. Cx exhibited distinct expression profiles during retinal development, except for Cx56, whose expression was not detected. Cx43 immunolabeling was observed at early development, in the transition of ventricular zone and pigmented epithelium. Later, Cx43 was seen in the outer plexiform and ganglion cell layers, and afterwards also in the inner plexiform layer. We observed remarkable changes in the phosphorylation status of this protein, which indicated modifications in functional properties of this Cx during retinal histogenesis. By contrast, Cx45 showed stable gene expression levels throughout development and ubiquitous immunoreactivity in progenitor cells. From later embryonic development, Cx45 was mainly observed in the inner retina, and it was expressed by glial cells and neurons. In turn, Cx50 was virtually absent in the chick retina at initial embryonic phases. Combination of PCR, immunohistochemistry and Western blot indicated that this Cx was present in differentiated cells, arising in parallel with the formation of the visual circuitry. Characterization of Cx expression in the developing chick retina indicated particular roles for these proteins and revealed similarities and differences when compared to other species.
Collapse
Affiliation(s)
- A H Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kihara AH, Paschon V, Cardoso CM, Higa GSV, Castro LM, Hamassaki DE, Britto LRG. Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus. J Comp Neurol 2009; 512:651-63. [PMID: 19051319 DOI: 10.1002/cne.21920] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electrical coupling provided by connexins (Cx) in gap junctions (GJ) plays important roles in both the developing and the mature retina. In mammalian nocturnal species, Cx36 is an essential component in the rod pathway, the retinal circuit specialized for night, scotopic vision. Here, we report the expression of Cx36 in a species (Gallus gallus) that phylogenetic development endows with an essentially rodless retina. Cx36 gene is very highly expressed in comparison with other Cxs previously described in the adult retina, such as Cx43, Cx45, and Cx50. Moreover, real-time PCR, Western blot, and immunofluorescence all revealed that Cx36 expression massively increased over time during development. We thoroughly examined Cx36 in the inner and outer plexiform layers, where this protein was particularly abundant. Cx36 was observed mainly in the off sublamina of the inner plexiform layer rather than in the on sublamina previously described in the mammalian retina. In addition, Cx36 colocalized with specific cell markers, revealing the expression of this protein in distinct amacrine cells. To investigate further the involvement of Cx36 in visual processing, we examined its functional regulation in retinas from dark-adapted animals. Light deprivation markedly up-regulates Cx36 gene expression in the retina, resulting in an increased accumulation of the protein within and between cone synaptic terminals. In summary, the developmental regulation of Cx36 expression results in particular circuitry-related roles in the chick retina. Moreover, this study demonstrated that Cx36 onto- and phylogenesis in the vertebrate retina simultaneously exhibit similarities and particularities.
Collapse
Affiliation(s)
- A H Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
6
|
Fischer AJ, Foster S, Scott MA, Sherwood P. Transient expression of LIM-domain transcription factors is coincident with delayed maturation of photoreceptors in the chicken retina. J Comp Neurol 2008; 506:584-603. [PMID: 18072193 DOI: 10.1002/cne.21578] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the retina of warm-blooded vertebrates, photoreceptors are specified many days before the onset of synaptogenesis and the expression of photopigments. The factors that regulate the maturation of photoreceptors in the developing retina remain unknown. We report here that photoreceptors transiently express LIM-domain transcription factors during the development of the chicken retina. We examined the differentiation of photoreceptors through the normal course of embryonic development and at the far periphery of the postnatal retina, where the differentiation of photoreceptors is slowed and persists across a spatial gradient. In the embryonic retina, we find visinin-positive photoreceptors that transiently express Islet2 and Lim3 starting at E8 and ending around E15, but persisting in far peripheral regions of the retina through the first 2 weeks of postnatal development. During early stages of photoreceptor maturation, there is coincident and transient expression of the LIM-domain factors with axonin1, a cell surface glycoprotein that is a member of the immunoglobulin superfamily. Coincident with the downregulation of Islet2 and Lim3, we find the upregulation of calbindin, red/green opsin, rhodopsin, and a synaptic marker in the outer plexiform layer (OPL; dystrophin). In the periphery of the postnatal retina, photoreceptors that express Islet2, Lim3, and axonin1 do not overlap with photoreceptors that express calbindin, red/green opsin, rhodopsin, and dystrophin. We propose that Islet2 and Lim3 may promote the expression of genes that are involved in the early stages of differentiation but may suppress the expression of genes that are required in the mature photoreceptors.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
7
|
Drenhaus U, Voigt T, Rager G. Onset of synaptogenesis in the plexiform layers of the chick retina: A transmission electron microscopic study. Microsc Res Tech 2007; 70:329-35. [PMID: 17262782 DOI: 10.1002/jemt.20414] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The presently acknowledged onset of synaptogenesis in the chick retina from embryonic day 12 (E12) onward stands in contrast with the appearance of spontaneous electrical activity, of presynaptic proteins, or of neurotransmitters during early formation of the inner (E6-E8) and outer (E9) plexiform layers. Therefore, we investigated the chick retina from E6 to E12 at which age first synapses appear by transmission electron microscopy (TEM). The study provides evidence that synaptogenesis in the chick retina begins shortly after the plexiform layers have started to emerge. The first synapses are electrical synapses, which appear on E7, one day after the future inner plexiform layer emerged, and towards the end of E8 in the nascent outer plexiform layer. Conventional chemical synapses appear in both plexiform layers on E8, in the inner plexiform layer (stage 34) only a few hours earlier than in the outer plexiform layer (stage 35). The first synapses are formed close to the apex of the optic fissure and their frequency increases rapidly with age. The onset, the topography, and the developmental course of synaptogenesis correlate with the chronotopic course of maturation of retinal neurons and the age when spontaneous electrical activity occurs in the retina.
Collapse
Affiliation(s)
- Ulrich Drenhaus
- Department of Medicine, Division of Anatomy, University of Fribourg, Fribourg, Switzerland
| | | | | |
Collapse
|
8
|
Godinho L, Mumm JS, Williams PR, Schroeter EH, Koerber A, Park SW, Leach SD, Wong ROL. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development 2005; 132:5069-79. [PMID: 16258076 DOI: 10.1242/dev.02075] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cellular mechanisms underlying the precision by which neurons target their synaptic partners have largely been determined based on the study of projection neurons. By contrast, little is known about how interneurons establish their local connections in vivo. Here, we investigated how developing amacrine interneurons selectively innervate the appropriate region of the synaptic neuropil in the inner retina, the inner plexiform layer (IPL). Increases (ON) and decreases (OFF) in light intensity are processed by circuits that are structurally confined to separate ON and OFF synaptic sublaminae within the IPL. Using transgenic zebrafish in which the majority of amacrine cells express fluorescent protein, we determined that the earliest amacrine-derived neuritic plexus formed between two cell populations whose somata, at maturity, resided on opposite sides of this plexus. When we followed the behavior of individual amacrine cells over time, we discovered that they exhibited distinct patterns of structural dynamics at different stages of development. During cellular migration, amacrine cells exhibited an exuberant outgrowth of neurites that was undirected. Upon reaching the forming IPL, neurites extending towards the ganglion cell layer were relatively more stable. Importantly, when an arbor first formed, it preferentially ramified in either the inner or outer IPL corresponding to the future ON and OFF sublaminae, and maintained this stratification pattern. The specificity by which ON and OFF amacrine interneurons innervate their respective sublaminae in the IPL contrasts with that observed for projection neurons in the retina and elsewhere in the central nervous system.
Collapse
Affiliation(s)
- Leanne Godinho
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8108, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mumm JS, Godinho L, Morgan JL, Oakley DM, Schroeter EH, Wong ROL. Laminar circuit formation in the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2005; 147:155-69. [PMID: 15581704 DOI: 10.1016/s0079-6123(04)47012-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Neuronal function depends on the accurate wiring between pre- and postsynaptic cells. Determining the mechanisms underlying precision in neuronal connectivity is challenging because of the complexity of the nervous system. In diverse parts of the nervous system, regions of synaptic contact are organized into distinct parallel layers, or laminae, that are correlated with distinct functions. Such an arrangement enables the development of synapse specificity to be more readily investigated. Here, we present an overview of the developmental mechanisms that are thought to underlie the formation of synaptic layers in the vertebrate retina, a highly laminated CNS structure. We will contrast the roles of activity-dependent and activity-independent mechanisms in establishing functionally discrete sublaminae in the inner retina, where circuits involving many subtypes of retinal neurons are assembled precisely. In addition, we will discuss new optical imaging approaches for elucidating how retinal synaptic lamination occurs in vivo.
Collapse
Affiliation(s)
- Jeff S Mumm
- Washington University School of Medicine, Department of Anatomy & Neurobiology, 4566 Scott Avenue, Box 8108, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|