1
|
Krüppel S, Khani MH, Schreyer HM, Sridhar S, Ramakrishna V, Zapp SJ, Mietsch M, Karamanlis D, Gollisch T. Applying Super-Resolution and Tomography Concepts to Identify Receptive Field Subunits in the Retina. PLoS Comput Biol 2024; 20:e1012370. [PMID: 39226328 PMCID: PMC11398665 DOI: 10.1371/journal.pcbi.1012370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/13/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024] Open
Abstract
Spatially nonlinear stimulus integration by retinal ganglion cells lies at the heart of various computations performed by the retina. It arises from the nonlinear transmission of signals that ganglion cells receive from bipolar cells, which thereby constitute functional subunits within a ganglion cell's receptive field. Inferring these subunits from recorded ganglion cell activity promises a new avenue for studying the functional architecture of the retina. This calls for efficient methods, which leave sufficient experimental time to leverage the acquired knowledge for further investigating identified subunits. Here, we combine concepts from super-resolution microscopy and computed tomography and introduce super-resolved tomographic reconstruction (STR) as a technique to efficiently stimulate and locate receptive field subunits. Simulations demonstrate that this approach can reliably identify subunits across a wide range of model variations, and application in recordings of primate parasol ganglion cells validates the experimental feasibility. STR can potentially reveal comprehensive subunit layouts within only a few tens of minutes of recording time, making it ideal for online analysis and closed-loop investigations of receptive field substructure in retina recordings.
Collapse
Affiliation(s)
- Steffen Krüppel
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Mohammad H Khani
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Helene M Schreyer
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Shashwat Sridhar
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Varsha Ramakrishna
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Sören J Zapp
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Matthias Mietsch
- German Primate Center, Laboratory Animal Science Unit, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Dimokratis Karamanlis
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Else Kröner Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Zhang L, Cavallini M, Wang J, Xin R, Zhang Q, Feng G, Sanes JR, Peng YR. Evolutionary and developmental specialization of foveal cell types in the marmoset. Proc Natl Acad Sci U S A 2024; 121:e2313820121. [PMID: 38598343 PMCID: PMC11032471 DOI: 10.1073/pnas.2313820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Martina Cavallini
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Junqiang Wang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Ruiqi Xin
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
3
|
Zhang L, Cavallini M, Wang J, Xin R, Zhang Q, Feng G, Sanes JR, Peng YR. Evolutionary and Developmental Specialization of Foveal Cell Types in the Marmoset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570996. [PMID: 38106142 PMCID: PMC10723441 DOI: 10.1101/2023.12.10.570996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high throughput single cell RNA sequencing to profile retinal cells of the common marmoset ( Callithrix jacchus ), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all its foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia, among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for Müller glia in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution. Significance statement The sharpness of our eyesight hinges on a tiny retinal region known as the fovea. The fovea is pivotal for primate vision and is susceptible to diseases like age-related macular degeneration. We studied the fovea in the marmoset-a primate with ancient evolutionary ties. Our data illustrated the cellular and molecular composition of its fovea across different developmental ages. Our findings highlighted a profound cellular consistency among marmosets, humans, and macaques, emphasizing the value of marmosets in visual research and the study of visual diseases.
Collapse
|
4
|
Kim YJ, Packer O, Pollreisz A, Martin PR, Grünert U, Dacey DM. Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina. Proc Natl Acad Sci U S A 2023; 120:e2300545120. [PMID: 37098066 PMCID: PMC10160961 DOI: 10.1073/pnas.2300545120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The Old World macaque monkey and New World common marmoset provide fundamental models for human visual processing, yet the human ancestral lineage diverged from these monkey lineages over 25 Mya. We therefore asked whether fine-scale synaptic wiring in the nervous system is preserved across these three primate families, despite long periods of independent evolution. We applied connectomic electron microscopy to the specialized foveal retina where circuits for highest acuity and color vision reside. Synaptic motifs arising from the cone photoreceptor type sensitive to short (S) wavelengths and associated with "blue-yellow" (S-ON and S-OFF) color-coding circuitry were reconstructed. We found that distinctive circuitry arises from S cones for each of the three species. The S cones contacted neighboring L and M (long- and middle-wavelength sensitive) cones in humans, but such contacts were rare or absent in macaques and marmosets. We discovered a major S-OFF pathway in the human retina and established its absence in marmosets. Further, the S-ON and S-OFF chromatic pathways make excitatory-type synaptic contacts with L and M cone types in humans, but not in macaques or marmosets. Our results predict that early-stage chromatic signals are distinct in the human retina and imply that solving the human connectome at the nanoscale level of synaptic wiring will be critical for fully understanding the neural basis of human color vision.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna1090, Austria
| | - Paul R. Martin
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2000, Australia
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Washington National Primate Research Center, University of Washington, Seattle, WA98195
| |
Collapse
|
5
|
Balaji V, Haverkamp S, Seth PK, Günther A, Mendoza E, Schmidt J, Herrmann M, Pfeiffer LL, Němec P, Scharff C, Mouritsen H, Dedek K. Immunohistochemical characterization of bipolar cells in four distantly related avian species. J Comp Neurol 2023; 531:561-581. [PMID: 36550622 DOI: 10.1002/cne.25443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Visual (and probably also magnetic) signal processing starts at the first synapse, at which photoreceptors contact different types of bipolar cells, thereby feeding information into different processing channels. In the chicken retina, 15 and 22 different bipolar cell types have been identified based on serial electron microscopy and single-cell transcriptomics, respectively. However, immunohistochemical markers for avian bipolar cells were only anecdotally described so far. Here, we systematically tested 12 antibodies for their ability to label individual bipolar cells in the bird retina and compared the eight most suitable antibodies across distantly related species, namely domestic chicken, domestic pigeon, common buzzard, and European robin, and across retinal regions. While two markers (GNB3 and EGFR) labeled specifically ON bipolar cells, most markers labeled in addition to bipolar cells also other cell types in the avian retina. Staining pattern of four markers (CD15, PKCα, PKCβ, secretagogin) was species-specific. Two markers (calbindin and secretagogin) showed a different expression pattern in central and peripheral retina. For the chicken and European robin, we found slightly more ON bipolar cell somata in the inner nuclear layer than OFF bipolar cell somata. In contrast, OFF bipolar cells made more ribbon synapses than ON bipolar cells in the inner plexiform layer of these species. Finally, we also analyzed the photoreceptor connectivity of selected bipolar cell types in the European robin retina. In summary, we provide a catalog of bipolar cell markers for different bird species, which will greatly facilitate analyzing the retinal circuitry of birds on a larger scale.
Collapse
Affiliation(s)
- Vaishnavi Balaji
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Silke Haverkamp
- Department Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Pranav Kumar Seth
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Anja Günther
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Department Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Ezequiel Mendoza
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jessica Schmidt
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maike Herrmann
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Leonie Lovis Pfeiffer
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Pavel Němec
- Department of Zoology, Charles University, Prague, Czech Republic
| | | | - Henrik Mouritsen
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
7
|
Haverkamp S, Mietsch M, Briggman KL. Developmental errors in the common marmoset retina. Front Neuroanat 2022; 16:1000693. [PMID: 36204677 PMCID: PMC9531312 DOI: 10.3389/fnana.2022.1000693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Although retinal organization is remarkably conserved, morphological anomalies can be found to different extents and varieties across animal species with each presenting unique characteristics and patterns of displaced and misplaced neurons. One of the most widely used non-human primates in research, the common marmoset (Callithrix jaccus) could potentially also be of interest for visual research, but is unfortunately not well characterized in this regard. Therefore, the aim of our study was to provide a first time description of structural retinal layering including morphological differences and distinctive features in this species. Retinas from animals (n = 26) of both sexes and different ages were immunostained with cell specific antibodies to label a variety of bipolar, amacrine and ganglion cells. Misplaced ganglion cells with somata in the outermost part of the inner nuclear layer and rod bipolar cells with axon terminals projecting into the outer plexiform layer instead of the inner plexiform layer independent of age or sex of the animals were the most obvious findings, whereas misplaced amacrine cells and misplaced cone bipolar axon terminals occurred to a lesser extent. With this first time description of developmental retinal errors over a wide age range, we provide a basic characterization of the retinal system of the common marmosets, which can be taken into account for future studies in this and other animal species. The finding of misplaced ganglion cells and misplaced bipolar cell axon terminals was not reported before and displays an anatomic variation worthwhile for future analyzes of their physiological and functional impact.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
- *Correspondence: Silke Haverkamp
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Kevin L. Briggman
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
| |
Collapse
|
8
|
Grünert U, Martin PR. Morphology, Molecular Characterization, and Connections of Ganglion Cells in Primate Retina. Annu Rev Vis Sci 2021; 7:73-103. [PMID: 34524877 DOI: 10.1146/annurev-vision-100419-115801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eye sends information about the visual world to the brain on over 20 parallel signal pathways, each specialized to signal features such as spectral reflection (color), edges, and motion of objects in the environment. Each pathway is formed by the axons of a separate type of retinal output neuron (retinal ganglion cell). In this review, we summarize what is known about the excitatory retinal inputs, brain targets, and gene expression patterns of ganglion cells in humans and nonhuman primates. We describe how most ganglion cell types receive their input from only one or two of the 11 types of cone bipolar cell and project selectively to only one or two target regions in the brain. We also highlight how genetic methods are providing tools to characterize ganglion cells and establish cross-species homologies.
Collapse
Affiliation(s)
- Ulrike Grünert
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| | - Paul R Martin
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| |
Collapse
|
9
|
Haverkamp S, Albert L, Balaji V, Němec P, Dedek K. Expression of cell markers and transcription factors in the avian retina compared with that in the marmoset retina. J Comp Neurol 2021; 529:3171-3193. [PMID: 33834511 DOI: 10.1002/cne.25154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
In the vertebrate retina, amacrine and ganglion cells represent the most diverse cell classes. They can be classified into different cell types by several features, such as morphology, light responses, and gene expression profile. Although birds possess high visual acuity (similar to primates that we used here for comparison) and tetrachromatic color vision, data on the expression of transcription factors in retinal ganglion cells of birds are largely missing. In this study, we tested various transcription factors, known to label subpopulations of cells in mammalian retinae, in two avian species: the common buzzard (Buteo buteo), a raptor with exceptional acuity, and the domestic pigeon (Columba livia domestica), a good navigator and widely used model for visual cognition. Staining for the transcription factors Foxp2, Satb1 and Satb2 labeled most ganglion cells in the avian ganglion cell layer. CtBP2 was established as marker for displaced amacrine cells, which allowed us to reliably distinguish ganglion cells from displaced amacrine cells and assess their densities in buzzard and pigeon. When we additionally compared the temporal and central fovea of the buzzard with the fovea of primates, we found that the cellular organization in the pits was different in primates and raptors. In summary, we demonstrate that the expression of transcription factors is a defining feature of cell types not only in the retina of mammals but also in the retina of birds. The markers, which we have established, may provide useful tools for more detailed studies on the retinal circuitry of these highly visual animals.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Computational Neuroethology, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - László Albert
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Vaishnavi Balaji
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Pavel Němec
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Microfluidic and Microscale Assays to Examine Regenerative Strategies in the Neuro Retina. MICROMACHINES 2020; 11:mi11121089. [PMID: 33316971 PMCID: PMC7763644 DOI: 10.3390/mi11121089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium.
Collapse
|
11
|
Masri RA, Grünert U, Martin PR. Analysis of Parvocellular and Magnocellular Visual Pathways in Human Retina. J Neurosci 2020; 40:8132-8148. [PMID: 33009001 PMCID: PMC7574660 DOI: 10.1523/jneurosci.1671-20.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Two main subcortical pathways serving conscious visual perception are the midget-parvocellular (P), and the parasol-magnocellular (M) pathways. It is generally accepted that the P pathway serves red-green color vision, but the relative contribution of P and M pathways to spatial vision is a long-standing and unresolved issue. Here, we mapped the spatial sampling properties of P and M pathways across the human retina. Data were obtained from immunolabeled vertical sections of six postmortem male and female human donor retinas and imaged using high-resolution microscopy. Cone photoreceptors, OFF-midget bipolar cells (P pathway), OFF-diffuse bipolar (DB) types DB3a and DB3b (M pathway), and ganglion cells were counted along the temporal horizontal meridian, taking foveal spatial distortions (postreceptoral displacements) into account. We found that the density of OFF-midget bipolar and OFF-midget ganglion cells can support one-to-one connections to 1.05-mm (3.6°) eccentricity. One-to-one connections of cones to OFF-midget bipolar cells are present to at least 10-mm (35°) eccentricity. The OFF-midget ganglion cell array acuity is well-matched to photopic spatial acuity measures throughout the central 35°, but the OFF-parasol array acuity is well below photopic spatial acuity, supporting the view that the P pathway underlies high-acuity spatial vision. Outside the fovea, array acuity of both OFF-midget and OFF-DB cells exceeds psychophysical measures of photopic spatial acuity. We conclude that parasol and midget pathway bipolar cells deliver high-acuity spatial signals to the inner plexiform layer, but outside the fovea, this spatial resolution is lost at the level of ganglion cells.SIGNIFICANCE STATEMENT We make accurate maps of the spatial density and distribution of neurons in the human retina to aid in understanding human spatial vision, interpretation of diagnostic tests, and the implementation of therapies for retinal diseases. Here, we map neurons involved with the midget-parvocellular (P pathway) and parasol-magnocellular (M pathway) through human retina. We find that P-type bipolar cells outnumber M-type bipolar cells at all eccentricities. We show that cone photoreceptors and P-type pathway bipolar cells are tightly connected throughout the retina, but that spatial resolution is lost at the level of the ganglion cells. Overall, the results support the view that the P pathway is specialized to serve both high acuity vision and red-green color vision.
Collapse
Affiliation(s)
- Rania A Masri
- Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales 2000, Australia
- Australian Research Council Center of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales 2000, Australia
| | - Ulrike Grünert
- Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales 2000, Australia
- Australian Research Council Center of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales 2000, Australia
| | - Paul R Martin
- Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales 2000, Australia
- Australian Research Council Center of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales 2000, Australia
| |
Collapse
|
12
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
13
|
Abstract
In primate retina, the calcium-binding protein calbindin is expressed by a variety of neurons including cones, bipolar cells, and amacrine cells but it is not known which type(s) of cell express calbindin in the ganglion cell layer. The present study aimed to identify calbindin-positive cell type(s) in the amacrine and ganglion cell layer of human and marmoset retina using immunohistochemical markers for ganglion cells (RBPMS and melanopsin) and cholinergic amacrine (ChAT) cells. Intracellular injections following immunolabeling was used to reveal the morphology of calbindin-positive cells. In human retina, calbindin-labeled cells in the ganglion cell layer were identified as inner and outer stratifying melanopsin-expressing ganglion cells, and ON ChAT (starburst amacrine) cells. In marmoset, calbindin immunoreactivity in the ganglion cell layer was absent from ganglion cells but present in ON ChAT cells. In the inner nuclear layer of human retina, calbindin was found in melanopsin-expressing displaced ganglion cells and in at least two populations of amacrine cells including about a quarter of the OFF ChAT cells. In marmoset, a very low proportion of OFF ChAT cells was calbindin-positive. These results suggest that in both species there may be two types of OFF ChAT cells. Consistent with previous studies, the ratio of ON to OFF ChAT cells was about 70 to 30 in human and 30 to 70 in marmoset. Our results show that there are species-related differences between different primates with respect to the expression of calbindin.
Collapse
|
14
|
Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina. Cell 2019; 176:1222-1237.e22. [PMID: 30712875 DOI: 10.1016/j.cell.2019.01.004] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 12/31/2018] [Indexed: 01/03/2023]
Abstract
High-acuity vision in primates, including humans, is mediated by a small central retinal region called the fovea. As more accessible organisms lack a fovea, its specialized function and its dysfunction in ocular diseases remain poorly understood. We used 165,000 single-cell RNA-seq profiles to generate comprehensive cellular taxonomies of macaque fovea and peripheral retina. More than 80% of >60 cell types match between the two regions but exhibit substantial differences in proportions and gene expression, some of which we relate to functional differences. Comparison of macaque retinal types with those of mice reveals that interneuron types are tightly conserved. In contrast, projection neuron types and programs diverge, despite exhibiting conserved transcription factor codes. Key macaque types are conserved in humans, allowing mapping of cell-type and region-specific expression of >190 genes associated with 7 human retinal diseases. Our work provides a framework for comparative single-cell analysis across tissue regions and species.
Collapse
|
15
|
Warwick RA, Kaushansky N, Sarid N, Golan A, Rivlin-Etzion M. Inhomogeneous Encoding of the Visual Field in the Mouse Retina. Curr Biol 2018; 28:655-665.e3. [PMID: 29456141 DOI: 10.1016/j.cub.2018.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/12/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022]
Abstract
Stimulus characteristics of the mouse's visual field differ above and below the skyline. Here, we show for the first time that retinal ganglion cells (RGCs), the output neurons of the retina, gradually change their functional properties along the ventral-dorsal axis to allow better representation of the different stimulus characteristics. We conducted two-photon targeted recordings of transient-Offα-RGCs and found that they gradually became more sustained along the ventral-dorsal axis, revealing >5-fold-longer duration responses in the dorsal retina. Using voltage-clamp recordings, pharmacology, and genetic manipulation, we demonstrated that the primary rod pathway underlies this variance. Our findings challenge the current belief that RGCs of the same subtype exhibit the same light responses, regardless of retinal location, and suggest that networks underlying RGC responses may change with retinal location to enable optimized sampling of the visual image.
Collapse
Affiliation(s)
- Rebekah A Warwick
- Department of Neurobiology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Nathali Kaushansky
- Department of Neurobiology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Nimrod Sarid
- Department of Neurobiology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Amir Golan
- Department of Neurobiology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Michal Rivlin-Etzion
- Department of Neurobiology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| |
Collapse
|
16
|
Masri RA, Percival KA, Koizumi A, Martin PR, Grünert U. Survey of retinal ganglion cell morphology in marmoset. J Comp Neurol 2017; 527:236-258. [PMID: 27997691 DOI: 10.1002/cne.24157] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
In primate retina, the midget, parasol, and small bistratified cell populations form the large majority of ganglion cells. In addition, there is a variety of low-density wide-field ganglion cell types that are less well characterized. Here we studied retinal ganglion cells in the common marmoset, Callithrix jacchus, using particle-mediated gene transfer. Ganglion cells were transfected with an expression plasmid for the postsynaptic density 95-green fluorescent protein. The retinas were processed with established immunohistochemical markers for bipolar and/or amacrine cells to determine ganglion cell dendritic stratification. In total over 500 ganglion cells were classified based on their dendritic field size, morphology, and stratification in the inner plexiform layer. Over 17 types were distinguished, including midget, parasol, broad thorny, small bistratified, large bistratified, recursive bistratified, recursive monostratified, narrow thorny, smooth monostratified, large sparse, giant sparse (melanopsin) ganglion cells, and a group that may contain several as yet uncharacterized types. Assuming each characterized type forms a hexagonal mosaic, the midget and parasol cells account for over 80% of all ganglion cells in the central retina but only ∼50% of cells in the peripheral (>2 mm) retina. We conclude that the fovea is dominated by midget and parasol cells, but outside the fovea the ganglion cell diversity in marmoset is likely as great as that reported for nonprimate retinas. Taken together, the ganglion cell types in marmoset retina resemble those described previously in macaque retina with respect to morphology, stratification, and change in proportion across the retina.
Collapse
Affiliation(s)
- Rania A Masri
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia
| | - Kumiko A Percival
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia
| | - Amane Koizumi
- National Institutes of Natural Sciences, Tokyo, Japan
| | - Paul R Martin
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Save Sight Institute and Department of Clinical Ophthalmology, The University of Sydney, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Assessing the Contribution of the Oscillatory Potentials to the Genesis of the Photopic ERG with the Discrete Wavelet Transform. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2790194. [PMID: 28101507 PMCID: PMC5217158 DOI: 10.1155/2016/2790194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022]
Abstract
The electroretinogram (ERG) is composed of slow (i.e., a-, b-waves) and fast (i.e., oscillatory potentials: OPs) components. OPs have been shown to be preferably affected in some diseases (such as diabetic retinopathy), while the a- and b-waves remain relatively intact. The purpose of this study was to determine the contribution of OPs to the building of the ERG and to examine whether a signal mostly composed of OPs could also exist. DWT analyses were performed on photopic ERGs (flash intensities: −2.23 to 2.64 log cd·s·m−2 in 21 steps) obtained from normal subjects (n = 40) and patients (n = 21) affected with a retinopathy. In controls, the %OP value (i.e., OPs energy/ERG energy) is stimulus- and amplitude-independent (range: 56.6–61.6%; CV = 6.3%). In contrast, the %OPs measured from the ERGs of our patients varied significantly more (range: 35.4%–89.2%; p < 0.05) depending on the pathology, some presenting with ERGs that are almost solely composed of OPs. In conclusion, patients may present with a wide range of %OP values. Findings herein also support the hypothesis that, in certain conditions, the photopic ERG can be mostly composed of high-frequency components.
Collapse
|
18
|
Lu Q, Ganjawala TH, Ivanova E, Cheng JG, Troilo D, Pan ZH. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther 2016; 23:680-9. [PMID: 27115727 PMCID: PMC4863234 DOI: 10.1038/gt.2016.42] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy. For many of these applications, achieving cell type-specific targeting and high transduction efficiency is desired. Recently, there has been increasing interest in AAV-mediated gene targeting to specific retinal bipolar cell types. A 200-bp enhancer in combination with a basal SV40 promoter has been commonly used to target transgenes into ON-type bipolar cells. In the current study, we searched for additional cis-regulatory elements in the mGluR6 gene for improving AAV-mediated transduction efficiency into retinal bipolar cells. Our results showed that the combination of the endogenous mGluR6 promoter with additional enhancers in the introns of the mGluR6 gene markedly enhanced AAV transduction efficiency as well as made the targeting more selective for rod bipolar cells in mice. Furthermore, the AAV vectors with the improved promoter could target to ON bipolar cells with robust transduction efficiency in the parafovea and the far peripheral retina of marmoset monkeys. The improved mGluR6 promoter constructs could provide a valuable tool for genetic manipulation in rod bipolar cells in mice and facilitate clinical applications for ON bipolar cell-based gene therapies.
Collapse
Affiliation(s)
- Q Lu
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - TH Ganjawala
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - E Ivanova
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY
| | - JG Cheng
- Neuroscience Center, University of North Carolina, Chapel Hill, NC
| | - D Troilo
- State University of New York, College of Optometry, New York, NY
| | - Z-H Pan
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Dept. of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
19
|
Jin K, Xiao D, Andersen B, Xiang M. Lmo4 and Other LIM domain only factors are necessary and sufficient for multiple retinal cell type development. Dev Neurobiol 2015; 76:900-15. [PMID: 26579872 DOI: 10.1002/dneu.22365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/01/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022]
Abstract
Understanding the molecular basis by which distinct cell types are specified is a central issue in retinogenesis and retinal disease development. Here we examined the role of LIM domain only 4 (Lmo4) in retinal development using both gain-of-function and loss-of-function approaches. By immunostaining, Lmo4 was found to be expressed in mouse retina from E10.5 to mature stages. Retroviral delivery of Lmo4 into retinal progenitor cells could promote the amacrine, bipolar and Müller cell fates at the expense of photoreceptors. It also inhibited the fate of early-born retinal ganglion cells. Using a dominant-negative form of Lmo4 which suppresses transcriptional activities of all LIM domain only factors, we demonstrated that LIM domain only factors are both necessary and sufficient for promoting amacrine and bipolar cell development, but not for the differentiation of ganglion, horizontal, Müller, or photoreceptor cells. Taken together, our study uncovers multiple roles of Lmo4 during retinal development and demonstrates the importance of LIM domain only factors in ensuring proper retinal cell specification and differentiation. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 900-915, 2016.
Collapse
Affiliation(s)
- Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Bogi Andersen
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, Irvine, California, 92697-4030.,Department of Biological Chemistry, Division of Endocrinology and Metabolism, University of California, Irvine, California, 92697-4030
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| |
Collapse
|
20
|
Masri RA, Percival KA, Koizumi A, Martin PR, Grünert U. Connectivity between the OFF bipolar type DB3a and six types of ganglion cell in the marmoset retina. J Comp Neurol 2015; 524:1839-58. [PMID: 26559914 DOI: 10.1002/cne.23925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/12/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Abstract
Parallel visual pathways originate at the first synapse in the retina, where cones make connections with cone bipolar cells that in turn contact ganglion cells. There are more ganglion cell types than bipolar types, suggesting that there must be divergence from bipolar to ganglion cells. Here we analyze the contacts between an OFF bipolar type (DB3a) and six ganglion cell types in the retina of the marmoset monkey (Callithrix jacchus). Ganglion cells were transfected via particle-mediated gene transfer of an expression plasmid for the postsynaptic density 95-green fluorescent protein (PSD95-GFP), and DB3a cells were labeled via immunohistochemistry. Ganglion cell types that fully or partially costratified with DB3a cells included OFF parasol, OFF midget, broad thorny, recursive bistratified, small bistratified, and large bistratified cells. On average, the number of DB3a contacts to parasol cells (18 contacts per axon terminal) is higher than that to other ganglion cell types (between four and seven contacts). We estimate that the DB3a output to OFF parasol cells accounts for at least 30% of the total DB3a output. Furthermore, we found that OFF parasol cells receive approximately 20% of their total bipolar input from DB3a cells, suggesting that other diffuse bipolar types also provide input to OFF parasol cells. We conclude that DB3a cells preferentially contact OFF parasol cells but also provide input to other ganglion cell types.
Collapse
Affiliation(s)
- Rania A Masri
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Kumiko A Percival
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Amane Koizumi
- National Institutes of Natural Sciences, Tokyo, Japan
| | - Paul R Martin
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2000, Australia.,School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| |
Collapse
|
21
|
Chidlow G, Wood JPM, Knoops B, Casson RJ. Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct 2015; 221:3903-3925. [PMID: 26501408 PMCID: PMC5065902 DOI: 10.1007/s00429-015-1135-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/13/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress is implicated in various pathological conditions of the retina and optic nerve. Peroxiredoxins (Prdxs) comprise a recently characterized family of antioxidant enzymes. To date, little information exists regarding the distribution of Prdxs in the eye. Herein, we employed a combination of qRT-PCR, immunohistochemistry and Western blotting to determine the level of expression and distribution of the six Prdx isoforms in the retina and optic nerve of the rat. In addition, we performed some parallel analyses on the common marmoset (Callithrix Jacchus). In the rat, all of the Prdx transcripts were expressed in relatively high amounts in both retina and optic nerve, with abundances ranging from approximately 3–50 % of the level of the housekeeping gene cyclophilin. With regard to protein expression, each isoform was detected in the retina and optic nerve by either Western blotting and/or immunohistochemistry. Excepting Prdx4, there was a good correspondence between the rodent and primate results. In the retina, Prdx1 and Prdx2 were principally localized to neurons in the inner nuclear layer and cone photoreceptors, Prdx3 and Prdx5 displayed characteristic mitochondrial immunolabeling, while Prdx6 was associated with astrocytes and Müller cells. In the optic nerve, Prdx1 was robustly expressed by oligodendrocytes, Prdx3 and Prdx5 were observed in axons, and Prdx6 was restricted to astrocytes. The present findings augment our understanding of the distribution and expression of the Prdxs in the retina and optic nerve of rodents and primates and lay the foundation for subsequent analysis of their involvement in relevant blinding diseases.
Collapse
Affiliation(s)
- Glyn Chidlow
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Rd, Adelaide, SA, 5000, Australia. .,Department of Ophthalmology and Visual Sciences, University of Adelaide, Frome Rd, Adelaide, SA, 5000, Australia.
| | - John P M Wood
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Rd, Adelaide, SA, 5000, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Frome Rd, Adelaide, SA, 5000, Australia
| | - Bernard Knoops
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Robert J Casson
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Rd, Adelaide, SA, 5000, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Frome Rd, Adelaide, SA, 5000, Australia
| |
Collapse
|
22
|
Butz E, Peichl L, Müller B. Cone bipolar cells in the retina of the microbat Carollia perspicillata. J Comp Neurol 2015; 523:963-81. [PMID: 25521284 DOI: 10.1002/cne.23726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 11/22/2014] [Accepted: 12/03/2014] [Indexed: 11/08/2022]
Abstract
We studied the retinal cone bipolar cells of Carollia perspicillata, a microchiropteran bat of the phyllostomid family. Microchiroptera are strongly nocturnal, with small eyes and rod-dominated retinae. However, they also possess a significant cone population (2-4%) comprising two spectral types, which are hence the basis for daylight and color vision. We used antibodies against the calcium-binding protein recoverin and the carbohydrate epitope 15 (CD15) as reliable markers for certain cone bipolar cells. Dye injections of recoverin- or CD15-prelabeled cone bipolar cells in vertical slices revealed the morphology of the axon terminal system of individual bipolar cells. Seven distinct cone bipolar cell types were identified. They differed in the morphology and stratification level of their axon terminal system in the inner plexiform layer and in immunoreactivity for recoverin and/or CD15. Additional immunocytochemical markers were used to assess the functional ON/OFF subdivision of the inner plexiform layer. In line with the extended thickness of the ON sublayer of the inner plexiform layer in the microbat retina, more ON than OFF cone bipolar cell types were found, namely, four versus three. Most likely, in the bats' predominantly dark environment, ON signals have greater importance for contrast perception. We conclude that the microbat retina conforms to the general mammalian blueprint, in which light signals of intensities above rod sensitivity are detected by cones and transmitted to various types of ON and OFF cone bipolar cells.
Collapse
Affiliation(s)
- Elisabeth Butz
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | | | | |
Collapse
|
23
|
Kung F, Wang J, Perez-Castillejos R, Townes-Anderson E. Position along the nasal/temporal plane affects synaptic development by adult photoreceptors, revealed by micropatterning. Integr Biol (Camb) 2015; 7:313-23. [PMID: 25616113 DOI: 10.1039/c4ib00213j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In retinal degeneration, death of photoreceptors causes blindness. Repair of the retina by transplanting photoreceptors has resulted in limited functional connectivity between transplanted and host neurons. We hypothesize that absence of appropriate biological cues, specifically positional (retinotopographic) cues, reduces synaptogenesis. Here we use micropatterning to test whether regional origin affects the early synaptic development of photoreceptors. Right and left retinas from salamanders were first labelled with dextran tetramethyl-rhodamine and fluorescein, respectively, bisected into nasal (N)/temporal (T) or dorsal (D)/ventral (V) halves, individually dissociated, mixed, and cultured for 1 week. Origin of cells was identified by the fluorescent label. Interactions between photoreceptors and neighboring (target) cells were assessed by the number of neuritic contacts with a presynaptic swelling (varicosity). Randomly-plated photoreceptors showed no preference for cellular origin, likely due to multiple potential interactions available to each cell. To reduce cell-cell interactions, culture substrate was patterned using a microfluidic device with 10 μm-wide channels separated by 200 μm, thus allowing only 1-2 targets per photoreceptor. In patterned cultures, 36.89% of N rod cells contacted T targets but only 27.42% of N rod cells contacted N targets; similarly 35.05% of T rod cells contacted N cells but only 17.08% contacted T cells. Thus, opposite regions were more permissive of contact. However, neither cone nor D/V rod cells showed preferences for positional origin of targets. In conclusion, micropatterning demonstrated that neuritic differentiation by rod cells depends on retinotopographic cues along the nasal/temporal plane, suggesting that transplanting rod cells of known positional origin will increase transplant success.
Collapse
Affiliation(s)
- Frank Kung
- Rutgers Biomedical Health and Sciences, Graduate School of Biomedical Sciences, New Jersey Institute of Technology, Joint Program in Biomedical Engineering, 185 South Orange Ave, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
24
|
Muniz JAPC, de Athaide LM, Gomes BD, Finlay BL, Silveira LCDL. Ganglion cell and displaced amacrine cell density distribution in the retina of the howler monkey (Alouatta caraya). PLoS One 2014; 9:e115291. [PMID: 25546077 PMCID: PMC4278902 DOI: 10.1371/journal.pone.0115291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/20/2014] [Indexed: 01/20/2023] Open
Abstract
Unlike all other New World (platyrrine) monkeys, both male and female howler monkeys (Alouatta sp.) are obligatory trichromats. In all other platyrrines, only females can be trichromats, while males are always dichromats, as determined by multiple behavioral, electrophysiological, and genetic studies. In addition to obligatory trichromacy, Alouatta has an unusual fovea, with substantially higher peak cone density in the foveal pit than every other diurnal anthropoid monkey (both platyrrhines and catarrhines) and great ape yet examined, including humans. In addition to documenting the general organization of the retinal ganglion cell layer in Alouatta, the distribution of cones is compared to retinal ganglion cells, to explore possible relationships between their atypical trichromacy and foveal specialization. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from five Alouatta caraya. Ganglion cell density peaked at 0.5 mm between the fovea and optic nerve head, reaching 40,700-45,200 cells/mm2. Displaced amacrine cell density distribution peaked between 0.5-1.75 mm from the fovea, reaching mean values between 2,050-3,100 cells/mm2. The mean number of ganglion cells was 1,133,000±79,000 cells and the mean number of displaced amacrine cells was 537,000±61,800 cells, in retinas of mean area 641±62 mm2. Ganglion cell and displaced amacrine cell density distribution in the Alouatta retina was consistent with that observed among several species of diurnal Anthropoidea, both platyrrhines and catarrhines. The principal alteration in the Alouatta retina appears not to be in the number of any retinal cell class, but rather a marked gradient in cone density within the fovea, which could potentially support high chromatic acuity in a restricted central region.
Collapse
Affiliation(s)
| | | | - Bruno Duarte Gomes
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Barbara L. Finlay
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - Luiz Carlos de Lima Silveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
25
|
Silveira LCL, Saito CA, da Silva Filho M, Kremers J, Bowmaker JK, Lee BB. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology. PLoS One 2014; 9:e113321. [PMID: 25405863 PMCID: PMC4236167 DOI: 10.1371/journal.pone.0113321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.
Collapse
Affiliation(s)
- Luiz Carlos L. Silveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil
- * E-mail:
| | - Cézar A. Saito
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - James K. Bowmaker
- Division of Visual Science, Institute of Ophthalmology, University College London, London, England, United Kingdom
| | - Barry B. Lee
- State College of Optometry, State University of New York, New York, New York, United States of America
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
26
|
Weltzien F, Percival KA, Martin PR, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol 2014; 523:313-34. [DOI: 10.1002/cne.23683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Felix Weltzien
- Department of Ophthalmology and Save Sight Institute; The University of Sydney; Sydney New South Wales 2000 Australia
| | - Kumiko A. Percival
- Department of Ophthalmology and Save Sight Institute; The University of Sydney; Sydney New South Wales 2000 Australia
| | - Paul R. Martin
- Department of Ophthalmology and Save Sight Institute; The University of Sydney; Sydney New South Wales 2000 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function; The University of Sydney; Sydney New South Wales 2000 Australia
- School of Medical Sciences, The University of Sydney; Sydney New South Wales 2000 Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute; The University of Sydney; Sydney New South Wales 2000 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function; The University of Sydney; Sydney New South Wales 2000 Australia
- School of Medical Sciences, The University of Sydney; Sydney New South Wales 2000 Australia
| |
Collapse
|
27
|
Solomon SG, Rosa MGP. A simpler primate brain: the visual system of the marmoset monkey. Front Neural Circuits 2014; 8:96. [PMID: 25152716 PMCID: PMC4126041 DOI: 10.3389/fncir.2014.00096] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/22/2014] [Indexed: 12/15/2022] Open
Abstract
Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans.
Collapse
Affiliation(s)
- Samuel G Solomon
- Department of Experimental Psychology, University College London London, UK
| | - Marcello G P Rosa
- Department of Physiology, Monash University, Clayton, VIC Australia ; Monash Vision Group, Monash University, Clayton, VIC Australia ; Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC Australia
| |
Collapse
|
28
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. J Neurosci 2014; 34:3821-5. [PMID: 24623761 DOI: 10.1523/jneurosci.4491-13.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three well characterized pathways in primate vision (midget-parvocellular, parasol-magnocellular, bistratified-koniocellular) have been traced from the first synapse in the retina, through the visual thalamus (lateral geniculate nucleus, LGN), to the visual cortex. Here we identify a pathway from the first synapse in the retina to koniocellular layer K1 in marmoset monkeys (Callithrix jacchus). Particle-mediated gene transfer of an expression plasmid for the postsynaptic density 95-green fluorescent protein (PSD95-GFP) was used to label excitatory synapses on retinal ganglion cells and combined with immunofluorescence to identify the presynaptic bipolar cells. We found that axon terminals of one type of diffuse bipolar cell (DB6) provide dominant synaptic input to the dendrites of narrow thorny ganglion cells. Retrograde tracer injections into the LGN and photofilling of retinal ganglion cells showed that narrow thorny cells were preferentially labeled when koniocellular layer K1 was targeted. Layer K1 contains cells with high sensitivity for rapid movement, and layer K1 sends projections to association visual areas as well as to primary visual cortex. We hypothesize that the DB6-narrow thorny-koniocellular pathway contributes to residual visual functions ("blindsight") that survive injury to primary visual cortex in adult or early life.
Collapse
|
30
|
Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong ROL. Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr Biol 2014; 24:310-5. [PMID: 24440397 DOI: 10.1016/j.cub.2013.12.020] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
The distributions of neurons in sensory circuits display ordered spatial patterns arranged to enhance or encode specific regions or features of the external environment. Indeed, visual space is not sampled uniformly across the vertebrate retina. Retinal ganglion cell (RGC) density increases and dendritic arbor size decreases toward retinal locations with higher sampling frequency, such as the fovea in primates and area centralis in carnivores [1]. In these locations, higher acuity at the level of individual cells is obtained because the receptive field center of a RGC corresponds approximately to the spatial extent of its dendritic arbor [2, 3]. For most species, structurally and functionally distinct RGC types appear to have similar topographies, collectively scaling their cell densities and arbor sizes toward the same retinal location [4]. Thus, visual space is represented across the retina in parallel by multiple distinct circuits [5]. In contrast, we find a population of mouse RGCs, known as alpha or alpha-like [6], that displays a nasal-to-temporal gradient in cell density, size, and receptive fields, which facilitates enhanced visual sampling in frontal visual fields. The distribution of alpha-like RGCs contrasts with other known mouse RGC types and suggests that, unlike most mammals, RGC topographies in mice are arranged to sample space differentially.
Collapse
Affiliation(s)
- Adam Bleckert
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Gregory W Schwartz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Maxwell H Turner
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
31
|
Weltzien F, Dimarco S, Protti DA, Daraio T, Martin PR, Grünert U. Characterization of secretagogin-immunoreactive amacrine cells in marmoset retina. J Comp Neurol 2013; 522:435-55. [DOI: 10.1002/cne.23420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Weltzien
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
| | | | | | - Teresa Daraio
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
| | - Paul R. Martin
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
- School of Medical Sciences; University of Sydney; Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
| |
Collapse
|
32
|
Retrograde transneuronal degeneration in the retina and lateral geniculate nucleus of the V1-lesioned marmoset monkey. Brain Struct Funct 2013; 220:351-60. [DOI: 10.1007/s00429-013-0659-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
33
|
Abstract
Color information is encoded by two parallel pathways in the mammalian retina. One pathway compares signals from long- and middle-wavelength sensitive cones and generates red-green opponency. The other compares signals from short- and middle-/long-wavelength sensitive cones and generates blue-green (yellow) opponency. Whereas both pathways operate in trichromatic primates (including humans), the fundamental, phylogenetically ancient color mechanism shared among most mammals is blue-green opponency. In this review, we summarize the current understanding of how signals from short-wavelength sensitive cones are processed in the primate and nonprimate mammalian retina, with a focus on the inner plexiform layer where bipolar, amacrine, and ganglion cell processes interact to facilitate the generation of blue-green opponency.
Collapse
|
34
|
Chaplin TA, Yu HH, Rosa MGP. Representation of the visual field in the primary visual area of the marmoset monkey: magnification factors, point-image size, and proportionality to retinal ganglion cell density. J Comp Neurol 2013; 521:1001-19. [PMID: 22911425 DOI: 10.1002/cne.23215] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/25/2012] [Accepted: 08/14/2012] [Indexed: 11/11/2022]
Abstract
The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (M(A) ) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between M(A) and polar angle. Despite individual variation in the shape of V1, the relationship between M(A) and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field.
Collapse
Affiliation(s)
- Tristan A Chaplin
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | | | | |
Collapse
|
35
|
Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis Neurosci 2013; 31:139-51. [PMID: 23895762 DOI: 10.1017/s0952523813000230] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anatomical and physiological approaches are beginning to reveal the synaptic origins of parallel ON- and OFF-pathway retinal circuits for the transmission of short (S-) wavelength sensitive cone signals in the primate retina. Anatomical data suggest that synaptic output from S-cones is largely segregated; central elements of synaptic triads arise almost exclusively from the "blue-cone" bipolar cell, a presumed ON bipolar, whereas triad-associated contacts derive primarily from the "flat" midget bipolar cell, a hyperpolarizing, OFF bipolar. Similarly, horizontal cell connectivity is also segregated, with only the H2 cell-type receiving numerous contacts from S-cones. Negative feedback from long (L-) and middle (M-) wavelength sensitive cones via the H2 horizontal cells elicits an antagonistic surround in S-cones demonstrating that S versus L + M or "blue-yellow" opponency is first established in the S-cone. However, the S-cone output utilizes distinct synaptic mechanisms to create color opponency at the ganglion cell level. The blue-cone bipolar cell is presynaptic to the small bistratified, "blue-ON" ganglion cell. S versus L + M cone opponency arises postsynaptically by converging S-ON and LM-OFF excitatory bipolar inputs to the ganglion cell's bistratified dendritic tree. The common L + M cone surrounds of the parallel S-ON and LM-OFF cone bipolar inputs appear to cancel resulting in "blue-yellow" antagonism without center-surround spatial opponency. By contrast, in midget ganglion cells, opponency arises by the differential weighting of cone inputs to the receptive field center versus surround. In the macula, the "private-line" connection from a midget ganglion cell to a single cone predicts that S versus L + M opponency is transmitted from the S-cone to the S-OFF midget bipolar and ganglion cell. Beyond the macula, OFF-midget ganglion cell dendritic trees enlarge and collect additional input from multiple L and M cones. Thus S-OFF opponency via the midget pathway would be expected to become more complex in the near retinal periphery as L and/or M and S cone inputs sum to the receptive field center. An important goal for further investigation will be to explore the hypothesis that distinct bistratified S-ON versus midget S-OFF retinal circuits are the substrates for human psychophysical detection mechanisms attributed to S-ON versus S-OFF perceptual channels.
Collapse
|
36
|
Receptive field properties of color opponent neurons in the cat lateral geniculate nucleus. J Neurosci 2013; 33:1451-61. [PMID: 23345221 DOI: 10.1523/jneurosci.2844-12.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most nonprimate mammals possess dichromatic ("red-green color blind") color vision based on short-wavelength-sensitive (S) and medium/long-wavelength-sensitive (ML) cone photoreceptor classes. However, the neural pathways carrying signals underlying the primitive "blue-yellow" axis of color vision in nonprimate mammals are largely unexplored. Here, we have characterized a population of color opponent (blue-ON) cells in recordings from the dorsal lateral geniculate nucleus of anesthetized cats. We found five points of similarity to previous descriptions of primate blue-ON cells. First, cat blue-ON cells receive ON-type excitation from S-cones, and OFF-type excitation from ML-cones. We found no blue-OFF cells. Second, the S- and ML-cone-driven receptive field regions of cat blue-ON cells are closely matched in size, consistent with specialization for detecting color contrast. Third, the receptive field center diameter of cat blue-ON cells is approximately three times larger than the center diameter of non-color opponent receptive fields at any eccentricity. Fourth, S- and ML-cones contribute weak surround inhibition to cat blue-ON cells. These data show that blue-ON receptive fields in cats are functionally very similar to blue-ON type receptive fields previously described in macaque and marmoset monkeys. Finally, cat blue-ON cells are found in the same layers as W-cells, which are thought to be homologous to the primate koniocellular system. Based on these data, we suggest that cat blue-ON cells are part of a "blue-yellow" color opponent system that is the evolutionary homolog of the blue-ON division of the koniocellular pathway in primates.
Collapse
|
37
|
Percival KA, Martin PR, Grünert U. Organisation of koniocellular-projecting ganglion cells and diffuse bipolar cells in the primate fovea. Eur J Neurosci 2013; 37:1072-89. [DOI: 10.1111/ejn.12117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 11/28/2022]
|
38
|
Light AC, Zhu Y, Shi J, Saszik S, Lindstrom S, Davidson L, Li X, Chiodo VA, Hauswirth WW, Li W, DeVries SH. Organizational motifs for ground squirrel cone bipolar cells. J Comp Neurol 2012; 520:2864-87. [PMID: 22778006 DOI: 10.1002/cne.23068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In daylight vision, parallel processing starts at the cone synapse. Cone signals flow to On and Off bipolar cells, which are further divided into types according to morphology, immunocytochemistry, and function. The axons of the bipolar cell types stratify at different levels in the inner plexiform layer (IPL) and can interact with costratifying amacrine and ganglion cells. These interactions endow the ganglion cell types with unique functional properties. The wiring that underlies the interactions among bipolar, amacrine, and ganglion cells is poorly understood. It may be easier to elucidate this wiring if organizational rules can be established. We identify 13 types of cone bipolar cells in the ground squirrel, 11 of which contact contiguous cones, with the possible exception of short-wavelength-sensitive cones. Cells were identified by antibody labeling, tracer filling, and Golgi-like filling following transduction with an adeno-associated virus encoding for green fluorescent protein. The 11 bipolar cell types displayed two organizational patterns. In the first pattern, eight to 10 of the 11 types came in pairs with partially overlapping axonal stratification. Pairs shared morphological, immunocytochemical, and functional properties. The existence of similar pairs is a new motif that might have implications for how signals first diverge from a cone to bipolar cells and then reconverge onto a costratifying ganglion cell. The second pattern is a mirror symmetric organization about the middle of the IPL involving at least seven bipolar cell types. This anatomical symmetry may be associated with a functional symmetry in On and Off ganglion cell responses.
Collapse
Affiliation(s)
- Adam C Light
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Percival KA, Martin PR, Grünert U. Synaptic inputs to two types of koniocellular pathway ganglion cells in marmoset retina. J Comp Neurol 2011; 519:2135-53. [PMID: 21452222 DOI: 10.1002/cne.22586] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The retinal connectivity of the diverse group of cells contributing to koniocellular visual pathways (widefield ganglion cells) is largely unexplored. Here we examined the synaptic inputs onto two koniocellular-projecting ganglion cell types named large sparse and broad thorny cells. Ganglion cells were labeled by retrograde tracer injections targeted to koniocellular layer K3 in the lateral geniculate nucleus in marmosets (Callithrix jacchus) and subsequently photofilled. Retinal preparations were processed with antibodies against the C-terminal binding protein 2, the AMPA receptor subunit GluR4, and against CD15 to identify bipolar (excitatory) and/or antibodies against gephyrin to identify amacrine (inhibitory) input. Large sparse cells are narrowly stratified close to the ganglion cell layer. Broad thorny ganglion cells are broadly stratified in the center of the inner plexiform layer. Bipolar input to large sparse cells derives from DB6 and maybe other ON bipolar types, whereas that to broad thorny cells derives from ON and OFF bipolar cell types. The total number of putative synapses on broad thorny cells is higher than the number on large sparse cells but the density of inputs (between 2 and 5 synapses per 100 μm(2) dendritic area) is similar for the two cell types, indicating that the larger number of synapses on broad thorny cells is attributable to the larger membrane surface area of this cell type. Synaptic input density is comparable to previous values for midget-parvocellular and parasol-magnocellular pathway cells. This suggests functional differences between koniocellular, parvocellular, and magnocellular pathways do not arise from variation in synaptic input densities.
Collapse
Affiliation(s)
- Kumiko A Percival
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Australia
| | | | | |
Collapse
|
40
|
Puller C, Ondreka K, Haverkamp S. Bipolar cells of the ground squirrel retina. J Comp Neurol 2011; 519:759-74. [PMID: 21246553 DOI: 10.1002/cne.22546] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parallel processing of an image projected onto the retina starts at the first synapse, the cone pedicle, and each cone feeds its light signal into a minimum of eight different bipolar cell types. Hence, the morphological classification of bipolar cells is a prerequisite for analyzing retinal circuitry. Here we applied common bipolar cell markers to the cone-dominated ground squirrel retina, studied the labeling by confocal microscopy and electron microscopy, and compared the resulting bipolar cell types with those of the mouse (rod dominated) and primate retina. Eight different cone bipolar cell types (three OFF and five ON) and one rod bipolar cell were distinguished. The major criteria for classifying the cells were their immunocytochemical identity, their dendritic branching pattern, and the shape and stratification level of their axons in the inner plexiform layer (IPL). Immunostaining with antibodies against Gγ13, a marker for ON bipolar cells, made it possible to separate OFF and ON bipolars. Recoverin-positive OFF bipolar cells partly overlapped with ON bipolar axon terminals at the ON/OFF border of the IPL. Antibodies against HCN4 labeled the S-cone selective (bb) bipolar cell. The calcium-binding protein CaB5 was expressed in two OFF and two ON cone bipolar cell types, and CD15 labeled a widefield ON cone bipolar cell comparable to the DB6 in primate.
Collapse
Affiliation(s)
- Christian Puller
- Neuroanatomy, Max Planck Institute for Brain Research, D-60528 Frankfurt a.M., Germany
| | | | | |
Collapse
|
41
|
Immunohistochemical localization of calbindin D28k and calretinin in the retina of two lungfishes, Protopterus dolloi and Neoceratodus forsteri: Colocalization with choline acetyltransferase and tyrosine hydroxylase. Brain Res 2011; 1368:28-43. [DOI: 10.1016/j.brainres.2010.10.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 01/25/2023]
|
42
|
Abstract
AbstractColor vision in mammals is based on the expression of at least two cone opsins that are sensitive to different wavelengths of light. Furthermore, retinal pathways conveying color-opponent signals are required for color discrimination. Most of the primates are trichromats, and “color-coded channels” of their retinas are unveiled to a large extent. In contrast, knowledge of cone-selective pathways in nonprimate dichromats is only slowly emerging, although retinas of dichromats like mice or rats are extensively studied as model systems for retinal information processing. Here, we review recent progress of research on color-coded pathways in nonprimate dichromats to identify differences or similarities between di- and trichromatic mammals. In addition, we applied immunohistochemical methods and confocal microscopy to retinas of different species and present data on their neuronal properties, which are expected to contribute to color vision. Basic neuronal features such as the “blue cone bipolar cell” exist in every species investigated so far. Moreover, there is increasing evidence for chromatic OFF channels in dichromats and retinal ganglion cells that relay color-opponent signals to the brain. In conclusion, di- and trichromats share similar retinal pathways for color transmission and processing.
Collapse
|
43
|
Abstract
The general principles of retinal organization are now well known. It may seem surprising that retinal organization in the primate, which has a complex visual behavioral repertoire, appears relatively simple. In this review, we primarily consider retinal structure and function in primate species. Photoreceptor distribution and connectivity are considered as are connectivity in the outer and inner retina. One key issue is the specificity of retinal connections; we suggest that the retina shows connectional specificity but this is seldom complete, and we consider here the functional consequences of imprecise wiring. Finally, we consider how retinal systems can be linked to psychophysical descriptions of different channels, chromatic and luminance, which are proposed to exist in the primate visual system.
Collapse
Affiliation(s)
- Barry B Lee
- SUNY College of Optometry, New York 10036, USA.
| | | | | |
Collapse
|
44
|
Abstract
Two morphological types of melanopsin-expressing ganglion cells have been described in primate retina. Both types show intrinsic light responses as well as rod- and cone-driven ON-type responses. Outer stratifying cells have their dendrites close to the inner nuclear layer (OFF sublamina); inner stratifying cells have their dendrites close to the ganglion cell layer (ON sublamina). Both inner and outer stratifying cells receive synaptic input via ribbon synapses, but the bipolar cell types providing this input have not been identified. Here, we addressed the question whether the diffuse (ON) cone bipolar type DB6 and/or rod bipolar cells contact melanopsin-expressing ganglion cells. Melanopsin containing ganglion cells in marmoset (Callithrix jacchus) and macaque (Macaca fascicularis) retinas were identified immunohistochemically; DB6 cells were labeled with antibodies against the carbohydrate epitope CD15, rod bipolar cells were labeled with antibodies against protein kinase C, and putative synapses between the two cells types were identified with antibodies against piccolo. For one inner cell, nearly all of the DB6 axon terminals that overlap with its dendrites in the two-dimensional space show areas of close contact. In vertical sections, the large majority of the areas of close contact also contain a synaptic punctum, suggesting that DB6 cells contact inner melanopsin cells. The output from DB6 cells accounts for about 30% of synapses onto inner melanopsin cells. Synaptic contacts between rod bipolar axons and inner dendrites were not observed. In the OFF sublamina, about 10% of the DB6 axons are closely associated with dendrites of outer cells, and in about a third of these areas, axonal en passant synapses are detected. This result suggests that DB6 cells may also provide input to outer melanopsin cells.
Collapse
|
45
|
Ren L, Liang H, Diao L, He S. Changing dendritic field size of mouse retinal ganglion cells in early postnatal development. Dev Neurobiol 2010; 70:397-407. [PMID: 19998271 DOI: 10.1002/dneu.20777] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During early postnatal development, dendrites of retinal ganglion cells (RGCs) extend and branch in the inner plexiform layer to establish the adult level of stratification, pattern of branching, and coverage. Many studies have described the branching patterns, transient features, and regulatory factors of stratification of the RGCs. The rate of RGC dendritic field (DF) expansion relative to the growing retina has not been systematically investigated. In this study, we used two methods to examine the relative expansion of RGC DFs. First, we measured the size of RGC DFs and the diameters of the eyeballs at several postnatal stages. We compared the measurements with the RGC DF sizes calculated from difference of the eyeball sizes based on a linear expansion assumption. Second, we used the number of cholinergic amacrine cells (SACs) circumscribed by the DFs of RGCs at corresponding time points as an internal ruler to assess the size of DFs. We found most RGCs exhibit a phase of faster expansion relative to the retina between postnatal day 8 (P8) and P13, followed by a phase of retraction between P13 and adulthood. The morphological alpha cells showed the faster growing phase but not the retraction phase, whereas the morphological ON-OFF direction selective ganglion cells expanded in the same pace as the growing retina. These findings indicate different RGCs show different modes of growth, whereas most subtypes exhibit a fast expansion followed by a retraction phase to reach the adult size.
Collapse
Affiliation(s)
- Lei Ren
- Chinese Academy of Sciences, Institute of Biophysics, State Key Laboratory of Brain and Cognitive Sciences, Beijing, China
| | | | | | | |
Collapse
|
46
|
Percival KA, Jusuf PR, Martin PR, Grünert U. Synaptic inputs onto small bistratified (blue-ON/yellow-OFF) ganglion cells in marmoset retina. J Comp Neurol 2010; 517:655-69. [PMID: 19830807 DOI: 10.1002/cne.22183] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inner plexiform layer of the retina contains functional subdivisions, which segregate ON and OFF type light responses. Here, we studied quantitatively the ON and OFF synaptic input to small bistratified (blue-ON/yellow-OFF) ganglion cells in marmosets (Callithrix jacchus). Small bistratified cells display an extensive inner dendritic tier that receives blue-ON input from short-wavelength-sensitive (S) cones via blue cone bipolar cells. The outer dendritic tier is sparse and is thought to receive yellow-OFF input from medium (M)- and long (L)-wavelength-sensitive cones via OFF diffuse bipolar cells. In total, 14 small bistratified cells from different eccentricities were analyzed. The cells were retrogradely labeled from the koniocellular layers of the lateral geniculate nucleus and subsequently photofilled. Retinal preparations were processed with antibodies against the C-terminal binding protein 2, the AMPA receptor subunit GluR4, and/or gephyrin to identify bipolar and/or amacrine input. The results show that the synaptic input is evenly distributed across the dendritic tree, with a density similar to that reported previously for other ganglion cell types. The population of cells showed a consistent pattern, where bipolar input to the inner tier is about fourfold greater than bipolar input to the outer tier. This structural asymmetry of bipolar input may help to balance the weight of cone signals from the sparse S cone array against inputs from the much denser M/L cone array.
Collapse
Affiliation(s)
- Kumiko A Percival
- National Vision Research Institute of Australia, Carlton, Victoria 3053, Australia
| | | | | | | |
Collapse
|
47
|
Abstract
In the primate visual system, areas V1 and V2 distribute information they receive from the retina to all higher cortical areas, sorting this information into dorsal and ventral streams. Therefore, knowledge of the organization of projections between V1 and V2 is crucial to understand how the cortex processes visual information. In primates, parallel output pathways from V1 project to distinct V2 stripes. The traditional tripartite division of V1-to-V2 projections was recently replaced by a bipartite scheme, in which thin stripes receive V1 inputs from blob columns, and thick and pale stripes receive common input from interblob columns. Here, we demonstrate that thick and pale stripes, instead, receive spatially segregated V1 inputs and that the interblob is partitioned into two compartments: the middle of the interblob projecting to pale stripes and the blob/interblob border region projecting to thick stripes. Double-labeling experiments further demonstrate that V1 cells project to either thick or pale stripes, but rarely to both. We also find laminar specialization of V1 outputs, with layer 4B contributing projections mainly to thick stripes, and no projections to one set of pale stripes. These laminar differences suggest different contribution of magno, parvo, and konio inputs to each V1 output pathway. These results provide a new foundation for parallel processing models of the visual system by demonstrating four V1-to-V2 pathways: blob columns-to-thin stripes, blob/interblob border columns-to-thick stripes, interblob columns-to-pale(lateral) stripes, layer 2/3-4A interblobs-to-pale(medial) stripes.
Collapse
|
48
|
Abstract
The continuing worldwide epidemic of retinopathy of prematurity (ROP), a leading cause of childhood visual impairment, strongly motivates further research into mechanisms of the disease. Although the hallmark of ROP is abnormal retinal vasculature, a growing body of evidence supports a critical role for the neural retina in the ROP disease process. The age of onset of ROP coincides with the rapid developmental increase in rod photoreceptor outer segment length and rhodopsin content of the retina with escalation of energy demands. Using a combination of non-invasive electroretinographic (ERG), psychophysical, and image analysis procedures, the neural retina and its vasculature have been studied in prematurely born human subjects, both with and without ROP, and in rats that model the key vascular and neural parameters found in human ROP subjects. These data are compared to comprehensive numeric summaries of the neural and vascular features in normally developing human and rat retina. In rats, biochemical, anatomical, and molecular biological investigations are paired with the non-invasive assessments. ROP, even if mild, primarily and persistently alters the structure and function of photoreceptors. Post-receptor neurons and retinal vasculature, which are intimately related, are also affected by ROP; conspicuous neurovascular abnormalities disappear, but subtle structural anomalies and functional deficits may persist years after clinical ROP resolves. The data from human subjects and rat models identify photoreceptor and post-receptor targets for interventions that promise improved outcomes for children at risk for ROP.
Collapse
Affiliation(s)
- Anne B Fulton
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| | | | | | | |
Collapse
|
49
|
Rod bipolar cells in the retina of the capuchin monkey (Cebus apella): Characterization and distribution. Vis Neurosci 2009; 26:389-96. [DOI: 10.1017/s0952523809990186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRod bipolar cells in Cebus apella monkey retina were identified by an antibody against the alpha isoform of protein kinase C (PKCα), which has been shown to selectively identify rod bipolars in two other primates and various mammals. Vertical sections were used to confirm the identity of these cells by their characteristic morphology of dendrites and axons. Their topographic distribution was assessed in horizontal sections; counts taken along the dorsal, ventral, nasal, and temporal quadrants. The density of rod bipolar cells increased from 500 to 2900 cells/mm2 at 1 mm from the fovea to reach a peak of 10,000–12,000 cells/mm2 at 4 mm, approximately 5 deg of eccentricity, and then gradually decreased toward retinal periphery to values of 5000 cells/mm2 or less. Rod to rod bipolar density ratio remained between 10 and 20 across most of the retinal extension. The number of rod bipolar cells per retina was 6,360,000 ± 387,433 (mean ± s.d., n = 6). The anti-PKCα antibody has shown to be a good marker of rod bipolar cells of Cebus, and the cell distribution is similar to that described for other primates. In spite of the difference in the central retina, the density variation of rod bipolar cells in the Cebus and Macaca as well as the convergence from rod to rod bipolar cells are generally similar, suggesting that both retinae stabilize similar sensitivity (as measured by rod density) and convergence.
Collapse
|
50
|
Wässle H, Puller C, Müller F, Haverkamp S. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 2009; 29:106-17. [PMID: 19129389 PMCID: PMC6664901 DOI: 10.1523/jneurosci.4442-08.2009] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/13/2008] [Accepted: 11/26/2008] [Indexed: 11/21/2022] Open
Abstract
We report a quantitative analysis of the different bipolar cell types of the mouse retina. They were identified in wild-type mice by specific antibodies or in transgenic mouse lines by specific expression of green fluorescent protein or Clomeleon. The bipolar cell densities, their cone contacts, their dendritic coverage, and their axonal tiling were measured in retinal whole mounts. The results show that each and all cones are contacted by at least one member of any given type of bipolar cell (not considering genuine blue cones). Consequently, each cone feeds its light signals into a minimum of 10 different bipolar cells. Parallel processing of an image projected onto the retina, therefore, starts at the first synapse of the retina, the cone pedicle. The quantitative analysis suggests that our proposed catalog of 11 cone bipolar cells and one rod bipolar cell is complete, and all major bipolar cell types of the mouse retina appear to have been discovered.
Collapse
Affiliation(s)
- Heinz Wässle
- Department of Neuroanatomy, Max Planck Institute for Brain Research, D-60528 Frankfurt, Germany.
| | | | | | | |
Collapse
|