1
|
Sullivan MA, Fritch HA, Slotnick SD. Spatial memory encoding is associated with the anterior and posterior hippocampus: An fMRI activation likelihood estimation meta-analysis. Hippocampus 2024; 34:575-582. [PMID: 39150234 DOI: 10.1002/hipo.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/15/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
It has been hypothesized that differential processing occurs along the longitudinal (anterior-posterior) axis of the hippocampus. One hypothesis is that spatial memory (during both encoding and retrieval) is associated with the posterior hippocampus. An alternative hypothesis is that memory encoding (either spatial or nonspatial) is associated with the anterior hippocampus and memory retrieval is associated with the posterior hippocampus. Of importance, during spatial memory encoding, the spatial-posterior hypothesis predicts posterior hippocampal involvement, whereas the encoding-retrieval hypothesis predicts anterior hippocampal involvement. To distinguish between these hypotheses, we conducted a coordinate-based fMRI activation likelihood estimation (ALE) meta-analysis of 26 studies (with a total of 435 participants) that reported hippocampal activity during spatial memory encoding and/or spatial memory retrieval. Both spatial memory encoding and spatial memory retrieval produced extensive activity along the longitudinal axis of the hippocampus as well as the entorhinal cortex, the perirhinal cortex, and the parahippocampal cortex. Critically, the contrast of spatial memory encoding and spatial memory retrieval produced activations in both the anterior hippocampus and the posterior hippocampus. That spatial memory encoding produced activity in both the anterior and posterior hippocampus can be taken to reject strict forms of the spatial-posterior hypothesis, which stipulates that all forms of spatial memory produce activity in the posterior hippocampus, and the encoding-retrieval hypothesis, which stipulates that all forms of encoding versus retrieval produce activity in only the anterior hippocampus. Our results indicate that spatial memory encoding can involve the anterior hippocampus and the posterior hippocampus.
Collapse
Affiliation(s)
- Madeline A Sullivan
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Haley A Fritch
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
2
|
Ohara S, Yoshino R, Kimura K, Kawamura T, Tanabe S, Zheng A, Nakamura S, Inoue KI, Takada M, Tsutsui KI, Witter MP. Laminar Organization of the Entorhinal Cortex in Macaque Monkeys Based on Cell-Type-Specific Markers and Connectivity. Front Neural Circuits 2021; 15:790116. [PMID: 34949991 PMCID: PMC8688913 DOI: 10.3389/fncir.2021.790116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex (EC) is a major gateway between the hippocampus and telencephalic structures, and plays a critical role in memory and navigation. Through the use of various molecular markers and genetic tools, neuron types constituting EC are well studied in rodents, and their layer-dependent distributions, connections, and functions have also been characterized. In primates, however, such cell-type-specific understandings are lagging. To bridge the gap between rodents and primates, here we provide the first cell-type-based global map of EC in macaque monkeys. The laminar organization of the monkey EC was systematically examined and compared with that of the rodent EC by using immunohistochemistry for molecular markers which have been well characterized in the rodent EC: reelin, calbindin, and Purkinje cell protein 4 (PCP4). We further employed retrograde neuron labeling from the nucleus accumbens and amygdala to identify the EC output layer. This cell-type-based approach enabled us to apply the latest laminar definition of rodent EC to monkeys. Based on the similarity of the laminar organization, the monkey EC can be divided into two subdivisions: rostral and caudal EC. These subdivisions likely correspond to the lateral and medial EC in rodents, respectively. In addition, we found an overall absence of a clear laminar arrangement of layer V neurons in the rostral EC, unlike rodents. The cell-type-based architectural map provided in this study will accelerate the application of genetic tools in monkeys for better understanding of the role of EC in memory and navigation.
Collapse
Affiliation(s)
- Shinya Ohara
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Rintaro Yoshino
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kei Kimura
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Taichi Kawamura
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Soshi Tanabe
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Andi Zheng
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Shinya Nakamura
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Laboratory of Systems Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Menno P Witter
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Laboratory of Systems Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
4
|
Ohara S, Blankvoort S, Nair RR, Nigro MJ, Nilssen ES, Kentros C, Witter MP. Local projections of layer Vb-to-Va are more prominent in lateral than in medial entorhinal cortex. eLife 2021; 10:e67262. [PMID: 33769282 PMCID: PMC8051944 DOI: 10.7554/elife.67262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex, in particular neurons in layer V, allegedly mediate transfer of information from the hippocampus to the neocortex, underlying long-term memory. Recently, this circuit has been shown to comprise a hippocampal output recipient layer Vb and a cortical projecting layer Va. With the use of in vitro electrophysiology in transgenic mice specific for layer Vb, we assessed the presence of the thus necessary connection from layer Vb-to-Va in the functionally distinct medial (MEC) and lateral (LEC) subdivisions; MEC, particularly its dorsal part, processes allocentric spatial information, whereas the corresponding part of LEC processes information representing elements of episodes. Using identical experimental approaches, we show that connections from layer Vb-to-Va neurons are stronger in dorsal LEC compared with dorsal MEC, suggesting different operating principles in these two regions. Although further in vivo experiments are needed, our findings imply a potential difference in how LEC and MEC mediate episodic systems consolidation.
Collapse
Grants
- endowment Kavli Foundation
- infrastructure grant NORBRAIN,#197467 Norwegian Research Council
- the Centre of Excellence scheme - Centre for Neural Computation,#223262 Norwegian Research Council
- research grant,# 227769 Norwegian Research Council
- KAKENHI,#19K06917 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI (#19K06917) Ministry of Education, Culture, Sports, Science and Technology
- #197467 Norwegian Research Council
- #223262 Norwegian Research Council
- #227769 Norwegian Research Council
Collapse
Affiliation(s)
- Shinya Ohara
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life SciencesTohokuJapan
| | - Stefan Blankvoort
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Rajeevkumar Raveendran Nair
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Maximiliano J Nigro
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Eirik S Nilssen
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Clifford Kentros
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Menno P Witter
- Kavli institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
5
|
Witter MP, Amaral DG. The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum. J Comp Neurol 2020; 529:828-852. [DOI: 10.1002/cne.24983] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Menno P. Witter
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| |
Collapse
|
6
|
Abstract
The entorhinal cortex (EC) is a critical element of the hippocampal formation located within the medial temporal lobe (MTL) in primates. The EC has historically received attention for being the primary mediator of cortical information going into and coming from the hippocampus proper. In this review, we highlight the significance of the EC as a major player in memory processing, along with other associated structures in the primate MTL. The complex, convergent topographies of cortical and subcortical input to the EC, combined with short-range intrinsic connectivity and the selective targeting of EC efferents to the hippocampus, provide evidence for subregional specialization and integration of information beyond what would be expected if this structure were a simple conduit of information for the hippocampus. Lesion studies of the EC provide evidence implicating this region as critical for memory and the flexible use of complex relational associations between experienced events. The physiology of this structure's constituent principal cells mirrors the complexity of its anatomy. EC neurons respond preferentially to aspects of memory-dependent paradigms including object, place, and time. EC neurons also show striking spatial representations as primates explore visual space, similar to those identified in rodents navigating physical space. In this review, we highlight the great strides that have been made toward furthering our understanding of the primate EC, and we identify paths forward for future experiments to provide additional insight into the role of this structure in learning and memory.
Collapse
Affiliation(s)
- Aaron D Garcia
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington 98195, USA.,Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, Washington 98195, USA;
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, Washington 98195, USA; .,Washington National Primate Research Center, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
7
|
Piguet O, J Chareyron L, Banta Lavenex P, G Amaral D, Lavenex P. Postnatal development of the entorhinal cortex: A stereological study in macaque monkeys. J Comp Neurol 2020; 528:2308-2332. [PMID: 32134112 DOI: 10.1002/cne.24897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
The entorhinal cortex is the main gateway for interactions between the neocortex and the hippocampus. Distinct regions, layers, and cells of the hippocampal formation exhibit different profiles of structural and molecular maturation during postnatal development. Here, we provide estimates of neuron number, neuronal soma size, and volume of the different layers and subdivisions of the monkey entorhinal cortex (Eo, Er, Elr, Ei, Elc, Ec, Ecl) during postnatal development. We found different developmental changes in neuronal soma size and volume of distinct layers in different subdivisions, but no changes in neuron number. Layers I and II developed early in most subdivisions. Layer III exhibited early maturation in Ec and Ecl, a two-step/early maturation in Ei and a late maturation in Er. Layers V and VI exhibited an early maturation in Ec and Ecl, a two-step and early maturation in Ei, and a late maturation in Er. Neuronal soma size increased transiently at 6 months of age and decreased thereafter to reach adult size, except in Layer II of Ei, and Layers II and III of Ec and Ecl. These findings support the theory that different hippocampal circuits exhibit distinct developmental profiles, which may subserve the emergence of different hippocampus-dependent memory processes. We discuss how the early maturation of the caudal entorhinal cortex may contribute to path integration and basic allocentric spatial processing, whereas the late maturation of the rostral entorhinal cortex may contribute to the increased precision of allocentric spatial representations and the temporal integration of individual items into episodic memories.
Collapse
Affiliation(s)
- Olivia Piguet
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Loïc J Chareyron
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland.,Faculty of Psychology, Swiss Distance University, Brig, Switzerland
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, California.,California National Primate Research Center, University of California, Davis, California
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland.,Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Ohara S, Gianatti M, Itou K, Berndtsson CH, Doan TP, Kitanishi T, Mizuseki K, Iijima T, Tsutsui KI, Witter MP. Entorhinal Layer II Calbindin-Expressing Neurons Originate Widespread Telencephalic and Intrinsic Projections. Front Syst Neurosci 2019; 13:54. [PMID: 31680885 PMCID: PMC6803526 DOI: 10.3389/fnsys.2019.00054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/30/2019] [Indexed: 12/02/2022] Open
Abstract
In the present study we provide the first systematic and quantitative hodological study of the calbindin-expressing (CB+) principal neurons in layer II of the entorhinal cortex and compared the respective projections of the lateral and medial subdivisions of the entorhinal cortex. Using elaborate quantitative retrograde tracing, complemented by anterograde tracing, we report that the layer II CB+ population comprises neurons with diverse, mainly excitatory projections. At least half of them originate local intrinsic and commissural projections which distribute mainly to layer I and II. We further show that long-range CB+ projections from the two entorhinal subdivisions differ substantially in that MEC projections mainly target field CA1 of the hippocampus, whereas LEC CB+ projections distribute much more widely to a substantial number of known forebrain targets. This connectional difference between the CB+ populations in LEC and MEC is reminiscent of the overall projection pattern of the two entorhinal subdivisions.
Collapse
Affiliation(s)
- Shinya Ohara
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Michele Gianatti
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kazuki Itou
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Christin H Berndtsson
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thanh P Doan
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Takuma Kitanishi
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Toshio Iijima
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
9
|
Doan TP, Lagartos-Donate MJ, Nilssen ES, Ohara S, Witter MP. Convergent Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, but Not Medial, Entorhinal Cortex. Cell Rep 2019; 29:617-627.e7. [DOI: 10.1016/j.celrep.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022] Open
|
10
|
Nilssen ES, Doan TP, Nigro MJ, Ohara S, Witter MP. Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus 2019; 29:1238-1254. [PMID: 31408260 DOI: 10.1002/hipo.23145] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022]
Abstract
In this review, we aim to reappraise the organization of intrinsic and extrinsic networks of the entorhinal cortex with a focus on the concept of parallel cortical connectivity streams. The concept of two entorhinal areas, the lateral and medial entorhinal cortex, belonging to two parallel input-output streams mediating the encoding and storage of respectively what and where information hinges on the claim that a major component of their cortical connections is with the perirhinal cortex and postrhinal or parahippocampal cortex in, respectively, rodents or primates. In this scenario, the lateral entorhinal cortex and the perirhinal cortex are connectionally associated and likewise the postrhinal/parahippocampal cortex and the medial entorhinal cortex are partners. In contrast, here we argue that the connectivity matrix emphasizes the potential of substantial integration of cortical information through interactions between the two entorhinal subdivisions and between the perirhinal and postrhinal/parahippocampal cortices, but most importantly through a new observation that the postrhinal/parahippocampal cortex projects to both lateral and medial entorhinal cortex. We suggest that entorhinal inputs provide the hippocampus with high-order complex representations of the external environment, its stability, as well as apparent changes either as an inherent feature of a biological environment or as the result of navigating the environment. This thus indicates that the current connectional model of the parahippocampal region as part of the medial temporal lobe memory system needs to be revised.
Collapse
Affiliation(s)
- Eirik S Nilssen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh P Doan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano J Nigro
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Shinya Ohara
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
11
|
Koster R, Chadwick MJ, Chen Y, Berron D, Banino A, Düzel E, Hassabis D, Kumaran D. Big-Loop Recurrence within the Hippocampal System Supports Integration of Information across Episodes. Neuron 2019; 99:1342-1354.e6. [PMID: 30236285 DOI: 10.1016/j.neuron.2018.08.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/28/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023]
Abstract
Recent evidence challenges the widely held view that the hippocampus is specialized for episodic memory, by demonstrating that it also underpins the integration of information across experiences. Contemporary computational theories propose that these two contrasting functions can be accomplished by big-loop recurrence, whereby the output of the system is recirculated back into the hippocampus. We use ultra-high-resolution fMRI to provide support for this hypothesis, by showing that retrieved information is presented as a new input on the superficial entorhinal cortex-driven by functional connectivity between the deep and superficial entorhinal layers. Further, the magnitude of this laminar connectivity correlated with inferential performance, demonstrating its importance for behavior. Our findings offer a novel perspective on information processing within the hippocampus and support a unifying framework in which the hippocampus captures higher-order structure across experiences, by creating a dynamic memory space from separate episodic codes for individual experiences.
Collapse
Affiliation(s)
| | | | - Yi Chen
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
| | | | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK
| | - Demis Hassabis
- DeepMind, 5 New Street Square, London EC4A 3TW, UK; Gatsby Computational Neuroscience Unit, 25 Howland Street, London W1T 4JG, UK
| | - Dharshan Kumaran
- DeepMind, 5 New Street Square, London EC4A 3TW, UK; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK.
| |
Collapse
|
12
|
Piguet O, Chareyron LJ, Banta Lavenex P, Amaral DG, Lavenex P. Stereological analysis of the rhesus monkey entorhinal cortex. J Comp Neurol 2018; 526:2115-2132. [PMID: 30004581 DOI: 10.1002/cne.24496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 11/06/2022]
Abstract
The entorhinal cortex is a prominent structure of the medial temporal lobe, which plays a pivotal role in the interaction between the neocortex and the hippocampal formation in support of declarative and spatial memory functions. We implemented design-based stereological techniques to provide estimates of neuron numbers, neuronal soma size, and volume of different layers and subdivisions of the entorhinal cortex in adult rhesus monkeys (Macaca mulatta; 5-9 years of age). These data corroborate the structural differences between different subdivisions of the entorhinal cortex, which were shown in previous connectional and cytoarchitectonic studies. In particular, differences in the number of neurons contributing to distinct afferent and efferent hippocampal pathways suggest not only that different types of information may be more or less segregated between caudal and rostral subdivisions, but also, and perhaps most importantly, that the nature of the interaction between the entorhinal cortex and the rest of the hippocampal formation may vary between different subdivisions. We compare our quantitative data in monkeys with previously published stereological data for the rat and human, in order to provide a perspective on the relative development and structural organization of the main subdivisions of the entorhinal cortex in two model organisms widely used to decipher the basic functional principles of the human medial temporal lobe memory system. Altogether, these data provide fundamental information on the number of functional units that comprise the entorhinal-hippocampal circuits and should be considered in order to build realistic models of the medial temporal lobe memory system.
Collapse
Affiliation(s)
- Olivia Piguet
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Loïc J Chareyron
- Laboratory of Brain and Cognitive Development, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, 1015 Lausanne, Switzerland
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, California.,California National Primate Research Center, University of California, Davis, California
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, 1015 Lausanne, Switzerland.,Laboratory of Brain and Cognitive Development, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys. Brain Struct Funct 2017; 222:3899-3914. [PMID: 28488186 DOI: 10.1007/s00429-017-1441-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/29/2017] [Indexed: 12/12/2022]
Abstract
Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.
Collapse
|
14
|
Zeineh MM, Palomero-Gallagher N, Axer M, Gräßel D, Goubran M, Wree A, Woods R, Amunts K, Zilles K. Direct Visualization and Mapping of the Spatial Course of Fiber Tracts at Microscopic Resolution in the Human Hippocampus. Cereb Cortex 2017; 27:1779-1794. [PMID: 26874183 DOI: 10.1093/cercor/bhw010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While hippocampal connectivity is essential to normal memory function, our knowledge of human hippocampal circuitry is largely inferred from animal studies. Using polarized light microscopy at 1.3 µm resolution, we have directly visualized the 3D course of key medial temporal pathways in 3 ex vivo human hemispheres and 2 ex vivo vervet monkey hemispheres. The multiple components of the perforant path system were clearly identified: Superficial sheets of fibers emanating from the entorhinal cortex project to the presubiculum and parasubiculum, intermixed transverse and longitudinal angular bundle fibers perforate the subiculum and then project to the cornu ammonis (CA) fields and dentate molecular layer, and a significant alvear component runs from the angular bundle to the CA fields. From the hilus, mossy fibers localize to regions of high kainate receptor density, and the endfolial pathway, mostly investigated in humans, merges with the Schaffer collaterals. This work defines human hippocampal pathways underlying mnemonic function at an unprecedented resolution.
Collapse
Affiliation(s)
- Michael M Zeineh
- Department of Radiology, Stanford University, Lucas Center for Imaging, Stanford, CA 94305, USA
| | | | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - David Gräßel
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Maged Goubran
- Department of Radiology, Stanford University, Lucas Center for Imaging, Stanford, CA 94305, USA
| | - Andreas Wree
- Institute of Anatomy, University of Rostock, Rostock, Germany
| | - Roger Woods
- Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine UCLA, Los Angeles, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,C. and O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA Jülich-Aachen Research Alliance, Translational Brain Medicine, Jülich, Germany
| |
Collapse
|
15
|
Disconnection of the Perirhinal and Postrhinal Cortices Impairs Recognition of Objects in Context But Not Contextual Fear Conditioning. J Neurosci 2017; 37:4819-4829. [PMID: 28411272 DOI: 10.1523/jneurosci.0254-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 04/02/2017] [Indexed: 01/11/2023] Open
Abstract
The perirhinal cortex (PER) is known to process object information, whereas the rodent postrhinal cortex (POR), homolog to the parahippocampal cortex in primates, is thought to process spatial information. A number of studies, however, provide evidence that both areas are involved in processing contextual information. In this study, we tested the hypothesis that the rat POR relies on object information received from the PER to form complex representations of context. Using three fear-conditioning (FC) paradigms (signaled, unsignaled, and renewal) and two context-guided object recognition tasks (with 3D and 2D objects), we examined the effects of crossed excitotoxic lesions to the POR and the contralateral PER. Performance of rats with crossed lesions was compared with that of rats with ipsilateral POR plus PER lesions and sham-operated rats. We found that rats with contralateral PER-POR lesions were impaired in object-context recognition but not in contextual FC. Therefore, interaction between the POR and PER is necessary for context-guided exploratory behavior but not for associating fear with context. Our results provide evidence for the hypothesis that the POR relies on object and pattern information from the PER to encode representations of context. The association of fear with a context, however, may be supported by alternate cortical and/or subcortical pathways when PER-POR interaction is not available. Our results suggest that contextual FC may represent a special case of context-guided behavior.SIGNIFICANCE STATEMENT Representations of context are important for perception, memory, decision making, and other cognitive processes. Moreover, there is extensive evidence that the use of contextual representations to guide appropriate behavior is disrupted in neuropsychiatric and neurological disorders including developmental disorders, schizophrenia, affective disorders, and Alzheimer's disease. Many of these disorders are accompanied by changes in parahippocampal and hippocampal structures. Understanding how context is represented in the brain and how parahippocampal structures are involved will enhance our understanding and treatment of the cognitive and behavioral symptoms associated with neurological disorders and neuropsychiatric disease.
Collapse
|
16
|
Kuhn T, Gullett JM, Nguyen P, Boutzoukas AE, Ford A, Colon-Perez LM, Triplett W, Carney PR, Mareci TH, Price CC, Bauer RM. Test-retest reliability of high angular resolution diffusion imaging acquisition within medial temporal lobe connections assessed via tract based spatial statistics, probabilistic tractography and a novel graph theory metric. Brain Imaging Behav 2016; 10:533-47. [PMID: 26189060 PMCID: PMC4718901 DOI: 10.1007/s11682-015-9425-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.
Collapse
Affiliation(s)
- T Kuhn
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA.
| | - J M Gullett
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
- Department of VA Brain Rehabilitation Research Center, Malcolm Randall VA Center, Gainesville, FL, USA
| | - P Nguyen
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
| | - A E Boutzoukas
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
| | - A Ford
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Department of VA Brain Rehabilitation Research Center, Malcolm Randall VA Center, Gainesville, FL, USA
| | - L M Colon-Perez
- Department of Physics, University of Florida, Gainesville, FL, USA
| | - W Triplett
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - P R Carney
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Department of J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - T H Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - C C Price
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
| | - R M Bauer
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
- Department of VA Brain Rehabilitation Research Center, Malcolm Randall VA Center, Gainesville, FL, USA
| |
Collapse
|
17
|
Schultz H, Sommer T, Peters J. The Role of the Human Entorhinal Cortex in a Representational Account of Memory. Front Hum Neurosci 2015; 9:628. [PMID: 26635581 PMCID: PMC4653609 DOI: 10.3389/fnhum.2015.00628] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
Connectivity studies in animals form the basis for a representational view of medial temporal lobe (MTL) subregions. In this view, distinct subfields of the entorhinal cortex (EC) relay object-related and spatial information from the perirhinal and parahippocampal cortices (PRC, PHC) to the hippocampus (HC). Relatively recent advances in functional magnetic resonance imaging (fMRI) methodology allow examining properties of human EC subregions directly. Antero-lateral and posterior-medial EC subfields show remarkable consistency to their putative rodent and nonhuman primate homologs with regard to intra- and extra-MTL functional connectivity. Accordingly, there is now evidence for a dissociation of object-related vs. spatial processing in human EC subfields. Here, variance in localization may be integrated in the antero-lateral vs. posterior-medial distinction, but may additionally reflect process differences. Functional results in rodents further suggest material-specific representations may be more integrated in EC compared to PRC/PHC. In humans, however, evidence for such a dissociation between EC and PRC/PHC is lacking. Future research may elucidate on the unique contributions of human EC to memory, especially in light of its high degree of intrinsic and extrinsic connectivity. A thorough characterization of EC subfield function may not only advance our understanding of human memory, but also have important clinical implications.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Education and Psychology, Freie Universität Berlin Berlin, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Jan Peters
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
18
|
Navarro Schröder T, Haak KV, Zaragoza Jimenez NI, Beckmann CF, Doeller CF. Functional topography of the human entorhinal cortex. eLife 2015; 4. [PMID: 26052748 PMCID: PMC4458840 DOI: 10.7554/elife.06738] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/13/2015] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research on the role of the rodent medial and lateral entorhinal cortex (MEC/LEC) in spatial navigation, memory and related disease, their human homologues remain elusive. Here, we combine high-field functional magnetic resonance imaging at 7 T with novel data-driven and model-based analyses to identify corresponding subregions in humans based on the well-known global connectivity fingerprints in rodents and sensitivity to spatial and non-spatial information. We provide evidence for a functional division primarily along the anteroposterior axis. Localising the human homologue of the rodent MEC and LEC has important implications for translating studies on the hippocampo-entorhinal memory system from rodents to humans. DOI:http://dx.doi.org/10.7554/eLife.06738.001 In the early 1950s, an American named Henry Molaison underwent an experimental type of brain surgery to treat his severe epilepsy. The surgeon removed a region of the brain known as the temporal lobe from both sides of his brain. After the surgery, Molaison's epilepsy was greatly improved, but he was also left with a profound amnesia, unable to form new memories of recent events. Subsequent experiments, including many with Molaison himself as a subject, have attempted to identify the roles of the various structures within the temporal lobes. The hippocampus—which is involved in memory and spatial navigation—has received the most attention, but in recent years a region called the entorhinal cortex has also come to the fore. Known as the gateway to the hippocampus, the entorhinal cortex relays sensory information from the outer cortex of the brain to the hippocampus. In rats and mice the entorhinal cortex can be divided into two subregions that have distinct connections to other parts of the temporal lobe and to the rest of the brain. These are the medial entorhinal cortex, which is the subregion nearest the centre of the brain, and the lateral entorhinal cortex, which is to the left or right of the centre. For many years researchers had assumed that human entorhinal subregions were located simply to the center or to the sides of the brain. However, it was difficult to check this as the entorhinal cortex measures less than 1 cm across, which placed it beyond the reach of most brain-imaging techniques. Now, two independent groups of researchers have used a technique called functional magnetic resonance imaging to show a different picture. The fMRI data—which were collected in a magnetic field of 7 Tesla, rather than the 1.5 Tesla used in previous experiments—reveal that the entorhinal cortex is predominantly divided from front-to-back in humans. One of the groups—Navarro Schröder, Haak et al.—used three different sets of functional MRI data to show that the human entorhinal cortex has anterior-lateral and posterior-medial subregions. In one of these experiments, functional MRI was used to measure activity across the whole brain as subjects performed a virtual reality task: this task included some components that involved spatial navigation and other components that did not. The other group—Maass, Berron et al.—used the imaging data to show that the pattern of connections between the anterior-lateral subregion and the hippocampus was different to that between the posterior-medial subregion and the hippocampus. The discovery of these networks in the temporal lobe in humans will help to bridge the gap between studies of memory in rodents and in humans. Given that the lateral entorhinal cortex is one of the first regions to be affected in Alzheimer's disease, identifying the specific properties and roles of these networks could also provide insights into disease mechanisms. DOI:http://dx.doi.org/10.7554/eLife.06738.002
Collapse
Affiliation(s)
- Tobias Navarro Schröder
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | | | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Christian F Doeller
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
19
|
Long LL, Bunce JG, Chrobak JJ. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus. Front Syst Neurosci 2015; 9:37. [PMID: 25852496 PMCID: PMC4360780 DOI: 10.3389/fnsys.2015.00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 01/03/2023] Open
Abstract
Hippocampal theta has been related to locomotor speed, attention, anxiety, sensorimotor integration and memory among other emergent phenomena. One difficulty in understanding the function of theta is that the hippocampus (HPC) modulates voluntary behavior at the same time that it processes sensory input. Both functions are correlated with characteristic changes in theta indices. The current review highlights a series of studies examining theta local field potential (LFP) signals across the septotemporal or longitudinal axis of the HPC. While the theta signal is coherent throughout the entirety of the HPC, the amplitude, but not the frequency, of theta varies significantly across its three-dimensional expanse. We suggest that the theta signal offers a rich vein of information about how distributed neuronal ensembles support emergent function. Further, we speculate that emergent function across the long axis varies with respect to spatiotemporal scale. Thus, septal HPC processes details of the proximal spatiotemporal environment while more temporal aspects process larger spaces and wider time-scales. The degree to which emergent functions are supported by the synchronization of theta across the septotemporal axis is an open question. Our working model is that theta synchrony serves to bind ensembles representing varying resolutions of spatiotemporal information at interdependent septotemporal areas of the HPC. Such synchrony and cooperative interactions along the septotemporal axis likely support memory formation and subsequent consolidation and retrieval.
Collapse
Affiliation(s)
- Lauren L Long
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| | - Jamie G Bunce
- Neural Systems Lab, Department of Health Sciences, Boston University Boston, MA, USA
| | - James J Chrobak
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
20
|
Amaral DG, Kondo H, Lavenex P. An analysis of entorhinal cortex projections to the dentate gyrus, hippocampus, and subiculum of the neonatal macaque monkey. J Comp Neurol 2014; 522:1485-505. [PMID: 24122645 DOI: 10.1002/cne.23469] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 09/07/2013] [Accepted: 09/13/2013] [Indexed: 11/05/2022]
Abstract
The entorhinal cortex is the primary interface between the hippocampal formation and neocortical sources of sensory information. Although much is known about the cells of origin, termination patterns, and topography of the entorhinal projections to other fields of the adult hippocampal formation, very little is known about the development of these pathways, particularly in the human or nonhuman primate. We have carried out experiments in which the anterograde tracers (3) H-amino acids, biotinylated dextran amine, and Phaseolus vulgaris leucoagglutinin were injected into the entorhinal cortex in 2-week-old rhesus monkeys (Macaca mulatta). We found that the three fiber bundles originating from the entorhinal cortex (the perforant path, the alvear pathway, and the commissural connection) are all established by 2 weeks of age. Fundamental features of the laminar and topographic distribution of these pathways are also similar to those in adults. There is evidence, however, that some of these projections may be more extensive in the neonate than in the mature brain. The homotopic commissural projections from the entorhinal cortex, for example, originate from a larger region within the entorhinal cortex and terminate much more densely in layer I of the contralateral entorhinal cortex than in the adult. These findings indicate that the overall topographical organization of the main cortical afferent pathways to the dentate gyrus and hippocampus are established by birth. These findings add to the growing body of literature on the development of the primate hippocampal formation and will facilitate further investigations on the development of episodic memory.
Collapse
Affiliation(s)
- David G Amaral
- Department of Psychiatry and Behavioral Sciences, The M.I.N.D. Institute, The Center for Neuroscience and the California National Primate Research Center, University of California, Davis, Davis, California, 95817
| | | | | |
Collapse
|
21
|
Solodkin A, Chen EE, Van Hoesen GW, Heimer L, Shereen A, Kruggel F, Mastrianni J. In vivo parahippocampal white matter pathology as a biomarker of disease progression to Alzheimer's disease. J Comp Neurol 2014; 521:4300-17. [PMID: 23839862 DOI: 10.1002/cne.23418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 01/18/2023]
Abstract
Noninvasive diagnostic tests for Alzheimer's disease (AD) are limited. Postmortem diagnosis is based on density and distribution of neurofibrillary tangles (NFTs) and amyloid-rich neuritic plaques. In preclinical stages of AD, the cells of origin for the perforant pathway within the entorhinal cortex are among the first to display NFTs, indicating its compromise in early stages of AD. We used diffusion tensor imaging (DTI) to assess the integrity of the parahippocampal white matter in mild cognitive impairment (MCI) and AD, as a first step in developing a noninvasive tool for early diagnosis. Subjects with AD (N = 9), MCI (N = 8), or no cognitive impairment (NCI; N = 20) underwent DTI-MRI. Fractional anisotropy (FA) and mean (MD) and radial (RD) diffusivity measured from the parahippocampal white matter in AD and NCI subjects differed greatly. Discriminant analysis in the MCI cases assigned statistical membership of 38% of MCI subjects to the AD group. Preliminary data 1 year later showed that all MCI cases assigned to the AD group either met the diagnostic criteria for probable AD or showed significant cognitive decline. Voxelwise analysis in the parahippocampal white matter revealed a progressive change in the DTI patterns in MCI and AD subjects: whereas converted MCI cases showed structural changes restricted to the anterior portions of this region, in AD the pathology was generalized along the entire anterior-posterior axis. The use of DTI for in vivo assessment of the parahippocampal white matter may be useful for identifying individuals with MCI at highest risk for conversion to AD and for assessing disease progression.
Collapse
Affiliation(s)
- Ana Solodkin
- Department of Anatomy and Neurobiology, UC Irvine Medical School, Irvine, California, 92697-3940; Department of Neurology, UC Irvine Medical School, Irvine, California, 92697-3940
| | | | | | | | | | | | | |
Collapse
|
22
|
Cellular, columnar and modular organization of spatial representations in medial entorhinal cortex. Curr Opin Neurobiol 2014; 24:47-54. [DOI: 10.1016/j.conb.2013.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 11/20/2022]
|
23
|
Local generation and propagation of ripples along the septotemporal axis of the hippocampus. J Neurosci 2013; 33:17029-41. [PMID: 24155307 DOI: 10.1523/jneurosci.2036-13.2013] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A topographical relationship exists between the septotemporal segments of the hippocampus and their entorhinal-neocortical targets, but the physiological organization of activity along the septotemporal axis is poorly understood. We recorded sharp-wave ripple patterns in rats during sleep from the entire septotemporal axis of the CA1 pyramidal layer. Qualitatively similar ripples emerged at all levels. From the local seed, ripples traveled septally or temporally at a speed of ∼0.35 m/s, and the spatial spread depended on ripple magnitude. Ripples propagated smoothly across the septal and intermediate segments of the hippocampus, but ripples in the temporal segment often remained isolated. These findings show that ripples can combine information from the septal and intermediate hippocampus and transfer integrated signals downstream. In contrast, ripples that emerged in the temporal pole broadcast largely independent information to their cortical and subcortical targets.
Collapse
|
24
|
Hunsaker MR, Chen V, Tran GT, Kesner RP. The medial and lateral entorhinal cortex both contribute to contextual and item recognition memory: A test of the binding ofitems and context model. Hippocampus 2013; 23:380-91. [DOI: 10.1002/hipo.22097] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 11/07/2022]
|
25
|
Furtak SC, Ahmed OJ, Burwell RD. Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination. Neuron 2013; 76:976-88. [PMID: 23217745 DOI: 10.1016/j.neuron.2012.10.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 01/10/2023]
Abstract
Postrhinal cortex, rodent homolog of the primate parahippocampal cortex, processes spatial and contextual information. Our hypothesis of postrhinal function is that it serves to encode context, in part, by forming representations that link objects to places. To test this hypothesis, we recorded postrhinal neurons and local field potentials (LFPs) in rats trained on a two-choice, visual discrimination task. As predicted, many postrhinal neurons signaled object-location conjunctions. Another large proportion encoded egocentric motor responses. In addition, postrhinal LFPs exhibited strong oscillatory rhythms in the theta band, and many postrhinal neurons were phase locked to theta. Although correlated with running speed, theta power was lower than predicted by speed alone immediately before and after choice. However, theta power was significantly increased following incorrect decisions, suggesting a role in signaling error. These findings provide evidence that postrhinal cortex encodes representations that link objects to places and suggest postrhinal theta modulation extends to cognitive as well as spatial functions.
Collapse
Affiliation(s)
- Sharon C Furtak
- Department of Cognitive, Linguistics and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
26
|
Aggleton JP. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci Biobehav Rev 2011; 36:1579-96. [PMID: 21964564 DOI: 10.1016/j.neubiorev.2011.09.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
A review of medial temporal lobe connections reveals three distinct groupings of hippocampal efferents. These efferent systems and their putative memory functions are: (1) The 'extended-hippocampal system' for episodic memory, which involves the anterior thalamic nuclei, mammillary bodies and retrosplenial cortex, originates in the subicular cortices, and has a largely laminar organisation; (2) The 'rostral hippocampal system' for affective and social learning, which involves prefrontal cortex, amygdala and nucleus accumbens, has a columnar organisation, and originates from rostral CA1 and subiculum; (3) The 'reciprocal hippocampal-parahippocampal system' for sensory processing and integration, which originates from the length of CA1 and the subiculum, and is characterised by columnar, connections with reciprocal topographies. A fourth system, the 'parahippocampal-prefrontal system' that supports familiarity signalling and retrieval processing, has more widespread prefrontal connections than those of the hippocampus, along with different thalamic inputs. Despite many interactions between these four systems, they may retain different roles in memory which when combined explain the importance of the medial temporal lobe for the formation of declarative memories.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
27
|
Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010; 65:7-19. [PMID: 20152109 DOI: 10.1016/j.neuron.2009.11.031] [Citation(s) in RCA: 2339] [Impact Index Per Article: 167.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 12/11/2022]
Abstract
One literature treats the hippocampus as a purely cognitive structure involved in memory; another treats it as a regulator of emotion whose dysfunction leads to psychopathology. We review behavioral, anatomical, and gene expression studies that together support a functional segmentation into three hippocampal compartments: dorsal, intermediate, and ventral. The dorsal hippocampus, which corresponds to the posterior hippocampus in primates, performs primarily cognitive functions. The ventral (anterior in primates) relates to stress, emotion, and affect. Strikingly, gene expression in the dorsal hippocampus correlates with cortical regions involved in information processing, while genes expressed in the ventral hippocampus correlate with regions involved in emotion and stress (amygdala and hypothalamus).
Collapse
|
28
|
What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2009; 2008:381243. [PMID: 18769556 PMCID: PMC2526269 DOI: 10.1155/2008/381243] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 05/23/2008] [Indexed: 12/28/2022] Open
Abstract
The entorhinal cortex is commonly perceived as a major input and output structure of the hippocampal formation, entertaining the role of the nodal point of cortico-hippocampal circuits. Superficial layers receive convergent cortical information, which is relayed to structures in the hippocampus, and hippocampal output reaches deep layers of entorhinal cortex, that project back to the cortex. The finding of the grid cells in all layers and reports on interactions between deep and superficial layers indicate that this rather simplistic perception may be at fault. Therefore, an integrative approach on the entorhinal cortex, that takes into account recent additions to our knowledge database on entorhinal connectivity, is timely. We argue that layers in entorhinal cortex show different functional characteristics most likely not on the basis of strikingly different inputs or outputs, but much more likely on the basis of differences in intrinsic organization, combined with very specific sets of inputs. Here, we aim to summarize recent anatomical data supporting the notion that the traditional description of the entorhinal cortex as a layered input-output structure for the hippocampal formation does not give the deserved credit to what this structure might be contributing to the overall functions of cortico-hippocampal networks.
Collapse
|
29
|
Sabolek HR, Penley SC, Hinman JR, Bunce JG, Markus EJ, Escabi M, Chrobak JJ. Theta and Gamma Coherence Along the Septotemporal Axis of the Hippocampus. J Neurophysiol 2009; 101:1192-200. [DOI: 10.1152/jn.90846.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Theta and gamma rhythms synchronize neurons within and across brain structures. Both rhythms are widespread within the hippocampus during exploratory behavior and rapid-eye-movement (REM) sleep. How synchronous are these rhythms throughout the hippocampus? The present study examined theta and gamma coherence along the septotemporal (long) axis of the hippocampus in rats during REM sleep, a behavioral state during which theta signals are unaffected by external sensory input or ongoing behavior. Unilateral entorhinal cortical inputs are thought to play a prominent role in the current generation of theta, whereas current generation of gamma is primarily due to local GABAergic neurons. The septal 50% (4–5 mm) of the dentate gyrus (DG) receives a highly divergent, unilateral projection from any focal point along a lateral band of entorhinal neurons near the rhinal sulcus. We hypothesized that theta coherence in the target zone (septal DG) of this divergent entorhinal input would not vary, while gamma coherence would significantly decline with distance in this zone. However, both theta and gamma coherence decreased significantly along the long axis in the septal 50% of the hippocampus across both DG and CA1 electrode sites. In contrast, theta coherence between homotypic (e.g., DG to DG) sites in the contralateral hemisphere (∼3–5 mm distant) were quite high (∼0.7–0.9), much greater than theta coherence between homotypic sites 3–5 mm distant (∼0.4–0.6) along the long axis. These findings define anatomic variation in both rhythms along the longitudinal axis of the hippocampus, indicate the bilateral CA3/mossy cell projections are the major determinant of theta coherence during REM, and demonstrate that theta coherence varies as a function of anatomical connectivity rather than physical distance. We suggest CA3 and entorhinal inputs interact dynamically to generate theta field potentials and advance the utility of theta and gamma coherence as indicators of hippocampal dynamics.
Collapse
|
30
|
Insausti R, Amaral DG. Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents. J Comp Neurol 2008; 509:608-41. [PMID: 18551518 DOI: 10.1002/cne.21753] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The nonhuman primate entorhinal cortex is the primary interface for information flow between the neocortex and the hippocampal formation. Based on previous retrograde tracer studies, neocortical afferents to the macaque monkey entorhinal cortex originate largely in polysensory cortical association areas. However, the topographical and laminar distributions of cortical inputs to the entorhinal cortex have not yet been comprehensively described. The present study examines the regional and laminar termination of projections within the entorhinal cortex arising from different cortical areas. The study is based on a library of 51 (3)H-amino acid injections that involve most of the afferent regions of the entorhinal cortex. The range of termination patterns was broad. Some areas, such as the medial portion of orbitofrontal area 13 and parahippocampal areas TF and TH, project widely within the entorhinal cortex. Other areas have a more focal and regionally selective termination. The lateral orbitofrontal, insular, anterior cingulate, and perirhinal cortices, for example, project only to rostral levels of the entorhinal cortex. The upper bank of the superior temporal sulcus projects mainly to intermediate levels of the entorhinal cortex, and the parietal and retrosplenial cortices project to caudal levels. The projections from some of these cortical regions preferentially terminate in the superficial layers (I-III) of the entorhinal cortex, whereas others project more heavily to the deep layers (V-VI). Thus, some of the cortical inputs may be more influential on the cortically directed outputs of the hippocampal formation or on gating neocortical information flow into the other fields of the hippocampal formation rather than contributing to the perforant path inputs to other hippocampal fields.
Collapse
Affiliation(s)
- Ricardo Insausti
- Laboratory of Human Neuroanatomy, Department of Health Sciences and CRIB, School of Medicine, University of Castilla-La Mancha, 02006 Albacete, Spain
| | | |
Collapse
|
31
|
Mohedano-Moriano A, Martinez-Marcos A, Pro-Sistiaga P, Blaizot X, Arroyo-Jimenez MM, Marcos P, Artacho-Pérula E, Insausti R. Convergence of unimodal and polymodal sensory input to the entorhinal cortex in the fascicularis monkey. Neuroscience 2007; 151:255-71. [PMID: 18065153 DOI: 10.1016/j.neuroscience.2007.09.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 09/12/2007] [Accepted: 10/06/2007] [Indexed: 11/25/2022]
Abstract
The hippocampal formation is a key structure in memory formation and consolidation. The hippocampus receives information from different cortical and subcortical sources. Cortical information is mostly funneled to the hippocampus through the entorhinal cortex (EC) in a bi-directional way that ultimately ends in the cortex. Retrograde tracing studies in the nonhuman primate indicate that more than two-thirds of the cortical afferents to the EC come from polymodal sensory association areas. Although some evidence for the projection from visual unimodal cortex to the EC exists, inputs from other visual and auditory unimodal association areas, and the possibility of their convergence with polymodal input in the EC remains largely undisclosed. We studied 10 Macaca fascicularis monkeys in which cortical deposits of the anterograde tracer biotinylated dextran-amine were made into different portions of visual and auditory unimodal association cortices in the temporal lobe, and in polymodal association cortex at the upper bank of the superior temporal sulcus. Visual and auditory unimodal as well as polymodal cortical areas projected to the EC. Both visual unimodal and polymodal association cortices presented dense projections, while those from unimodal auditory association cortex were more patchy and less dense. In all instances, the projection distributed in both the superficial and deep layers of the EC. However, while polymodal cortex projected to all layers (including layer I), visual unimodal cortex did not project to layer I, and auditory unimodal cortex projected less densely, scattered through all layers. Topographically, convergence from the three cortical areas studied can be observed in the lateral rostral and lateral caudal subfields. The present study suggests that unimodal and polymodal association cortical inputs converge in the lateral EC, thereby providing the possibility for the integration of complex stimuli for internal representations in declarative memory elaboration.
Collapse
Affiliation(s)
- A Mohedano-Moriano
- Department of Health Sciences, University of Castilla-La Mancha, Avda. de Almansa 14, 02006, Albacete, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mohedano-Moriano A, Pro-Sistiaga P, Arroyo-Jimenez MM, Artacho-Pérula E, Insausti AM, Marcos P, Cebada-Sánchez S, Martínez-Ruiz J, Muñoz M, Blaizot X, Martinez-Marcos A, Amaral DG, Insausti R. Topographical and laminar distribution of cortical input to the monkey entorhinal cortex. J Anat 2007; 211:250-60. [PMID: 17573826 PMCID: PMC2375768 DOI: 10.1111/j.1469-7580.2007.00764.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hippocampal formation plays a prominent role in episodic memory formation and consolidation. It is likely that episodic memory representations are constructed from cortical information that is mostly funnelled through the entorhinal cortex to the hippocampus. The entorhinal cortex returns processed information to the neocortex. Retrograde tracing studies have shown that neocortical afferents to the entorhinal cortex originate almost exclusively in polymodal association cortical areas. However, the use of retrograde studies does not address the question of the laminar and topographical distribution of cortical projections within the entorhinal cortex. We examined material from 60 Macaca fascicularis monkeys in which cortical deposits of either (3)H-amino acids or biotinylated dextran-amine as anterograde tracers were made into different cortical areas (the frontal, cingulate, temporal and parietal cortices). The various cortical inputs to the entorhinal cortex present a heterogeneous topographical distribution. Some projections terminate throughout the entorhinal cortex (afferents from medial area 13 and posterior parahippocampal cortex), while others have more limited termination, with emphasis either rostrally (lateral orbitofrontal cortex, agranular insular cortex, anterior cingulate cortex, perirhinal cortex, unimodal visual association cortex), intermediate (upper bank of the superior temporal sulcus, unimodal auditory association cortex) or caudally (parietal and retrosplenial cortices). Many of these inputs overlap, particularly within the rostrolateral portion of the entorhinal cortex. Some projections were directed mainly to superficial layers (I-III) while others were heavier to deep layers (V-VI) although areas of dense projections typically spanned all layers. A primary report will provide a detailed analysis of the regional and laminar organization of these projections. Here we provide a general overview of these projections in relation to the known neuroanatomy of the entorhinal cortex.
Collapse
Affiliation(s)
- A Mohedano-Moriano
- Human Neuroanatomy Laboratory, Department of Health Sciences and CRIB, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Honda Y, Umitsu Y, Ishizuka N. Organization of connectivity of the rat presubiculum: II. Associational and commissural connections. J Comp Neurol 2007; 506:640-58. [DOI: 10.1002/cne.21572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Witter MP. The perforant path: projections from the entorhinal cortex to the dentate gyrus. PROGRESS IN BRAIN RESEARCH 2007; 163:43-61. [PMID: 17765711 DOI: 10.1016/s0079-6123(07)63003-9] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This paper provides a comprehensive description of the organization of projections from the entorhinal cortex to the dentate gyrus, which together with projections to other subfields of the hippocampal formation form the so-called perforant pathway. To this end, data that are primarily from anatomical studies in the rat will be summarized, complimented with comparative data from other species. The analysis of the organization of any of the connections of the hippocampus, including that of the entorhinal cortex to the dentate gyrus, is severely hampered because of the complex three-dimensional shape of the hippocampus. In particular in rodents, but to a lesser extent also in primates, all traditional planes of sectioning will result in sections that at some point or another do not cut through the hippocampus at an angle that is perpendicular to its long axis. To amend this, we will describe own unpublished tracing data obtained in the rat with the use of the so-called extended preparation. A number of issues will be addressed. First, data will be summarized which will clarify the laminar origin of the perforant pathway within the entorhinal cortex. Second, we will discuss whether or not a radial organization, along the proximo-distal dendritic axis of granule cells, characterizes the entorhinal-dentate projection. Third, we will discuss whether this projection is governed by any transverse organization, and fourth, we will focus on the organization along the longitudinal axis. Finally, the synaptic organization and the contralateral entorhinal-dentate projection will be described briefly. Taken together, the available data suggest that the projection from the entorhinal cortex to the dentate gyrus is a fairly well conserved connection, present in all species studied, exhibiting a grossly similar organization.
Collapse
Affiliation(s)
- Menno P Witter
- Institute for Clinical and Experimental Neurosciences, Department of Anatomy & Neurosciences, VU University Medical Center, MF-G102C, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|