1
|
Katz PS. Circuits and the single neuron. J Neurophysiol 2024; 132:765-766. [PMID: 39081212 DOI: 10.1152/jn.00312.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/30/2024] Open
Affiliation(s)
- Paul S Katz
- Department of Biology, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| |
Collapse
|
2
|
Hill ES, Wang J, Brown JW, Mistry VK, Frost WN. Surprising multifunctionality of a Tritonia swim CPG neuron: C2 drives the early phase of postswim crawling despite being silent during the behavior. J Neurophysiol 2024; 132:96-107. [PMID: 38777746 PMCID: PMC11381120 DOI: 10.1152/jn.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
In response to a suitably aversive skin stimulus, the marine mollusk Tritonia diomedea launches an escape swim followed by several minutes of high-speed crawling. The two escape behaviors are highly dissimilar: whereas the swim is a muscular behavior involving alternating ventral and dorsal whole body flexions, the crawl is a nonrhythmic gliding behavior mediated by the beating of foot cilia. The serotonergic dorsal swim interneurons (DSIs) are members of the swim central pattern generator (CPG) and also strongly drive crawling. Although the swim network is very well understood, the Tritonia crawling network to date comprises only three neurons: the DSIs and pedal neurons 5 and 21 (Pd5 and Pd21). Since Tritonia's swim network has been suggested to have arisen from a preexisting crawling network, we examined the possible role that another swim CPG neuron, C2, may play in crawling. Because of its complete silence in the postswim crawling period, C2 had not previously been considered to play a role in driving crawling. However, semi-intact preparation experiments demonstrated that a brief C2 spike train surprisingly and strongly drives the foot cilia for ∼30 s, something that cannot be explained by its synaptic connections to Pd5 and Pd21. Voltage-sensitive dye (VSD) imaging in the pedal ganglion identified many candidate crawling motor neurons that fire at an elevated rate after the swim and also revealed several pedal neurons that are strongly excited by C2. It is intriguing that unlike the DSIs, which fire tonically after the swim to drive crawling, C2 does so despite its postswim silence.NEW & NOTEWORTHY Tritonia swim central pattern generator (CPG) neuron C2 surprisingly and strongly drives the early phase of postswim crawling despite being silent during this period. In decades of research, C2 had not been suspected of driving crawling because of its complete silence after the swim. Voltage-sensitive dye imaging revealed that the Tritonia crawling motor network may be much larger than previously known and also revealed that many candidate crawling neurons are excited by C2.
Collapse
Affiliation(s)
- Evan S Hill
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
| | - Jean Wang
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
| | - Jeffrey W Brown
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
| | - Viral K Mistry
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
| | - William N Frost
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
| |
Collapse
|
3
|
Ramirez MD, Bui TN, Katz PS. Cellular-resolution gene expression mapping reveals organization in the head ganglia of the gastropod, Berghia stephanieae. J Comp Neurol 2024; 532:e25628. [PMID: 38852042 PMCID: PMC11198006 DOI: 10.1002/cne.25628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
Gastropod molluscs such as Aplysia, Lymnaea, and Tritonia have been important for determining fundamental rules of motor control, learning, and memory because of their large, individually identifiable neurons. Yet only a small number of gastropod neurons have known molecular markers, limiting the ability to establish brain-wide structure-function relations. Here we combine high-throughput, single-cell RNA sequencing with in situ hybridization chain reaction in the nudibranch Berghia stephanieae to identify and visualize the expression of markers for cell types. Broad neuronal classes were characterized by genes associated with neurotransmitters, like acetylcholine, glutamate, serotonin, and GABA, as well as neuropeptides. These classes were subdivided by other genes including transcriptional regulators and unannotated genes. Marker genes expressed by neurons and glia formed discrete, previously unrecognized regions within and between ganglia. This study provides the foundation for understanding the fundamental cellular organization of gastropod nervous systems.
Collapse
Affiliation(s)
| | - Thi N. Bui
- Department of Biology, University of Massachusetts Amherst
| | - Paul S. Katz
- Department of Biology, University of Massachusetts Amherst
| |
Collapse
|
4
|
Lee CA, Watson WH. In the sea slug Melibe leonina the posterior nerves communicate stomach distention to inhibit feeding and modify oral hood movements. Front Physiol 2022; 13:1047106. [PMID: 36505045 PMCID: PMC9727288 DOI: 10.3389/fphys.2022.1047106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
The sea slug Melibe leonina is an excellent model system for the study of the neural basis of satiation, and previous studies have demonstrated that stomach distention attenuates feeding. Here we expanded on this work by examining the pathway communicating stomach distention to the central nervous system and the effects of distention on motor output. We found that the posterior nerves (PN), which extend posteriorly from the buccal ganglia and innervate the stomach, communicate stomach distention in Melibe. PN lesions led to increased feeding duration and food consumption, and PN activity increased in response to stomach distention. Additionally, the percentage of incomplete feeding movements increased with satiation, and PN stimulation had a similar impact in the nerves that innervate the oral hood. These incomplete movements may be functionally similar to the egestive, food rejecting motions seen in other gastropods and enable Melibe to remain responsive to food, yet adjust their behavior as they become satiated. Such flexibility would not be possible if the entire feeding network were inhibited.
Collapse
Affiliation(s)
- Colin Anthony Lee
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States,*Correspondence: Colin Anthony Lee,
| | - Winsor Hays Watson
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
5
|
Pirtle TJ, Satterlie RA. Cyclic Guanosine Monophosphate Modulates Locomotor Acceleration Induced by Nitric Oxide but not Serotonin in Clione limacina Central Pattern Generator Swim Interneurons. Integr Org Biol 2021; 3:obaa045. [PMID: 33791588 PMCID: PMC7884873 DOI: 10.1093/iob/obaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both nitric oxide (NO) and serotonin (5HT) mediate swim acceleration in the marine mollusk, Clione limacina. In this study, we examine the role that the second messenger, cyclic guanosine monophosphate (cGMP), plays in mediating NO and 5HT-induced swim acceleration. We observed that the application of an analog of cGMP or an activator of soluble guanylyl cyclase (sGC) increased fictive locomotor speed recorded from Pd-7 interneurons of the animal's locomotor central pattern generator. Moreover, inhibition of sGC decreased fictive locomotor speed. These results suggest that basal levels of cGMP are important for slow swimming and that increased production of cGMP mediates swim acceleration in Clione. Because NO has its effect through cGMP signaling and because we show herein that cGMP produces cellular changes in Clione swim interneurons that are consistent with cellular changes produced by 5HT application, we hypothesize that both NO and 5HT function via a common signal transduction pathway that involves cGMP. Our results show that cGMP mediates NO-induced but not 5HT-induced swim acceleration in Clione.
Collapse
Affiliation(s)
- Thomas J Pirtle
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd Caldwell, ID 83605, USA
| | - Richard A Satterlie
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Road, Wilmington, NC 28409, USA
| |
Collapse
|
6
|
Watson WH, Nash A, Lee C, Patz MD, Newcomb JM. The Distribution and Possible Roles of Small Cardioactive Peptide in the Nudibranch Melibe leonina. Integr Org Biol 2020; 2:obaa016. [PMID: 33791559 PMCID: PMC7671164 DOI: 10.1093/iob/obaa016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neuropeptide small cardioactive peptide (SCP) plays an integrative role in exciting various motor programs involved in feeding and locomotion in a number of gastropod species. In this study, immunohistochemistry, using monoclonal antibodies against SCPB, was used to localize SCPB-like-immunoreactive neurons in the central nervous system, and map their connections to various tissues, in the nudibranch, Melibe leonina. Approximately 28-36 SCPB-like-immunoreactive neurons were identified in the M. leonina brain, as well as one large neuron in each of the buccal ganglia. The neuropil of the pedal ganglia contained the most SCPB-like-immunoreactive varicosities, although only a small portion of these were due to SCPB-like-immunoreactive neurons in the same ganglion. This suggests that much of the SCPB-like immunoreactivity in the neuropil of the pedal ganglia was from neurons in other ganglia that projected through the pedal-pedal connectives or the connectives from the cerebral and pleural ganglia. We also observed extensive SCPB innervation along the length of the esophagus. Therefore, we investigated the impact of SCPB on locomotion in intact animals, as well as peristaltic contractions of the isolated esophagus. Injection of intact animals with SCPB at night led to a significant increase in crawling and swimming, compared to control animals injected with saline. Furthermore, perfusion of isolated brains with SCPB initiated expression of the swim motor program. Application of SCPB to the isolated quiescent esophagus initiated rhythmic peristaltic contractions, and this occurred in preparations both with and without the buccal ganglia being attached. All these data, taken together, suggest that SCPB could be released at night to arouse animals and enhance the expression of both feeding and swimming motor programs in M. leonina.
Collapse
Affiliation(s)
- W H Watson
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - A Nash
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - C Lee
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - M D Patz
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - J M Newcomb
- Department of Biology and Health Science, New England College, Henniker, NH 03242, USA
| |
Collapse
|
7
|
Command or Obey? Homologous Neurons Differ in Hierarchical Position for the Generation of Homologous Behaviors. J Neurosci 2019; 39:6460-6471. [PMID: 31209170 DOI: 10.1523/jneurosci.3229-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022] Open
Abstract
In motor systems, higher-order neurons provide commands to lower-level central pattern generators (CPGs) that autonomously produce rhythmic motor patterns. Such hierarchical organization is often thought to be inherent in the anatomical position of the neurons. Here, however, we report that a neuron that is member of a CPG in one species acts as a higher-order neuron in another species. In the nudibranch mollusc, Melibe leonina, swim interneuron 1 (Si1) is in the CPG underlying swimming, firing rhythmic bursts of action potentials as part of the swim motor pattern. We found that its homolog in another nudibranch, Dendronotus iris, serves as a neuromodulatory command neuron for the CPG of a homologous swimming behavior. In Dendronotus, Si1 fired irregularly throughout the swim motor pattern. The burst and spike frequencies of Dendronotus swim CPG neurons correlated with Si1 firing frequency. Si1 activity was both necessary and sufficient for the initiation and maintenance of the swim motor pattern. Each Si1 was electrically coupled to all of the CPG neurons and made monosynaptic excitatory synapses with both Si3s. Si1 also bilaterally potentiated the excitatory synapse from Si3 to Si2. "Virtual neuromodulation" of both Si3-to-Si2 synapses using dynamic clamp combined with depolarization of both Si3s mimicked the effects of Si1 stimulation on the swim motor pattern. Thus, in Dendronotus, Si1 is a command neuron that turns on, maintains, and accelerates the motor pattern through synaptic and neuromodulatory actions, thereby differing from its homolog in Melibe in its functional position in the motor hierarchy.SIGNIFICANCE STATEMENT Cross-species comparisons of motor system organization can provide fundamental insights into their function and origin. Central pattern generators (CPGs) are lower in the functional hierarchy than the neurons that initiate and modulate their activity. This functional hierarchy is often reflected in neuroanatomical organization. This paper definitively shows that an identified cerebral ganglion neuron that is a member of a CPG underlying swimming in one nudibranch species serves as a command neuron for the same behavior in another species. We describe and test the synaptic and neuromodulatory mechanisms by which the command neuron initiates and accelerates rhythmic motor patterns. Thus, the functional position of neurons in a motor hierarchy can shift from one level to another over evolutionary time.
Collapse
|
8
|
Brandon C, Britton M, Fan D, Ferrier AR, Hill ES, Perez A, Wang J, Wang N, Frost WN. Serial-section atlas of the Tritonia pedal ganglion. J Neurophysiol 2018; 120:1461-1471. [PMID: 29873611 DOI: 10.1152/jn.00670.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pedal ganglion of the nudibranch gastropod Tritonia diomedea has been the focus of neurophysiological studies for more than 50 yr. These investigations have examined the neural basis of behaviors as diverse as swimming, crawling, reflex withdrawals, orientation to water flow, orientation to the earth's magnetic field, and learning. Despite this sustained research focus, most studies have confined themselves to the layer of neurons that are visible on the ganglion surface, leaving many neurons, which reside in deeper layers, largely unknown and thus unstudied. To facilitate work on such neurons, the present study used serial-section light microscopy to generate a detailed pictorial atlas of the pedal ganglion. One pedal ganglion was sectioned horizontally at 2-µm intervals and another vertically at 5-µm intervals. The resulting images were examined separately or combined into stacks to generate movie tours through the ganglion. These were also used to generate 3D reconstructions of individual neurons and rotating movies of digitally desheathed whole ganglia to reveal all surface neurons. A complete neuron count of the horizontally sectioned ganglion yielded 1,885 neurons. Real and virtual sections from the image stacks were used to reveal the morphology of individual neurons, as well as the major axon bundles traveling within the ganglion to and between its several nerves and connectives. Extensive supplemental data are provided, as well as a link to the Dryad Data Repository site, where the complete sets of high-resolution serial-section images can be downloaded. NEW & NOTEWORTHY Because of the large size and relatively low numbers of their neurons, gastropod mollusks are widely used for investigations of the neural basis of behavior. Most studies, however, focus on the neurons visible on the ganglion surface, leaving the majority, located out of sight below the surface, unexamined. The present light microscopy study generates the first detailed visual atlas of all neurons of the highly studied Tritonia pedal ganglion.
Collapse
Affiliation(s)
- Christopher Brandon
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Matthew Britton
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - David Fan
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | - Evan S Hill
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | - Jean Wang
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | - William N Frost
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
9
|
Battonyai I, Voronezhskaya EE, Obukhova A, Horváth R, Nezlin LP, Elekes K. Neuronal Development in the Larvae of the Invasive Biofouler Dreissena polymorpha (Mollusca: Bivalvia), with Special Attention to Sensory Elements and Swimming Behavior. THE BIOLOGICAL BULLETIN 2018; 234:192-206. [PMID: 29949436 DOI: 10.1086/698511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although understanding of the neuronal development of Trochozoa has progressed recently, little attention has been paid to freshwater bivalves, including species with a strong ecological impact, such as the zebra mussel (Dreissena polymorpha). Therefore, an important question might concern how the developing nervous system is involved in the formation of the rapid and successful invasive behavior of this species. Our aim was to reveal the neuronal development of trochophore and veliger larvae of Dreissena, with special attention to the organization of sensory structures and their possible involvement in detecting environmental cues. After applying serotonin and FMRFamide immunocytochemistry, the first serotonin immunoreactive sensory elements appeared 16-18 hours after fertilization, whereas the first FMRFamide immunoreactive sensory cell was seen only at 32 hours of development (trochophore stage). Later, sensory elements were found in three parts of the larval body, including the apical organ, the posterior region, and the stomach. Although differences in the timing of appearance and the morphology of cells were observed, the two signaling systems showed basic similarity in their organization pattern until the end of the veliger stage. Pharmacological, physiological, and quantitative immunocytochemical investigations were also performed, suggesting the involvement of both the serotoninergic system and the FMRFamidergic system in sensomotor processes. Manipulation of the serotonin synthesis by para-chloroplenylalanine and 5-hydroxytryptophane, as well as application of increased salinity, influenced larval swimming activity, both accompanied by changes in immunofluorescence intensity. We concluded that these two early sensory systems may play an important role in the development of settlement competency of this biofouling invasive bivalve, Dreissena.
Collapse
Key Words
- 5-HT, serotonin
- 5-HTP, 5-hydroxytryptophan
- AO, apical organ
- DAPI, 4ʹ,6-diamidino-2-phenylindole
- EDTA, ethylenediaminetetraacetic acid
- FMRFa, FMRFamide
- FW, filtered water
- IHC, immunohistochemical
- IR, immunoreactive
- PBS, phosphate-buffered saline
- PBS-TX-NGS, PBS containing 1% Triton X-100 and 10% normal goat serum
- PFA, paraformaldehyde;
- PN, posterior neuron.
- hpf, hours post-fertilization
- pCPA, para-chlorophenilalanine
Collapse
|
10
|
Webber MP, Thomson JWS, Buckland-Nicks J, Croll RP, Wyeth RC. GABA-, histamine-, and FMRFamide-immunoreactivity in the visual, vestibular and central nervous systems of Hermissenda crassicornis. J Comp Neurol 2017; 525:3514-3528. [PMID: 28726311 DOI: 10.1002/cne.24286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 11/12/2022]
Abstract
Hermissenda crassicornis is a model for studying the molecular and cellular basis for classical conditioning, based on its ability to associate light with vestibular stimulation. We used confocal microscopy to map histamine (HA), FMRF-amide, and γ-aminobutyric acid (GABA) immunoreactivity in the central nervous system (CNS), eyes, optic ganglia and statocysts of the nudibranchs. For HA immunoreactivity, we documented both consistently and variably labeled CNS structures across individuals. We also noted minor differences in GABA immunoreactivity in the CNS compared to previous work on Hermissenda. Contrary to expectations, we found no evidence for GABA inside the visual or vestibular systems. Instead, we found only FMRFamide- and HA immunoreactivity (FMRFamide: 4 optic ganglion cells, 4-5 hair cells; HA: 3 optic ganglion cells, 8 hair cells). Overall, our results can act as basis for comparisons of nervous systems across nudibranchs, and suggest further exploration of intraspecific plasticity versus evolutionary changes in gastropod nervous systems.
Collapse
Affiliation(s)
- Marissa P Webber
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - James W S Thomson
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Johnny Buckland-Nicks
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
11
|
Gunaratne CA, Sakurai A, Katz PS. Variations on a theme: species differences in synaptic connectivity do not predict central pattern generator activity. J Neurophysiol 2017; 118:1123-1132. [PMID: 28539397 DOI: 10.1152/jn.00203.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022] Open
Abstract
A fundamental question in comparative neuroethology is the extent to which synaptic wiring determines behavior vs. the extent to which it is constrained by phylogeny. We investigated this by examining the connectivity and activity of homologous neurons in different species. Melibe leonina and Dendronotus iris (Mollusca, Gastropoda, Nudibranchia) have homologous neurons and exhibit homologous swimming behaviors consisting of alternating left-right (LR) whole body flexions. Yet, a homologous interneuron (Si1) differs between the two species in its participation in the swim motor pattern (SMP) and synaptic connectivity. In this study we examined Si1 homologs in two additional nudibranchs: Flabellina iodinea, which evolved LR swimming independently of Melibe and Dendronotus, and Tritonia diomedea, which swims with dorsal-ventral (DV) body flexions. In Flabellina, the contralateral Si1s exhibit alternating rhythmic bursting activity during the SMP and are members of the swim central pattern generator (CPG), as in Melibe The Si1 homologs in Tritonia do not burst rhythmically during the DV SMP but are inhibited and receive bilaterally synchronous synaptic input. In both Flabellina and Tritonia, the Si1 homologs exhibit reciprocal inhibition, as in Melibe However, in Flabellina the inhibition is polysynaptic, whereas in Tritonia it is monosynaptic, as in Melibe In all species, the contralateral Si1s are electrically coupled. These results suggest that Flabellina and Melibe convergently evolved a swim CPG that contains Si1; however, they differ in monosynaptic connections. Connectivity is more similar between Tritonia and Melibe, which exhibit different swimming behaviors. Thus connectivity between homologous neurons varies independently of both behavior and phylogeny.NEW & NOTEWORTHY This research shows that the synaptic connectivity between homologous neurons exhibits species-specific variations on a basic theme. The neurons vary in the extent of electrical coupling and reciprocal inhibition. They also exhibit different patterns of activity during rhythmic motor behaviors that are not predicted by their circuitry. The circuitry does not map onto the phylogeny in a predictable fashion either. Thus neither neuronal homology nor species behavior is predictive of neural circuit connectivity.
Collapse
Affiliation(s)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
12
|
Katz PS. Evolution of central pattern generators and rhythmic behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150057. [PMID: 26598733 DOI: 10.1098/rstb.2015.0057] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
13
|
Katz PS. Phylogenetic plasticity in the evolution of molluscan neural circuits. Curr Opin Neurobiol 2016; 41:8-16. [PMID: 27455462 DOI: 10.1016/j.conb.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/17/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Recent research on molluscan nervous systems provides a unique perspective on the evolution of neural circuits. Molluscs evolved large, encephalized nervous systems independently from other phyla. Homologous body-patterning genes were re-specified in molluscs to create a plethora of body plans and nervous system organizations. Octopuses, having the largest brains of any invertebrate, independently evolved a learning circuit similar in organization and function to the mushroom body of insects and the hippocampus of mammals. In gastropods, homologous neurons have been re-specified for different functions. Even species exhibiting similar, possibly homologous behavior have fundamental differences in the connectivity of the neurons underlying that behavior. Thus, molluscan nervous systems provide clear examples of re-purposing of homologous genes and neurons for neural circuits.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA 30302-5030, USA.
| |
Collapse
|
14
|
Sakurai A, Katz PS. The central pattern generator underlying swimming in Dendronotus iris: a simple half-center network oscillator with a twist. J Neurophysiol 2016; 116:1728-1742. [PMID: 27440239 DOI: 10.1152/jn.00150.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/14/2016] [Indexed: 11/22/2022] Open
Abstract
The nudibranch mollusc, Dendronotus iris, swims by rhythmically flexing its body from left to right. We identified a bilaterally represented interneuron, Si3, that provides strong excitatory drive to the previously identified Si2, forming a half-center oscillator, which functions as the central pattern generator (CPG) underlying swimming. As with Si2, Si3 inhibited its contralateral counterpart and exhibited rhythmic bursts in left-right alternation during the swim motor pattern. Si3 burst almost synchronously with the contralateral Si2 and was coactive with the efferent impulse activity in the contralateral body wall nerve. Perturbation of bursting in either Si3 or Si2 by current injection halted or phase-shifted the swim motor pattern, suggesting that they are both critical CPG members. Neither Si2 nor Si3 exhibited endogenous bursting properties when activated alone; activation of all four neurons was necessary to initiate and maintain the swim motor pattern. Si3 made a strong excitatory synapse onto the contralateral Si2 to which it is also electrically coupled. When Si3 was firing tonically but not exhibiting bursting, artificial enhancement of the Si3-to-Si2 synapse using dynamic clamp caused all four neurons to burst. In contrast, negation of the Si3-to-Si2 synapse by dynamic clamp blocked ongoing swim motor patterns. Together, these results suggest that the Dendronotus swim CPG is organized as a "twisted" half-center oscillator in which each "half" is composed of two excitatory-coupled neurons from both sides of the brain, each of which inhibits its contralateral counterpart. Consisting of only four neurons, this is perhaps the simplest known network oscillator for locomotion.
Collapse
Affiliation(s)
- Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
15
|
Robert A, Monsinjon T, Delbecque JP, Olivier S, Poret A, Foll FL, Durand F, Knigge T. Neuroendocrine disruption in the shore crab Carcinus maenas: Effects of serotonin and fluoxetine on chh- and mih-gene expression, glycaemia and ecdysteroid levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:192-204. [PMID: 27060239 DOI: 10.1016/j.aquatox.2016.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Serotonin, a highly conserved neurotransmitter, controls many biological functions in vertebrates, but also in invertebrates. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are commonly used in human medication to ease depression by affecting serotonin levels. Their residues and metabolites can be detected in the aquatic environment and its biota. They may also alter serotonin levels in aquatic invertebrates, thereby perturbing physiological functions. To investigate whether such perturbations can indeed be expected, shore crabs (Carcinus maenas) were injected either with serotonin, fluoxetine or a combination of both. Dose-dependent effects of fluoxetine ranging from 250 to 750nM were investigated. Gene expression of crustacean hyperglycemic hormone (chh) as well as moult inhibiting hormone (mih) was assessed by RT-qPCR at 2h and 12h after injection. Glucose and ecdysteroid levels in the haemolymph were monitored in regular intervals until 12h. Serotonin led to a rapid increase of chh and mih expression. On the contrary, fluoxetine only affected chh and mih expression after several hours, but kept expression levels significantly elevated. Correspondingly, serotonin rapidly increased glycaemia, which returned to normal or below normal levels after 12h. Fluoxetine, however, resulted in a persistent low-level increase of glycaemia, notably during the period when negative feedback regulation reduced glycaemia in the serotonin treated animals. Ecdysteroid levels were significantly decreased by serotonin and fluoxetine, with the latter showing less pronounced and less rapid, but longer lasting effects. Impacts of fluoxetine on glycaemia and ecdysteroids were mostly observed at higher doses (500 and 750nM) and affected principally the response dynamics, but not the amplitude of glycaemia and ecdysteroid-levels. These results suggest that psychoactive drugs are able to disrupt neuroendocrine control in decapod crustaceans, as they interfere with the normal regulation of the serotonergic system.
Collapse
Affiliation(s)
- Alexandrine Robert
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Jean-Paul Delbecque
- University of Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Avenue des Facultés, F-33405 Talence Cedex, France
| | - Stéphanie Olivier
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Agnès Poret
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Frank Le Foll
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Fabrice Durand
- Normandy University, UNIHAVRE, Faculty of Science and Technics, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Thomas Knigge
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France.
| |
Collapse
|
16
|
Gunaratne CA, Katz PS. Comparative Mapping of GABA-Immunoreactive Neurons in the Buccal Ganglia of Nudipleura Molluscs. J Comp Neurol 2015; 524:1181-92. [DOI: 10.1002/cne.23895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/08/2022]
Affiliation(s)
| | - Paul S. Katz
- Neuroscience Institute; Georgia State University; Atlanta Georgia 30302-5030
| |
Collapse
|
17
|
Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni. PLoS One 2015; 10:e0129800. [PMID: 26086611 PMCID: PMC4472778 DOI: 10.1371/journal.pone.0129800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites.
Collapse
|
18
|
Gunaratne CA, Sakurai A, Katz PS. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs. J Comp Neurol 2014; 522:794-810. [PMID: 24638845 DOI: 10.1002/cne.23446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/07/2022]
Abstract
The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs.
Collapse
Affiliation(s)
- Charuni A Gunaratne
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302-5030
| | | | | |
Collapse
|
19
|
Sakurai A, Gunaratne CA, Katz PS. Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusk Melibe leonina. J Neurophysiol 2014; 112:1317-28. [PMID: 24920032 DOI: 10.1152/jn.00261.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central pattern generator (CPG) underlying the rhythmic swimming behavior of the nudibranch Melibe leonina (Mollusca, Gastropoda, Heterobranchia) has been described as a simple half-center oscillator consisting of two reciprocally inhibitory pairs of interneurons called swim interneuron 1 (Si1) and swim interneuron 2 (Si2). In this study, we identified two additional pairs of interneurons that are part of the swim CPG: swim interneuron 3 (Si3) and swim interneuron 4 (Si4). The somata of Si3 and Si4 were both located in the pedal ganglion, near that of Si2, and both had axons that projected through the pedal commissure to the contralateral pedal ganglion. These neurons fulfilled the criteria for inclusion as members of the swim CPG: 1) they fired at a fixed phase in relation to Si1 and Si2, 2) brief changes in their activity reset the motor pattern, 3) prolonged changes in their activity altered the periodicity of the motor pattern, 4) they had monosynaptic connections with each other and with Si1 and Si2, and 5) their synaptic actions helped explain the phasing of the motor pattern. The results of this study show that the motor pattern has more complex internal dynamics than a simple left/right alternation of firing; the CPG circuit appears to be composed of two kernels of reciprocally inhibitory neurons, one consisting of Si1, Si2, and the contralateral Si4 and the other consisting of Si3. These two kernels interact with each other to produce a stable rhythmic motor pattern.
Collapse
Affiliation(s)
- Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | | | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
20
|
Sakurai A, Tamvacakis AN, Katz PS. Hidden synaptic differences in a neural circuit underlie differential behavioral susceptibility to a neural injury. eLife 2014; 3. [PMID: 24920390 PMCID: PMC4084405 DOI: 10.7554/elife.02598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022] Open
Abstract
Individuals vary in their responses to stroke and trauma, hampering predictions of outcomes. One reason might be that neural circuits contain hidden variability that becomes relevant only when those individuals are challenged by injury. We found that in the mollusc, Tritonia diomedea, subtle differences between animals within the neural circuit underlying swimming behavior had no behavioral relevance under normal conditions but caused differential vulnerability of the behavior to a particular brain lesion. The extent of motor impairment correlated with the site of spike initiation in a specific neuron in the neural circuit, which was determined by the strength of an inhibitory synapse onto this neuron. Artificially increasing or decreasing this inhibitory synaptic conductance with dynamic clamp correspondingly altered the extent of motor impairment by the lesion without affecting normal operation. The results suggest that neural circuit differences could serve as hidden phenotypes for predicting the behavioral outcome of neural damage.
Collapse
Affiliation(s)
- Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, United States
| | | | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, United States
| |
Collapse
|
21
|
Hazelton PD, Du B, Haddad SP, Fritts AK, Chambliss CK, Brooks BW, Bringolf RB. Chronic fluoxetine exposure alters movement and burrowing in adult freshwater mussels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 151:27-35. [PMID: 24438840 DOI: 10.1016/j.aquatox.2013.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
The antidepressant fluoxetine is commonly found in aquatic fauna living near or downstream from point-sources of municipal waste effluent. Continuous release of fluoxetine results in increased effective exposure duration in surface waters, resulting in a chronic exposure for animals downstream, particularly in effluent dominated ecosystems. Fluoxetine is known to cause disruptions in reproductive behavior of freshwater mussels (order Unionoida), including stimulating release of gametes, parturition of glochidia (larvae), and changes in lure display and foot protrusion. However, the ecological relevance of these effects at environmental concentrations is unknown. We conducted a 67-d exposure of adult Lampsilis fasciola to fluoxetine concentrations of 0, 0.5, 2.5, and 22.3μg/L and assessed impacts on behavior (lateral movement, burrowing, and filtering) and metabolism (glycogen storage and respiration). Mussels treated with 2.5 and 22.3μg/L fluoxetine displayed mantle lures significantly (p<0.05) more than controls. Animals treated with 22.3μg/L fluoxetine were statistically more likely to have shorter time-to-movement, greater total movement, and initiate burrowing sooner than control animals. These observations suggest that increased activity of mussels exposed to fluoxetine may result in increased susceptibility to predators and may lead to a reduction in energy stores.
Collapse
Affiliation(s)
- Peter D Hazelton
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States; Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA, United States.
| | - Bowen Du
- The Institute of Ecological, Earth and Environmental Sciences, Baylor University, Waco, TX, United States
| | - Samuel P Haddad
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Andrea K Fritts
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA, United States
| | - C Kevin Chambliss
- The Institute of Ecological, Earth and Environmental Sciences, Baylor University, Waco, TX, United States; Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States; Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Bryan W Brooks
- The Institute of Ecological, Earth and Environmental Sciences, Baylor University, Waco, TX, United States
| | - Robert B Bringolf
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States; Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA, United States.
| |
Collapse
|
22
|
Klussmann-Kolb A, Croll RP, Staubach S. Use of axonal projection patterns for the homologisation of cerebral nerves in Opisthobranchia, Mollusca and Gastropoda. Front Zool 2013; 10:20. [PMID: 23597272 PMCID: PMC3637218 DOI: 10.1186/1742-9994-10-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/18/2013] [Indexed: 11/29/2022] Open
Abstract
Introduction Gastropoda are guided by several sensory organs in the head region, referred to as cephalic sensory organs (CSOs). These CSOs are innervated by distinct nerves. This study proposes a unified terminology for the cerebral nerves and the categories of CSOs and then investigates the neuroanatomy and cellular innervation patterns of these cerebral nerves, in order to homologise them. The homologisation of the cerebral nerves in conjunction with other data, e.g. ontogenetic development or functional morphology, may then provide insights into the homology of the CSOs themselves. Results Nickel-lysine axonal tracing (“backfilling”) was used to stain the somata projecting into specific nerves in representatives of opisthobranch Gastropoda. Tracing patterns revealed the occurrence, size and relative position of somata and their axons and enabled these somata to be mapped to specific cell clusters. Assignment of cells to clusters followed a conservative approach based primarily on relative location of the cells. Each of the four investigated cerebral nerves could be uniquely identified due to a characteristic set of soma clusters projecting into the respective nerves via their axonal pathways. Conclusions As the described tracing patterns are highly conserved morphological characters, they can be used to homologise nerves within the investigated group of gastropods. The combination of adequate number of replicates and a comparative approach allows us to provide preliminary hypotheses on homologies for the cerebral nerves. Based on the hypotheses regarding cerebral nerve homology together with further data on ultrastructure and immunohistochemistry of CSOs published elsewhere, we can propose preliminary hypotheses regarding homology for the CSOs of the Opisthobranchia themselves.
Collapse
Affiliation(s)
- Annette Klussmann-Kolb
- Biosciences, Institute of Ecology, Evolution and Diversity, Phylogeny and Systematics group, Goethe University, Max-von-Laue-Straße 13, Frankfurt am Main, 60438, Germany.
| | | | | |
Collapse
|
23
|
Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior. J Neurosci 2013; 33:2709-17. [PMID: 23392697 DOI: 10.1523/jneurosci.4196-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuromodulation can dynamically alter neuronal and synaptic properties, thereby changing the behavioral output of a neural circuit. It is therefore conceivable that natural selection might act upon neuromodulation as a mechanism for sculpting the behavioral repertoire of a species. Here we report that the presence of neuromodulation is correlated with the production of a behavior that most likely evolved independently in two species: Tritonia diomedea and Pleurobranchaea californica (Mollusca, Gastropoda, Opisthobranchia, Nudipleura). Individuals of both species exhibit escape swimming behaviors consisting of repeated dorsal-ventral whole-body flexions. The central pattern generator (CPG) circuits underlying these behaviors contain homologous identified neurons: DSI and C2 in Tritonia and As and A1 in Pleurobranchaea. Homologs of these neurons also can be found in Hermissenda crassicornis where they are named CPT and C2, respectively. However, members of this species do not exhibit an analogous swimming behavior. In Tritonia and Pleurobranchaea, but not in Hermissenda, the serotonergic DSI homologs modulated the strength of synapses made by C2 homologs. Furthermore, the serotonin receptor antagonist methysergide blocked this neuromodulation and the swimming behavior. Additionally, in Pleurobranchaea, the robustness of swimming correlated with the extent of the synaptic modulation. Finally, injection of serotonin induced the swimming behavior in Tritonia and Pleurobranchaea, but not in Hermissenda. This suggests that the analogous swimming behaviors of Tritonia and Pleurobranchaea share a common dependence on serotonergic neuromodulation. Thus, neuromodulation may provide a mechanism that enables species to acquire analogous behaviors independently using homologous neural circuit components.
Collapse
|
24
|
Raslan A, Ernst P, Werle M, Thieme H, Szameit K, Finkensieper M, Guntinas-Lichius O, Irintchev A. Reduced cholinergic and glutamatergic synaptic input to regenerated motoneurons after facial nerve repair in rats: potential implications for recovery of motor function. Brain Struct Funct 2013; 219:891-909. [DOI: 10.1007/s00429-013-0542-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/12/2013] [Indexed: 02/02/2023]
|
25
|
Delgado N, Vallejo D, Miller MW. Localization of serotonin in the nervous system of Biomphalaria glabrata, an intermediate host for schistosomiasis. J Comp Neurol 2013; 520:3236-55. [PMID: 22434538 DOI: 10.1002/cne.23095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The digenetic trematode Schistosoma mansoni that causes the form of schistosomiasis found in the Western Hemisphere requires the freshwater snail Biomphalaria glabrata as its primary intermediate host. It has been proposed that the transition from the free-living S. mansoni miracidium to parasitic mother sporocyst depends on uptake of biogenic amines, e.g. serotonin, from the snail host. However, little is known about potential sources of serotonin in B. glabrata tissues. This investigation examined the localization of serotonin-like immunoreactivity (5HTli) in the central nervous system (CNS) and peripheral tissues of B. glabrata. Emphasis was placed on the cephalic and anterior pedal regions that are commonly the sites of S. mansoni miracidium penetration. The anterior foot and body wall were densely innervated by 5HTli fibers but no peripheral immunoreactive neuronal somata were detected. Within the CNS, clusters of 5HTli neurons were observed in the cerebral, pedal, left parietal, and visceral ganglia, suggesting that the peripheral serotonergic fibers originate from the CNS. Double-labeling experiments (biocytin backfill × serotonin immunoreactivity) of the tentacular nerve and the three major pedal nerves (Pd n. 10, Pd n. 11, and Pd n. 12) disclosed central neurons that project to the cephalopedal periphery. Overall, the central distribution of 5HTli neurons suggests that, as in other gastropods, serotonin regulates the locomotion, reproductive, and feeding systems of Biomphalaria. The projections to the foot and body wall indicate that serotonin may also participate in defensive, nociceptive, or inflammation responses. These observations identify potential sources of host-derived serotonin in this parasite-host system. Inc.
Collapse
Affiliation(s)
- Nadia Delgado
- Institute of Neurobiology, and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00901
| | | | | |
Collapse
|
26
|
Short-term synaptic plasticity compensates for variability in number of motor neurons at a neuromuscular junction. J Neurosci 2013; 32:16007-17. [PMID: 23136437 DOI: 10.1523/jneurosci.2584-12.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied how similar postsynaptic responses are maintained in the face of interindividual variability in the number of presynaptic neurons. In the stomatogastric ganglion of the lobster, Homarus americanus, the pyloric (PY) neurons exist in variable numbers across animals. We show that each individual fiber of the stomach muscles innervated by PY neurons received synaptic input from all neurons present. We performed intracellular recordings of excitatory junction potentials (EJPs) in the muscle fibers to determine the consequences of differences in the number of motor neurons. Despite the variability in neuron number, the compound electrical response of muscle fibers to natural bursting input was similar across individuals. The similarity of total synaptic activation was not due to differences in the spiking activity of individual motor neurons across animals with different numbers of PY neurons. The amplitude of a unitary EJP in response to a single spike in a single motor neuron also did not depend on the number of PY neurons present. Consequently, the compound EJP in response to a single stimulus that activated all motor axons present was larger in individuals with more PY neurons. However, when axons were stimulated with trains of pulses mimicking bursting activity, EJPs facilitated more in individuals with fewer PY neurons. After a few stimuli, this resulted in depolarizations similar to the ones in individuals with more PY neurons. We interpret our findings as evidence that compensatory or homeostatic regulatory mechanisms can act on short-term synaptic dynamics instead of absolute synaptic strength.
Collapse
|
27
|
Wollesen T, Sukhsangchan C, Seixas P, Nabhitabhata J, Wanninger A. Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. J Morphol 2012; 273:776-90. [PMID: 22461086 DOI: 10.1002/jmor.20023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/08/2012] [Accepted: 02/20/2012] [Indexed: 12/18/2022]
Abstract
The database on neurotransmitter distribution during central nervous system development of cephalopod mollusks is still scarce. We describe the ontogeny of serotonergic (5-HT-ir) and FMRFamide-like immunoreactive (Fa-lir) neurons in the central nervous system of the benthic Octopus vulgaris and Fa-lir distribution in the pelagic Argonauta hians. Comparing our data to previous studies, we aim at revealing shared immunochemical domains among coleoid cephalopods, i.e., all cephalopods except nautiluses. During development of O. vulgaris, 5-HT-ir and Fa-lir elements occur relatively late, namely during stage XII, when the brain neuropils are already highly differentiated. In stage XII-XX individuals, Fa-lir cell somata are located in the middle and posterior subesophageal mass and in the optic, posterior basal, and superior buccal lobes. 5-HT is predominately expressed in cell somata of the superior buccal, anterior basal, and optic lobes, as well as in the subesophageal mass. The overall population of Fa-lir neurons is larger than the one expressing 5-HT. Fa-lir elements are distributed throughout homologous brain areas of A. hians and O. vulgaris. We identified neuronal subsets with similar cell number and immunochemical phenotype in coleoids. These are located in corresponding brain regions of developmental stages and adults of O. vulgaris, A. hians, and the decapod squid Idiosepius notoides. O. vulgaris and I. notoides exhibit numerous 5-HT-ir cell somata in the superior buccal lobes but none or very few in the inferior buccal lobes. The latter have previously been homologized to the gastropod buccal ganglia, which also lack 5-HT-ir cell somata in euthyneuran gastropods. Among coleoids, 5-HT-ir neuronal subsets, which are located ventrally to the lateral anterior basal lobes and in the anterior middle subesophageal mass, are candidates for homologous subsets. Contrary to I. notoides, octopods exhibit Fa-lir cell somata ventrally to the brachial lobes and 5-HT-ir cell somata close to the stellate ganglia.
Collapse
Affiliation(s)
- Tim Wollesen
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria
| | | | | | | | | |
Collapse
|
28
|
Lillvis JL, Gunaratne CA, Katz PS. Neurochemical and neuroanatomical identification of central pattern generator neuron homologues in Nudipleura molluscs. PLoS One 2012; 7:e31737. [PMID: 22363716 PMCID: PMC3282766 DOI: 10.1371/journal.pone.0031737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
Certain invertebrate neurons can be identified by their behavioral functions. However, evolutionary divergence can cause some species to not display particular behaviors, thereby making it impossible to use physiological characteristics related to those behaviors for identifying homologous neurons across species. Therefore, to understand the neural basis of species-specific behavior, it is necessary to identify homologues using characteristics that are independent of physiology. In the Nudipleura mollusc Tritonia diomedea, Cerebral Neuron 2 (C2) was first described as being a member of the swim central pattern generator (CPG). Here we demonstrate that neurochemical markers, in conjunction with previously known neuroanatomical characteristics, allow C2 to be uniquely identified without the aid of electrophysiological measures. Specifically, C2 had three characteristics that, taken together, identified the neuron: 1) a white cell on the dorsal surface of the cerebral ganglion, 2) an axon that projected to the contralateral pedal ganglion and through the pedal commissure, and 3) immunoreactivity for the peptides FMRFamide and Small Cardioactive Peptide B. These same anatomical and neurochemical characteristics also uniquely identified the C2 homologue in Pleurobranchaea californica (called A1), which was previously identified by its analogous role in the Pleurobranchaea swim CPG. Furthermore, these characteristics were used to identify C2 homologues in Melibe leonina, Hermissenda crassicornis, and Flabellina iodinea, species that are phylogenetically closer to Tritonia than Pleurobranchaea, but do not display the same swimming behavior as Tritonia or Pleurobranchaea. These identifications will allow future studies comparing and contrasting the physiological properties of C2 across species that can and cannot produce the type of swimming behavior exhibited by Tritonia.
Collapse
Affiliation(s)
- Joshua L Lillvis
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America.
| | | | | |
Collapse
|
29
|
LEWIS STEFANIEL, LYONS DEBORAHE, MEEKINS TIFFANIEL, NEWCOMB JAMESM. Serotonin influences locomotion in the nudibranch mollusc Melibe leonina. THE BIOLOGICAL BULLETIN 2011; 220:155-60. [PMID: 21712224 PMCID: PMC4479179 DOI: 10.1086/bblv220n3p155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Serotonin (5-HT) influences locomotion in many animals, from flatworms to mammals. This study examined the effects of 5-HT on locomotion in the nudibranch mollusc Melibe leonina (Gould, 1852). M. leonina exhibits two modes of locomotion, crawling and swimming. Animals were bath-immersed in a range of concentrations of 5-HT or injected with various 5-HT solutions into the hemolymph and then monitored for locomotor activity. In contrast to other gastropods studied, M. leonina showed no significant effect of 5-HT on the distance crawled or the speed of crawling. However, the highest concentration (10(-3) mol l(-1) for bath immersion and 10(-5) mol l(-1) for injection) significantly increased the time spent swimming and the swimming speed. The 5-HT receptor antagonist methysergide inhibited the influence of 5-HT on the overall amount of swimming but not on swimming speed. These results suggest that 5-HT influences locomotion at the behavioral level in M. leonina. In conjunction with previous studies on the neural basis of locomotion in M. leonina, these results also suggest that this species is an excellent model system for investigating the 5-HT modulation of locomotion.
Collapse
|
30
|
Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors. Curr Biol 2011; 21:1036-43. [PMID: 21620707 DOI: 10.1016/j.cub.2011.04.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/01/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022]
Abstract
It is often assumed that similar behaviors in related species are produced by similar neural mechanisms. To test this, we examined the neuronal basis of a simple swimming behavior in two nudibranchs (Mollusca, Opisthobranchia), Melibe leonina and Dendronotus iris. The side-to-side swimming movements of Dendronotus [1] strongly resemble those of Melibe [2, 3]. In Melibe, it was previously shown that the central pattern generator (CPG) for swimming is composed of two bilaterally symmetric pairs of identified interneurons, swim interneuron 1 (Si1) and swim interneuron 2 (Si2), which are electrically coupled ipsilaterally and mutually inhibit both contralateral counterparts [2, 4]. We identified homologs of Si1 and Si2 in Dendronotus. (Henceforth, homologous neurons in each species will be distinguished by the subscripts (Den) and (Mel).) We found that Si2(Den) and Si2(Mel) play similar roles in generating the swim motor pattern. However, unlike Si1(Mel), Si1(Den) was not part of the swim CPG, was not strongly coupled to the ipsilateral Si2(Den), and did not inhibit the contralateral neurons. Thus, species differences exist in the neuronal organization of the swim CPGs despite the similarity of the behaviors. Therefore, similarity in species-typical behavior is not necessarily predictive of common neural mechanisms, even for homologous neurons in closely related species.
Collapse
|
31
|
Wollesen T, Degnan BM, Wanninger A. Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides. Cell Tissue Res 2010; 342:161-78. [PMID: 20976473 DOI: 10.1007/s00441-010-1051-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022]
Abstract
Cephalopods are unique among mollusks in exhibiting an elaborate central nervous system (CNS) and remarkable cognitive abilities. Despite a profound knowledge of the neuroanatomy and neurotransmitter distribution in their adult CNS, little is known about the expression of neurotransmitters during cephalopod development. Here, we identify the first serotonin-immunoreactive (5-HT-ir) neurons during ontogeny and describe the establishment of the 5-HT system in the pygmy squid, Idiosepius notoides. Neurons that are located dorsally to each optic lobe are the first to express 5-HT, albeit only when the lobular neuropils are already quite elaborated. Later, 5-HT is expressed in almost all lobes, with most 5-HT-ir cell somata appearing in the subesophageal mass. Further lobes with numerous 5-HT-ir cell somata are the subvertical and posterior basal lobes and the optic and superior buccal lobes. Hatching squids possess more 5-HT-ir neurons, although the proportions between the individual brain lobes remain the same. The majority of 5-HT-ir cell somata appears to be retained in the adult CNS. The overall distribution of 5-HT-ir elements within the CNS of adult I. notoides resembles that of adult Octopus vulgaris and Sepia officinalis. The superior frontal lobe of all three species possesses few or no 5-HT-ir cell somata, whereas the superior buccal lobe comprises many cell somata. The absence of 5-HT-ir cell somata in the inferior buccal lobes of cephalopods and the buccal ganglia of gastropods may constitute immunochemical evidence of their homology. This integrative work forms the basis for future studies comparing molluscan, lophotrochozoan, ecdysozoan, and vertebrate brains.
Collapse
Affiliation(s)
- Tim Wollesen
- Research Group for Comparative Zoology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | |
Collapse
|
32
|
Jing J, Gillette R, Weiss KR. Evolving concepts of arousal: insights from simple model systems. Rev Neurosci 2010; 20:405-27. [PMID: 20397622 DOI: 10.1515/revneuro.2009.20.5-6.405] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Arousal states strongly influence behavioral decisions. In general, arousal promotes activity and enhances responsiveness to sensory stimuli. Earlier work has emphasized general, or nonspecific, effects of arousal on multiple classes of behaviors. However, contemporary work indicates that arousal has quite specific effects on behavior. Here we review studies of arousal-related circuitry in molluscan model systems. Neural substrates for both general and specific effects of arousal have been identified. Based on the scope of their actions, we can distinguish two major classes of arousal elements: localized versus general. Actions of localized arousal elements are often limited to one class of behavior, and may thereby mediate specific effects of arousal. In contrast, general arousal elements may influence multiple classes of behaviors, and mediate both specific and nonspecific effects of arousal. One common way in which general arousal elements influence multiple behaviors is by acting on localized arousal elements of distinct networks. Often, effects on distinct networks have different time courses that may facilitate formation of specific behavioral sequences. This review highlights prominent roles of serotonergic systems in arousal that are conserved in gastropod molluscs despite extreme diversification of body forms, diet and ecological niches. The studies also indicate that the serotonergic elements can act as either localized or general arousal elements. We discuss the implications of these findings across animals.
Collapse
Affiliation(s)
- Jian Jing
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
33
|
Abstract
In cases of neuronal injury when regeneration is restricted, functional recovery can occur through reorganization of the remaining neural circuitry. We found an example of such recovery in the central pattern generator (CPG) for the escape swim of the mollusc Tritonia diomedea. The CPG neurons are bilaterally represented and each neuron projects an axon through one of two pedal commissures. Cutting the posterior pedal commissure [pedal nerve 6 (PdN6)] in the animal or in the isolated brain caused a deficit in the swim behavior and in the fictive motor pattern, respectively, each of which recovered over the course of 20 h. Locally blocking spiking activity in PdN6 with sodium-free saline and/or tetrodotoxin disrupted the motor pattern in a reversible manner. Maintained blockade of PdN6 led to a functional recovery of the swim motor pattern similar to that observed in response to cutting the commissure. Among the CPG neurons, cerebral neuron 2 (C2) makes functional connection onto the ventral swim interneuron-B (VSI) in both pedal ganglia. Cutting or blocking PdN6 eliminated C2-evoked excitation of VSI in the pedal ganglion distal to the lesion. Associated with the recovery of the swim motor pattern, the synaptic action of C2 onto VSI in the proximal pedal ganglion changed from being predominantly inhibitory to being predominantly excitatory. These results show that the Tritonia swim CPG undergoes adaptive plasticity in response to the loss of critical synaptic connections; reversal of synaptic action in the CPG may be at least partially responsible for this functional recovery.
Collapse
|
34
|
Neural analog of arousal: persistent conditional activation of a feeding modulator by serotonergic initiators of locomotion. J Neurosci 2009; 28:12349-61. [PMID: 19020028 DOI: 10.1523/jneurosci.3855-08.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated how a neural analog of a form of arousal induced by a mildly noxious stimulus can promote two antagonistic responses, locomotion and feeding. Two pairs of cerebral serotonergic interneurons in Aplysia, CC9 and CC10, were persistently activated by transient noxious stimuli. Direct stimulation of CC9-10 activated locomotor activity that outlasted the stimulation and enhanced subsequent nerve-evoked locomotor programs. Thus, CC9-10 function both as initiators and as modulators of the locomotor network. CC9-10 also interacted with the feeding circuit but in a fundamentally different manner. CC9-10 did not directly trigger feeding activity or activate feeding command or pattern generating interneurons. CC9-10 did, however, elicit slow EPSPs in serotonergic cells that modulate feeding responses, the metacerebral cells (MCCs). CC9-10 persistently enhanced MCC excitability, but did not activate the MCCs directly. Previous work has demonstrated that the MCCs are activated during food ingestion via a sensory neuron C2. Interestingly, we found that CC9-10 stimulation converted subthreshold C2 mediated excitation of the MCC into suprathreshold excitation. Transient noxious stimuli also enhanced MCC excitability, and this was largely mediated by CC9-10. To summarize, CC9-10 exert actions on the feeding network, but their functional effects appear to be conditional on the presence of food-related inputs to the MCCs. A potential advantage of this arrangement is that it may prevent conflicting responses from being directly evoked by noxious stimuli while also facilitating the ability of food-related stimuli to generate feeding responses in the aftermath of noxious stimulation.
Collapse
|
35
|
Martínez-Rubio C, Serrano GE, Miller MW. Localization of biogenic amines in the foregut of Aplysia californica: catecholaminergic and serotonergic innervation. J Comp Neurol 2009; 514:329-42. [PMID: 19330814 PMCID: PMC4023389 DOI: 10.1002/cne.21991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study examined the catecholaminergic and serotonergic innervation of the foregut of Aplysia californica, a model system in which the control of feeding behaviors can be investigated at the cellular level. Similar numbers (15-25) of serotonin-like-immunoreactive (5HTli) and tyrosine hydroxylase-like-immunoreactive (THli) fibers were present in each (bilateral) esophageal nerve (En), the major source of pregastric neural innervation in this system. The majority of En 5HTli and THli fibers originated from the anterior branch (En(2)), which innervates the pharynx and the anterior esophagus. Fewer fibers were present in the posterior branch (En(1)), which innervates the majority of the esophagus and the crop. Backfills of the two En branches toward the central nervous system (CNS) labeled a single, centrifugally projecting serotonergic fiber, originating from the metacerebral cell (MCC). The MCC fiber projected only to En(2). No central THli neurons were found to project to the En. Surveys of the pharynx and esophagus revealed major differences between their patterns of catecholaminergic (CA) and serotonergic innervation. Whereas THli fibers and cell bodies were distributed throughout the foregut, 5HTli fibers were present in restricted plexi, and no 5HTli somata were detected. Double-labeling experiments in the periphery revealed THli neurons projecting toward the buccal ganglion via En(2). Other afferents received dense perisomatic serotonergic innervation. Finally, qualitative and quantitative differences were observed between the buccal motor programs (BMPs) produced by stimulation of the two En branches. These observations increase our understanding of aminergic contributions to the pregastric regulation of Aplysia feeding behaviors.
Collapse
Affiliation(s)
- Clarissa Martínez-Rubio
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| | - Geidy E. Serrano
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy and Neurobiology,
University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
00901
| |
Collapse
|
36
|
Newcomb JM, Katz PS. Different functions for homologous serotonergic interneurons and serotonin in species-specific rhythmic behaviours. Proc Biol Sci 2009; 276:99-108. [PMID: 18782747 DOI: 10.1098/rspb.2008.0683] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Closely related species can exhibit different behaviours despite homologous neural substrates. The nudibranch molluscs Tritonia diomedea and Melibe leonina swim differently, yet their nervous systems contain homologous serotonergic neurons. In Tritonia, the dorsal swim interneurons (DSIs) are members of the swim central pattern generator (CPG) and their neurotransmitter serotonin is both necessary and sufficient to elicit a swim motor pattern. Here it is shown that the DSI homologues in Melibe, the cerebral serotonergic posterior-A neurons (CeSP-As), are extrinsic to the swim CPG, and that neither the CeSP-As nor their neurotransmitter serotonin is necessary for swim motor pattern initiation, which occurred when the CeSP-As were inactive. Furthermore, the serotonin antagonist methysergide blocked the effects of both the serotonin and CeSP-As but did not prevent the production of a swim motor pattern. However, the CeSP-As and serotonin could influence the Melibe swim circuit; depolarization of a cerebral serotonergic posterior-A was sufficient to initiate a swim motor pattern and hyperpolarization of a CeSP-A temporarily halted an ongoing swim motor pattern. Serotonin itself was sufficient to initiate a swim motor pattern or make an ongoing swim motor pattern more regular. Thus, evolution of species-specific behaviour involved alterations in the functions of identified homologous neurons and their neurotransmitter.
Collapse
Affiliation(s)
- James M Newcomb
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| | | |
Collapse
|
37
|
1-Phenoxy-2-propanol is a useful anaesthetic for gastropods used in neurophysiology. J Neurosci Methods 2008; 176:121-8. [PMID: 18809433 DOI: 10.1016/j.jneumeth.2008.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/24/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
Abstract
Anaesthesia is often used in neurophysiological, surgical, and neuroanatomical protocols. Several anaesthetics, including magnesium chloride, volatiles (halothane, etc.), and barbiturates, have been used in gastropod neurobiology. 1-Phenoxy-2-propanol (PP) is another anaesthetic option that has not yet been used extensively. We provide an analysis of the neural, muscular and behavioural effects of PP in gastropods. PP eliminates action potentials and reduces muscular contraction force in Hermissenda crassicornis, and eliminates behavioural activity in Tritonia diomedea. Our results show these effects are reversible, with complete action potential recovery, at least partial muscular recovery, and full behavioural recovery. Survival after surgery in T. diomedea was longer with PP than without anaesthetic, and PP also reduced contraction during tissue fixation in Lymnaea stagnalis. Moreover, PP can be bath applied, has low toxicity, and is biodegradable. Thus, PP is an effective anaesthetic in three species of gastropods, and useful in neurophysiological dissection, surgical, and fixation protocols.
Collapse
|
38
|
Faller S, Staubach S, Klussmann-Kolb A. Comparative immunohistochemistry of the cephalic sensory organs in Opisthobranchia (Mollusca, Gastropoda). ZOOMORPHOLOGY 2008. [DOI: 10.1007/s00435-008-0066-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Staubach S, Schützner P, Croll RP, Klussmann-Kolb A. Innervation patterns of the cerebral nerves in Haminoea hydatis (Gastropoda: Opisthobranchia): a test for intraspecific variability. ZOOMORPHOLOGY 2008. [DOI: 10.1007/s00435-008-0064-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Hatcher NG, Zhang X, Stuart JN, Moroz LL, Sweedler JV, Gillette R. 5-HT and 5-HT-SO4, but not tryptophan or 5-HIAA levels in single feeding neurons track animal hunger state. J Neurochem 2007; 104:1358-63. [PMID: 18036151 DOI: 10.1111/j.1471-4159.2007.05084.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-HT) is an intrinsic modulator of neural network excitation states in gastropod molluscs. 5-HT and related indole metabolites were measured in single, well-characterized serotonergic neurons of the feeding motor network of the predatory sea-slug Pleurobranchaea californica. Indole amounts were compared between paired hungry and satiated animals. Levels of 5-HT and its metabolite 5-HT-SO4 in the metacerebral giant neurons were observed in amounts approximately four-fold and two-fold, respectively, below unfed partners 24 h after a satiating meal. Intracellular levels of 5-hydroxyindole acetic acid and of free tryptophan did not differ significantly with hunger state. These data demonstrate that neurotransmitter levels and their metabolites can vary in goal-directed neural networks in a manner that follows internal state.
Collapse
Affiliation(s)
- N G Hatcher
- Department of Molecular & Integrative Physiology, Department of Chemistry and Beckman Institute, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | | | |
Collapse
|
41
|
Wollesen T, Wanninger A, Klussmann-Kolb A. Neurogenesis of cephalic sensory organs of Aplysia californica. Cell Tissue Res 2007; 330:361-79. [PMID: 17710438 DOI: 10.1007/s00441-007-0460-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 06/21/2007] [Indexed: 11/30/2022]
Abstract
The opisthobranch gastropod Aplysia californica serves as a model organism in experimental neurobiology because of its simple and well-known nervous system. However, its nervous periphery has been less intensely studied. We have reconstructed the ontogeny of the cephalic sensory organs (labial tentacles, rhinophores, and lip) of planktonic, metamorphic, and juvenile developmental stages. FMRFamide and serotonergic expression patterns have been examined by immunocytochemistry in conjunction with epifluorescence and confocal laser scanning microscopy. We have also applied scanning electron microscopy to analyze the ciliary distribution of these sensory epithelia. Labial tentacles and the lip develop during metamorphosis, whereas rhinophores appear significantly later, in stage 10 juveniles. Our study has revealed immunoreactivity against FMRFamides and serotonin in all major nerves. The common labial nerve develops first, followed by the labial tentacle base nerve, oral nerve, and rhinophoral nerve. We have also identified previously undescribed neuronal pathways and other FMRFamide-like-immunoreactive neuronal elements, such as peripheral ganglia and glomerulus-like structures, and two groups of conspicuous transient FMRFamide-like cell somata. We have further found two distinct populations of FMRFamide-positive cell somata located both subepidermally and in the inner regions of the cephalic sensory organs in juveniles. The latter population partly consists of sensory cells, suggesting an involvement of FMRFamide-like peptides in the modulation of peripheral sensory processes. This study is the first concerning the neurogenesis of cephalic sensory organs in A. californica and may serve as a basis for future studies of neuronal elements in gastropod molluscs.
Collapse
Affiliation(s)
- Tim Wollesen
- Institute of Ecology, Evolution and Diversity, J. W. Goethe University, Siesmayerstrasse 70, 60323, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
42
|
Newcomb JM, Katz PS. Homologues of serotonergic central pattern generator neurons in related nudibranch molluscs with divergent behaviors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:425-43. [PMID: 17180703 DOI: 10.1007/s00359-006-0196-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/23/2006] [Accepted: 11/19/2006] [Indexed: 10/23/2022]
Abstract
Homologues of a neuron that contributes to a species-specific behavior were identified and characterized in species lacking that behavior. The nudibranch Tritonia diomedea swims by flexing its body dorsally and ventrally. The dorsal swim interneurons (DSIs) are components of the central pattern generator (CPG) underlying this rhythmic motor pattern and also activate crawling. Homologues of the DSIs were identified in six nudibranchs that do not exhibit dorsal-ventral swimming: Tochuina tetraquetra, Melibe leonina, Dendronotus iris, D. frondosus, Armina californica, and Triopha catalinae. Homology was based upon shared features that distinguish the DSIs from all other neurons: (1) serotonin immunoreactivity, (2) location in the Cerebral serotonergic posterior (CeSP) cluster, and (3) axon projection to the contralateral pedal ganglion. The DSI homologues, named CeSP-A neurons, share additional features with the DSIs: irregular basal firing, synchronous inputs, electrical coupling, and reciprocal inhibition. Unlike the DSIs, the CeSP-A neurons were not rhythmically active in response to nerve stimulation. The CeSP-A neurons in Tochuina and Triopha also excited homologues of the Tritonia Pd5 neuron, a crawling efferent. Thus, the CeSP-A neurons and the DSIs may be part of a conserved network related to crawling that may have been co-opted into a rhythmic swim CPG in Tritonia.
Collapse
Affiliation(s)
- James M Newcomb
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA.
| | | |
Collapse
|
43
|
Katz PS. Evolution and development of neural circuits in invertebrates. Curr Opin Neurobiol 2006; 17:59-64. [PMID: 17174546 DOI: 10.1016/j.conb.2006.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 12/07/2006] [Indexed: 01/06/2023]
Abstract
Developmental mechanisms can shed light on how evolutionary diversity has arisen. Invertebrate nervous systems offer a wealth of diverse structures and functions from which to relate development to evolution. Individual homologous neurons have been shown to have distinct roles in species with different behaviors. In addition, specific neurons have been lost or gained in some phylogenetic lineages. The ability to address the neural basis of behavior at the cellular level in invertebrates has facilitated discoveries showing that species-specific behavior can arise from differences in synaptic strength, in neuronal structure and in neuromodulation. The mechanisms involved in the development of neural circuits lead to these differences across species.
Collapse
Affiliation(s)
- Paul S Katz
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA.
| |
Collapse
|