1
|
Roda VMDP, da Silva RA, Siqueira PV, Lustoza-Costa GJ, Moraes GM, Matsuda M, Hamassaki DE, Santos MF. Inhibition of Rho kinase (ROCK) impairs cytoskeletal contractility in human Müller glial cells without effects on cell viability, migration, and extracellular matrix production. Exp Eye Res 2024; 238:109745. [PMID: 38043763 DOI: 10.1016/j.exer.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The epiretinal membrane is a fibrocontractile tissue that forms on the inner surface of the retina, causing visual impairment ranging from mild to severe, and even retinal detachment. Müller glial cells actively participate in the formation of this membrane. Current research is constantly seeking for new therapeutic approaches that aim to prevent or treat cellular dysfunctions involved in the progression of this common fibrosis condition. The Rho GTPases signaling pathway regulates several processes associated with the epiretinal membrane, such as cell proliferation, migration, and contraction. Rho kinase (ROCK), an effector of the RhoA GTPase, is an interesting potential therapeutic target. This study aimed to evaluate the effects of a ROCK inhibitor (Y27632) on human Müller cells viability, growth, cytoskeletal organization, expression of extracellular matrix components, myofibroblast differentiation, migration, and contractility. Müller cells of the MIO-M1 lineage were cultured and treated for different periods with the inhibitor. Viability was evaluated by MTT assay and trypan blue exclusion method, and growth was evaluated by growth curve and BrdU incorporation assay. The actin cytoskeleton was stained with fluorescent phalloidin, intermediate filaments and microtubules were analyzed with immunofluorescence for vimentin and α-tubulin. Gene and protein expression of collagens I and V, laminin and fibronectin were evaluated by rt-PCR and immunofluorescence. Chemotactic and spontaneous cell migration were studied by transwell assay and time-lapse observation of live cells, respectively. Cell contractility was assessed by collagen gel contraction assay. The results showed that ROCK inhibition by Y27632 did not affect cell viability, but decreased cell growth and proliferation after 72 h. There was a change in cell morphology and organization of F-actin, with a reduction in the cell body, disappearance of stress fibers and formation of long, branched cell extensions. Microtubules and vimentin filaments were also affected, possibly because of F-actin alterations. The inhibitor also reduced gene expression and immunoreactivity of smooth muscle α-actin, a marker of myofibroblasts. The expression of extracellular matrix components was not affected by the inhibitor. Chemotactic cell migration showed no significant changes, while cell contractility was substantially reduced. No spontaneous migration of MIO-M1 cells was observed. In conclusion, pharmacological inhibition of ROCK in Müller cells could be a potentially promising approach to treat epiretinal membranes by preventing cell proliferation, contractility and transdifferentiation, without affecting cell viability.
Collapse
Affiliation(s)
- Vinicius Moraes de Paiva Roda
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rafael André da Silva
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Veloso Siqueira
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Jesus Lustoza-Costa
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriélla Malheiros Moraes
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Monique Matsuda
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Dânia Emi Hamassaki
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marinilce Fagundes Santos
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Sugiyama T, Yamamoto H, Kon T, Chaya T, Omori Y, Suzuki Y, Abe K, Watanabe D, Furukawa T. The potential role of Arhgef33 RhoGEF in foveal development in the zebra finch retina. Sci Rep 2020; 10:21450. [PMID: 33293601 PMCID: PMC7722920 DOI: 10.1038/s41598-020-78452-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/17/2020] [Indexed: 01/11/2023] Open
Abstract
The fovea is a pit formed in the center of the retina that enables high-acuity vision in certain vertebrate species. While formation of the fovea fascinates many researchers, the molecular mechanisms underlying foveal development are poorly understood. In the current study, we histologically investigated foveal development in zebra finch (Taeniopygia guttata) and found that foveal pit formation begins just before post-hatch day 14 (P14). We next performed RNA-seq analysis to compare gene expression profiles between the central (foveal and parafoveal) and peripheral retina in zebra finch at P14. We found that the Arhgef33 expression is enriched in the middle layer of the inner nuclear layer at the parafovea, suggesting that Arhgef33 is dominantly expressed in Müller glial cells in the developing parafovea. We then performed a pull-down assay using Rhotekin-RBD and observed GEF activity of Arhgef33 against RhoA. We found that overexpression of Arhgef33 in HEK293 cells induces cell contraction and that Arhgef33 expression inhibits neurite extension in Neuro 2A cells, which is partially recovered by a Rho-kinase (ROCK) inhibitor. Taken together, we used zebra finch as a model animal to investigate foveal development and identified Arhgef33 as a candidate protein possibly involved in foveal development through modulating RhoA activity.
Collapse
Affiliation(s)
- Takefumi Sugiyama
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruka Yamamoto
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Kentaro Abe
- Laboratory of Brain Development, Graduate School of Life Sciences, Tohoku University, Miyagi, 980-8577, Japan.,Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Almonte-Baldonado R, Bravo-Nuevo A, Gerald D, Benjamin LE, Prendergast GC, Laury-Kleintop LD. RhoB antibody alters retinal vascularization in models of murine retinopathy. J Cell Biochem 2018; 120:9381-9391. [PMID: 30536763 DOI: 10.1002/jcb.28213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 11/15/2018] [Indexed: 11/08/2022]
Abstract
Neovascularization in cancer or retinopathy is driven by pathological changes that foster abnormal sprouting of endothelial cells. Mouse genetic studies indicate that the stress-induced small GTPase RhoB is dispensable for normal physiology but required for pathogenic angiogenesis. In diabetic retinopathy, retinopathy of prematurity (ROP) or age-related wet macular degeneration (AMD), progressive pathologic anatomic changes and ischemia foster neovascularization are characterized by abnormal sprouting of endothelial cells. This process is driven by the angiogenic growth factor VEGF, which induces and supports the formation of new blood vessels. While injectable biologics targeting VEGF have been used to treat these pathological conditions, many patients respond poorly, prompting interest in other types of mechanism-based therapy. Here we report the preclinical efficacy of a monoclonal antibody that specifically targets RhoB, a signaling molecule that is genetically dispensable for normal physiology but required for pathogenic retinal angiogenesis. In murine models of proliferative retinal angiogenesis or oxygen-induced retinopathy, administering a monoclonal RhoB antibody (7F7) was sufficient to block neoangiogenesis or avascular pathology, respectively. Our findings offer preclinical proof of concept for antibody targeting of RhoB to limit diabetic retinopathy, ROP or wet AMD and perhaps other diseases of neovasculogenesis such as hemangioma or hemangiosarcoma nonresponsive to existing therapies.
Collapse
|
4
|
Vega FM, Ridley AJ. The RhoB small GTPase in physiology and disease. Small GTPases 2018; 9:384-393. [PMID: 27875099 PMCID: PMC5997158 DOI: 10.1080/21541248.2016.1253528] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/22/2016] [Accepted: 10/23/2016] [Indexed: 12/21/2022] Open
Abstract
RhoB is a Rho family GTPase that is highly similar to RhoA and RhoC, yet has distinct functions in cells. Its unique C-terminal region is subject to specific post-translational modifications that confer different localization and functions to RhoB. Apart from the common role with RhoA and RhoC in actin organization and cell migration, RhoB is also implicated in a variety of other cellular processes including membrane trafficking, cell proliferation, DNA-repair and apoptosis. RhoB is not an essential gene in mice, but it is implicated in several physiological and pathological processes. Its multiple roles will be discussed in this review.
Collapse
Affiliation(s)
- Francisco M. Vega
- Instituto de Biomedicina de Sevilla, IBiS (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), Sevilla, Spain
- Department of Medical Physiology and Biophysics, Universidad de Sevilla, Sevilla, Spain
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| |
Collapse
|
5
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 517] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
6
|
|
7
|
A possible new mechanism for the control of miRNA expression in neurons. Exp Neurol 2013; 248:546-58. [DOI: 10.1016/j.expneurol.2013.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/15/2013] [Accepted: 07/28/2013] [Indexed: 11/16/2022]
|
8
|
de Sousa É, Walter LT, Higa GSV, Casado OAN, Kihara AH. Developmental and functional expression of miRNA-stability related genes in the nervous system. PLoS One 2013; 8:e56908. [PMID: 23700402 PMCID: PMC3659046 DOI: 10.1371/journal.pone.0056908] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
In the nervous system, control of gene expression by microRNAs (miRNAs) has been investigated in fundamental processes, such as development and adaptation to ambient demands. The action of these short nucleotide sequences on specific genes depends on intracellular concentration, which in turn reflects the balance of biosynthesis and degradation. Whereas mechanisms underlying miRNA biogenesis has been investigated in recent studies, little is known about miRNA-stability related proteins. We first detected two genes in the retina that have been associated to miRNA stability, XRN2 and PAPD4. These genes are highly expressed during retinal development, however with distinct subcellular localization. We investigated whether these proteins are regulated during specific phases of the cell cycle. Combined analyses of nuclei position in neuroblastic layer and labeling using anti-cyclin D1 revealed that both proteins do not accumulate in S or M phases of the cell cycle, being poorly expressed in progenitor cells. Indeed, XRN2 and PAPD4 were observed mainly after neuronal differentiation, since low expression was also observed in astrocytes, endothelial and microglial cells. XRN2 and PAPD4 are expressed in a wide variety of neurons, including horizontal, amacrine and ganglion cells. To evaluate the functional role of both genes, we carried out experiments addressed to the retinal adaptation in response to different ambient light conditions. PAPD4 is upregulated after 3 and 24 hours of dark- adaptation, revealing that accumulation of this protein is governed by ambient light levels. Indeed, the fast and functional regulation of PAPD4 was not related to changes in gene expression, disclosing that control of protein levels occurs by post-transcriptional mechanisms. Furthermore, we were able to quantify changes in PAPD4 in specific amacrine cells after dark -adaptation, suggesting for circuitry-related roles in visual perception. In summary, in this study we first described the ontogenesis and functional expression of these two miRNA-stability related proteins in the retina.
Collapse
Affiliation(s)
- Érica de Sousa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brasil
| | - Lais Takata Walter
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brasil
| | - Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brasil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Otávio Augusto Nocera Casado
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brasil
| | - Alexandre Hiroaki Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brasil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- * E-mail:
| |
Collapse
|
9
|
Paschon V, Higa GSV, Resende RR, Britto LRG, Kihara AH. Blocking of connexin-mediated communication promotes neuroprotection during acute degeneration induced by mechanical trauma. PLoS One 2012; 7:e45449. [PMID: 23029016 PMCID: PMC3447938 DOI: 10.1371/journal.pone.0045449] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/22/2012] [Indexed: 01/27/2023] Open
Abstract
Accruing evidence indicates that connexin (Cx) channels in the gap junctions (GJ) are involved in neurodegeneration after injury. However, studies using KO animal models endowed apparently contradictory results in relation to the role of coupling in neuroprotection. We analyzed the role of Cx-mediated communication in a focal lesion induced by mechanical trauma of the retina, a model that allows spatial and temporal definition of the lesion with high reproducibility, permitting visualization of the focus, penumbra and adjacent areas. Cx36 and Cx43 exhibited distinct gene expression and protein levels throughout the neurodegeneration progress. Cx36 was observed close to TUNEL-positive nuclei, revealing the presence of this protein surrounding apoptotic cells. The functional role of cell coupling was assessed employing GJ blockers and openers combined with lactate dehydrogenase (LDH) assay, a direct method for evaluating cell death/viability. Carbenoxolone (CBX), a broad-spectrum GJ blocker, reduced LDH release after 4 hours, whereas quinine, a Cx36-channel specific blocker, decreased LDH release as early as 1 hour after lesion. Furthermore, analysis of dying cell distribution confirmed that the use of GJ blockers reduced apoptosis spread. Accordingly, blockade of GJ communication during neurodegeneration with quinine, but not CBX, caused downregulation of initial and effector caspases. To summarize, we observed specific changes in Cx gene expression and protein distribution during the progress of retinal degeneration, indicating the participation of these elements in acute neurodegeneration processes. More importantly, our results revealed that direct control of GJ channels permeability may take part in reliable neuroprotection strategies aimed to rapid, fast treatment of mechanical trauma in the retina.
Collapse
Affiliation(s)
- Vera Paschon
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, São Paulo, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, São Paulo, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Rodrigo Ribeiro Resende
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Roberto G. Britto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alexandre Hiroaki Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, São Paulo, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Frisca F, Sabbadini RA, Goldshmit Y, Pébay A. Biological Effects of Lysophosphatidic Acid in the Nervous System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 296 2012; 296:273-322. [DOI: 10.1016/b978-0-12-394307-1.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Adly MA, Assaf HA, Hussein MRA. Expression of Ras homologous B protein in the human scalp skin and hair follicles: hair follicle cycle stages-associated changes. J Cutan Pathol 2009; 37:751-7. [DOI: 10.1111/j.1600-0560.2009.01457.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KSM, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LRG. Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 2009; 28:39-52. [PMID: 19800961 DOI: 10.1016/j.ijdevneu.2009.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/09/2009] [Accepted: 09/24/2009] [Indexed: 12/29/2022] Open
Abstract
Connexin (Cx) channels and hemichannels are involved in essential processes during nervous system development such as apoptosis, propagation of spontaneous activity and interkinetic nuclear movement. In the first part of this study, we extensively characterized Cx gene and protein expression during retinal histogenesis. We observed distinct spatio-temporal patterns among studied Cx and an overriding, ubiquitous presence of Cx45 in progenitor cells. The role of Cx-mediated communication was assessed by using broad-spectrum (carbenoxolone, CBX) and Cx36/Cx50 channel-specific (quinine) blockers. In vivo application of CBX, but not quinine, caused remarkable reduction in retinal thickness, suggesting changes in cell proliferation/apoptosis ratio. Indeed, we observed a decreased number of mitotic cells in CBX-injected retinas, with no significant changes in the expression of PCNA, a marker for cells in proliferative state. Taken together, our results pointed a pivotal role of Cx45 in the developing retina. Moreover, this study revealed that Cx-mediated communication is essential in retinal histogenesis, particularly in the control of cell proliferation.
Collapse
Affiliation(s)
- Alexandre H Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kihara AH, Paschon V, Akamine PS, Saito KC, Leonelli M, Jiang JX, Hamassaki DE, Britto LRG. Differential expression of connexins during histogenesis of the chick retina. Dev Neurobiol 2009; 68:1287-302. [PMID: 18506822 DOI: 10.1002/dneu.20652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gap junction (GJ) channels couple adjacent cells, allowing transfer of second messengers, ions, and molecules up to 1 kDa. These channels are composed by a multigene family of integral membrane proteins called connexins (Cx). In the retina, besides being essential circuit element in the visual processing, GJ channels also play important roles during its development. Herein, we analyzed Cx43, Cx45, Cx50, and Cx56 expression during chick retinal histogenesis. Cx exhibited distinct expression profiles during retinal development, except for Cx56, whose expression was not detected. Cx43 immunolabeling was observed at early development, in the transition of ventricular zone and pigmented epithelium. Later, Cx43 was seen in the outer plexiform and ganglion cell layers, and afterwards also in the inner plexiform layer. We observed remarkable changes in the phosphorylation status of this protein, which indicated modifications in functional properties of this Cx during retinal histogenesis. By contrast, Cx45 showed stable gene expression levels throughout development and ubiquitous immunoreactivity in progenitor cells. From later embryonic development, Cx45 was mainly observed in the inner retina, and it was expressed by glial cells and neurons. In turn, Cx50 was virtually absent in the chick retina at initial embryonic phases. Combination of PCR, immunohistochemistry and Western blot indicated that this Cx was present in differentiated cells, arising in parallel with the formation of the visual circuitry. Characterization of Cx expression in the developing chick retina indicated particular roles for these proteins and revealed similarities and differences when compared to other species.
Collapse
Affiliation(s)
- A H Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hegedus Z, Czibula A, Kiss-Toth E. Tribbles: A family of kinase-like proteins with potent signalling regulatory function. Cell Signal 2007; 19:238-50. [PMID: 16963228 DOI: 10.1016/j.cellsig.2006.06.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 06/29/2006] [Indexed: 11/22/2022]
Abstract
The recent identification of tribbles as regulators of signal processing systems and physiological processes, including development, together with their potential involvement in diabetes and cancer, has generated considerable interest in these proteins. Tribbles have been reported to regulate activation of a number of intracellular signalling pathways with roles extending from mitosis and cell activation to apoptosis and modulation of gene expression. The current review summarises our current understanding of interactions between tribbles and various other proteins. Since our understanding on the molecular basis of tribbles function is far from complete, we also describe a bioinformatic analysis of various segments of tribbles proteins, which has revealed a number of highly conserved peptide motifs with potentially important functional roles.
Collapse
Affiliation(s)
- Z Hegedus
- Bioinformatics Group, Biological Research Center, Szeged, Hungary
| | | | | |
Collapse
|
15
|
Liedtke T, Naskar R, Eisenacher M, Thanos S. Transformation of adult retina from the regenerative to the axonogenesis state activates specific genes in various subsets of neurons and glial cells. Glia 2006; 55:189-201. [PMID: 17078023 DOI: 10.1002/glia.20447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to identify the gene expression profile of the regenerating retina in vitro. To achieve this goal, three experimental groups were studied: (1) an injury control group (OC-LI group) that underwent open crush (OC) of the optic nerve and lens injury (LI) in vivo; (2) an experimental group (OC-LI-R group) that comprised animals treated like those in the OC-LI group except that retinal axons were allowed to regenerate (R) in vitro; and (3) an experimental group (OC-LI-NR group) that comprised animals treated as those in the OC-LI group, except that the retinas were cultured in vitro with the retinal ganglion cell (RGC) layer facing upwards to prevent axonal regeneration (NR). Gene expression in each treatment group was compared to that of untreated controls. Immunohistochemistry was used to examine whether expression of differentially regulated genes also occurred at the protein level and to localize these proteins to the respective retinal cells. Genes that were regulated belonged to different functional categories such as antioxidants, antiapoptotic molecules, transcription factors, secreted signaling molecules, inflammation-related genes, and others. Comparison of changes in gene expression among the various treatment groups revealed a relatively small cohort of genes that was expressed in different subsets of cells only in the OC-LI-R group; these genes can be considered to be regeneration-specific. Our findings demonstrate that axonal regeneration of RGC involves an orchestrated response of all retinal neurons and glia, and could provide a platform for the development of therapeutic strategies for the regeneration of injured ganglion cells.
Collapse
Affiliation(s)
- Thomas Liedtke
- Department of Experimental Ophthalmology, University Eye Hospital Münster Domagkstrasse, Muenster, Germany
| | | | | | | |
Collapse
|