1
|
Nieto-Rostro M, Patel R, Dickenson AH, Dolphin AC. Nerve injury increases native Ca V 2.2 trafficking in dorsal root ganglion mechanoreceptors. Pain 2023; 164:1264-1279. [PMID: 36524581 PMCID: PMC10184561 DOI: 10.1097/j.pain.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
ABSTRACT Neuronal N-type (Ca V 2.2) voltage-gated calcium channels are essential for neurotransmission from primary afferent terminals in the dorsal horn. In this study, we have used a knockin mouse containing Ca V 2.2 with an inserted extracellular hemagglutinin tag (Ca V 2.2_HA), to visualise the pattern of expression of endogenous Ca V 2.2 in dorsal root ganglion (DRG) neurons and their primary afferents in the dorsal horn. We examined the effect of partial sciatic nerve ligation (PSNL) and found an increase in Ca V 2.2_HA only in large and medium dorsal root ganglion neurons and also in deep dorsal horn synaptic terminals. Furthermore, there is a parallel increase in coexpression with GFRα1, present in a population of low threshold mechanoreceptors, both in large DRG neurons and in their terminals. The increased expression of Ca V 2.2_HA in these DRG neurons and their terminals is dependent on the presence of the auxiliary subunit α 2 δ-1, which is required for channel trafficking to the cell surface and to synaptic terminals, and it likely contributes to enhanced synaptic transmission at these synapses following PSNL. By contrast, the increase in GFRα1 is not altered in α 2 δ-1-knockout mice. We also found that following PSNL, there is patchy loss of glomerular synapses immunoreactive for Ca V 2.2_HA and CGRP or IB4, restricted to the superficial layers of the dorsal horn. This reduction is not dependent on α 2 δ-1 and likely reflects partial deafferentation of C-nociceptor presynaptic terminals. Therefore, in this pain model, we can distinguish 2 different events affecting specific DRG terminals, with opposite consequences for Ca V 2.2_HA expression and function in the dorsal horn.
Collapse
Affiliation(s)
- Manuela Nieto-Rostro
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Anthony H. Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Annette C. Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
3
|
Bechakra M, Nieuwenhoff MD, Rosmalen JV, Groeneveld GJ, J P M Huygen F, Zeeuw CID, Doorn PAV, Jongen JLM. Pain-related changes in cutaneous innervation of patients suffering from bortezomib-induced, diabetic or chronic idiopathic axonal polyneuropathy. Brain Res 2020; 1730:146621. [PMID: 31926911 DOI: 10.1016/j.brainres.2019.146621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/03/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Consistent associations between the severity of neuropathic pain and cutaneous innervation have not been described. We collected demographic and clinical data, McGill Pain Questionnaires (MPQ) and skin biopsies processed for PGP9.5 and CGRP immunohistochemistry from patients with bortezomib-induced peripheral neuropathy (BiPN; n = 22), painful diabetic neuropathy (PDN; n = 16), chronic idiopathic axonal polyneuropathy (CIAP; n = 16) and 17 age-matched healthy volunteers. Duration of neuropathic symptoms was significantly shorter in patients with BiPN in comparison with PDN and CIAP patients. BiPN was characterized by a significant increase in epidermal axonal swellings and upper dermis nerve fiber densities (UDNFD) and a decrease in subepidermal nerve fiber densities (SENFD) of PGP9.5-positive fibers and of PGP9.5 containing structures that did not show CGRP labeling, presumably non-peptidergic fibers. In PDN and CIAP patients, intraepidermal nerve fiber densities (IENFD) and SENFD of PGP9.5-positive and of non-peptidergic fibers were decreased in comparison with healthy volunteers. Significant unadjusted associations between IENFD and SENFD of CGRP-positive, i.e. peptidergic, fibers and the MPQ sensory-discriminative, as well as between UDNFD of PGP9.5-positive fibers and the MPQ evaluative/affective component of neuropathic pain, were found in BiPN and CIAP patients. No significant associations were found in PDN patients. Cutaneous innervation changes in BiPN confirm characteristic features of early, whereas those in CIAP and PDN are in line with late forms of neuropathic pathology. Our results allude to a distinct role for non-peptidergic nociceptors in BiPN and CIAP patients. The lack of significant associations in PDN may be caused by mixed ischemic and purely neuropathic pain pathology.
Collapse
Affiliation(s)
- Malik Bechakra
- Dept. of Neurology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands; Dept. of Neuroscience, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, the Netherlands
| | - Mariska D Nieuwenhoff
- Dept. of Anesthesiology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Joost van Rosmalen
- Dept. of Biostatistics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Frank J P M Huygen
- Dept. of Anesthesiology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Chris I de Zeeuw
- Dept. of Neuroscience, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Pieter A van Doorn
- Dept. of Neurology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Joost L M Jongen
- Dept. of Neurology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Bechakra M, Nieuwenhoff MD, van Rosmalen J, Groeneveld GJ, Scheltens-de Boer M, Sonneveld P, van Doorn PA, de Zeeuw CI, Jongen JL. Clinical, electrophysiological, and cutaneous innervation changes in patients with bortezomib-induced peripheral neuropathy reveal insight into mechanisms of neuropathic pain. Mol Pain 2018; 14:1744806918797042. [PMID: 30152246 PMCID: PMC6113731 DOI: 10.1177/1744806918797042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bortezomib is a mainstay of therapy for multiple myeloma, frequently complicated by painful neuropathy. The objective of this study was to describe clinical, electrophysiological, and pathological changes of bortezomib-induced peripheral neuropathy (BiPN) in detail and to correlate pathological changes with pain descriptors. Clinical data, nerve conduction studies, and lower leg skin biopsies were collected from 22 BiPN patients. Skin sections were immunostained using anti-protein gene product 9.5 (PGP9.5) and calcitonin gene-related peptide (CGRP) antibodies. Cumulative bortezomib dose and clinical assessment scales indicated light-moderate sensory neuropathy. Pain intensity >4 (numerical rating scale) was present in 77% of the patients. Median pain intensity and overall McGill Pain Questionnaire (MPQ) sum scores indicated moderate to severe neuropathic pain. Sural nerve sensory nerve action potentials were abnormal in 86%, while intraepidermal nerve fiber densities of PGP9.5 and CGRP were not significantly different from healthy controls. However, subepidermal nerve fiber density (SENFD) of PGP9.5 was significantly decreased and the axonal swelling ratio, a predictor of neuropathy, and upper dermis nerve fiber density (UDNFD) of PGP9.5, presumably representing sprouting of parasympathetic fibers, were significantly increased in BiPN patients. Finally, significant correlations between UDNFD of PGP9.5 versus the evaluative Pain Rating Index (PRI) and number of words count (NWC) of the MPQ, and significant inverse correlations between SENFD/UDNFD of CGRP versus the sensory-discriminative MPQ PRI/NWC were found. BiPN is a sensory neuropathy, in which neuropathic pain is the most striking clinical finding. Bortezomib-induced neuropathic pain may be driven by sprouting of parasympathetic fibers in the upper dermis and impaired regeneration of CGRP fibers in the subepidermal layer.
Collapse
Affiliation(s)
- Malik Bechakra
- 1 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands.,2 Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Mariska D Nieuwenhoff
- 3 Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands.,4 Centre for Human Drug Research, Leiden, the Netherlands
| | | | | | | | - Pieter Sonneveld
- 7 Department of Hematology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I de Zeeuw
- 2 Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.,8 Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts & Sciences, Amsterdam, the Netherlands
| | - Joost Lm Jongen
- 1 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Klusch A, Gorzelanny C, Reeh PW, Schmelz M, Petersen M, Sauer SK. Local NGF and GDNF levels modulate morphology and function of porcine DRG neurites, In Vitro. PLoS One 2018; 13:e0203215. [PMID: 30260982 PMCID: PMC6160011 DOI: 10.1371/journal.pone.0203215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022] Open
Abstract
Nerve terminals of primary sensory neurons are influenced by their environment through target derived trophic factors, like nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF). In mice, subpopulations of DRG neurons express receptors either for NGF or GDNF and therefore differentially respond to these neurotrophic factors. We probed neurite endings from porcine DRG neurons cultured in either NGF or GDNF and examined their shape, elongation and stimulus-evoked CGRP release. A compartmentalized culture system was employed allowing spatial separation of outgrown neurites from their somata and use of different growth factors in the compartments. We show that neurites of GDNF cultured somata extend into lateral compartments without added growth factor, unlike neurites of NGF cultured ones. Neurites of NGF cultured somata extend not only into NGF- but also into GDNF-containing compartments. GDNF at the site of terminals of NGF responsive somata led to a strong neurite arborization and formation of large growth cones, compared to neurites in medium with NGF. Functionally, we could detect evoked CGRP release from as few as 7 outgrown neurites per compartment and calculated release per mm neurite length. CGRP release was detected both in neurites from NGF and GDNF cultured somata, suggesting that also the latter ones are peptidergic in pig. When neurites of NGF cultured somata were grown in GDNF, capsaicin evoked a lower CGRP release than high potassium, compared to those grown in NGF. Our experiments demonstrate that the compartmented culture chamber can be a suitable model to assess neurite properties from trophic factor specific primary sensory neurons. With this model, insights into mechanisms of gain or loss of function of specific nociceptive neurites may be achieved.
Collapse
Affiliation(s)
- Andreas Klusch
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Peter W. Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marlen Petersen
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Susanne K. Sauer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
6
|
Bechakra M, Schüttenhelm BN, Pederzani T, van Doorn PA, de Zeeuw CI, Jongen JLM. The reduction of intraepidermal P2X 3 nerve fiber density correlates with behavioral hyperalgesia in a rat model of nerve injury-induced pain. J Comp Neurol 2017; 525:3757-3768. [PMID: 28815599 DOI: 10.1002/cne.24302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 01/18/2023]
Abstract
Skin biopsies from patients with neuropathic pain often show changes in epidermal innervation, although it remains to be elucidated to what extent such changes can be linked to a particular subgroup of nerve fibers and how these changes are correlated with pain intensity. Here, we investigated to what extent behavioral signs of hyperalgesia are correlated with immunohistochemical changes of peptidergic and non-peptidergic epidermal nerve fibers in a rat model of nerve injury-induced pain. Rats subjected to unilateral partial ligation of the sciatic nerve developed significant mechanical and thermal hyperalgesia as tested by the withdrawal responses of the ipsilateral footpad to von Frey hairs and hotplate stimulation. At day 14, epidermal nerve fiber density and total epidermal nerve fiber length/mm2 were significantly and consistently reduced compared to the contralateral side, following testing and re-testing by two blinded observers. The expression of calcitonin gene-related peptide, a marker for peptidergic nerve fibers, was not significantly changed on the ipsilateral side. In contrast, the expression of the P2X3 receptor, a marker for non-peptidergic nerve fibers, was not only significantly reduced but could also be correlated with behavioral hyperalgesia. When labeling both peptidergic and non-peptidergic nerve fibers with the pan-neuronal marker PGP9.5, the expression was significantly reduced, albeit without a significant correlation with behavioral hyperalgesia. In conjunction, our data suggest that the pathology of the P2X3 epidermal nerve fibers can be selectively linked to neuropathy, highlighting the possibility that it is the degeneration of these fibers that drives hyperalgesia.
Collapse
Affiliation(s)
- Malik Bechakra
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | - Chris I de Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts & Sciences, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Shaqura M, Li X, Al-Khrasani M, Shakibaei M, Tafelski S, Fürst S, Beyer A, Kawata M, Schäfer M, Mousa SA. Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects. Neuropharmacology 2016; 111:1-13. [DOI: 10.1016/j.neuropharm.2016.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/14/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022]
|
8
|
Schüttenhelm BN, Duraku LS, Dijkstra JF, Walbeehm ET, Holstege JC. Differential Changes in the Peptidergic and the Non-Peptidergic Skin Innervation in Rat Models for Inflammation, Dry Skin Itch, and Dermatitis. J Invest Dermatol 2015; 135:2049-2057. [PMID: 25848979 DOI: 10.1038/jid.2015.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023]
Abstract
Skin innervation is a dynamic process that may lead to changes in nerve fiber density during pathological conditions. We have investigated changes in epidermal nerve fiber density in three different rat models that selectively produce chronic itch (the dry skin model), or itch and inflammation (the dermatitis model), or chronic inflammation without itch (the CFA model). In the epidermis, we identified peptidergic fibers-that is, immunoreactive (IR) for calcitonin gene-related peptide or substance P—and non-peptidergic fibers—that is, IR for P2X3. The overall density of nerve fibers was determined using IR for the protein gene product 9.5. In all three models, the density of epidermal peptidergic nerve fibers increased up to five times when compared with a sham-treated control group. In contrast, the density of epidermal non-peptidergic fibers was not increased, except for a small but significant increase in the dry skin model. Chronic inflammation showed an increased density of peptidergic fibers without itch, indicating that increased nerve fiber density is not invariably associated with itch. The finding that different types of skin pathology induced differential changes in nerve fiber density may be used as a diagnostic tool in humans, through skin biopsies, to identify different types of pathology and to monitor the effect of therapies.
Collapse
Affiliation(s)
- Barthold N Schüttenhelm
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Liron S Duraku
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jouke F Dijkstra
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Erik T Walbeehm
- Department of Plastic Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan C Holstege
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Trolle C, Konig N, Abrahamsson N, Vasylovska S, Kozlova EN. Boundary cap neural crest stem cells homotopically implanted to the injured dorsal root transitional zone give rise to different types of neurons and glia in adult rodents. BMC Neurosci 2014; 15:60. [PMID: 24884373 PMCID: PMC4055944 DOI: 10.1186/1471-2202-15-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/24/2014] [Indexed: 01/08/2023] Open
Abstract
Background The boundary cap is a transient group of neural crest-derived cells located at the presumptive dorsal root transitional zone (DRTZ) when sensory axons enter the spinal cord during development. Later, these cells migrate to dorsal root ganglia and differentiate into subtypes of sensory neurons and glia. After birth when the DRTZ is established, sensory axons are no longer able to enter the spinal cord. Here we explored the fate of mouse boundary cap neural crest stem cells (bNCSCs) implanted to the injured DRTZ after dorsal root avulsion for their potential to assist sensory axon regeneration. Results Grafted cells showed extensive survival and differentiation after transplantation to the avulsed DRTZ. Transplanted cells located outside the spinal cord organized elongated tubes of Sox2/GFAP expressing cells closely associated with regenerating sensory axons or appeared as small clusters on the surface of the spinal cord. Other cells, migrating into the host spinal cord as single cells, differentiated to spinal cord neurons with different neurotransmitter characteristics, extensive fiber organization, and in some cases surrounded by glutamatergic terminal-like profiles. Conclusions These findings demonstrate that bNCSCs implanted at the site of dorsal root avulsion injury display remarkable differentiation plasticity inside the spinal cord and in the peripheral compartment where they organize tubes associated with regenerating sensory fibers. These properties offer a basis for exploring the ability of bNCSCs to assist regeneration of sensory axons into the spinal cord and replace lost neurons in the injured spinal cord.
Collapse
Affiliation(s)
| | | | | | | | - Elena N Kozlova
- Department of Neuroscience, Uppsala University Biomedical Center, Box 593, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
10
|
Bando T, Morikawa Y, Hisaoka T, Komori T, Miyajima A, Senba E. Dynamic expression pattern of leucine-rich repeat neuronal protein 4 in the mouse dorsal root ganglia during development. Neurosci Lett 2013; 548:73-8. [PMID: 23701859 DOI: 10.1016/j.neulet.2013.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/22/2013] [Accepted: 05/10/2013] [Indexed: 02/04/2023]
Abstract
A member of leucine-rich repeat neuronal protein (Lrrn) family, Lrrn4, is a type I transmembrane protein and functions as a cell adhesion molecule. In our previous report, Lrrn4 is expressed in a subset of small-sized dorsal root ganglion (DRG) neurons of the adult mice. In the present study, we investigated the expression pattern of Lrrn4 in the developing DRGs. The expression of Lrrn4 was first observed in 7% of total DRG neurons at embryonic day (E) 13.5, gradually increasing to 44% at E17.5, reached the maximum level between E17.5 and postnatal day (P) 7, decreased drastically after P7, and became the adult level by P14. Interestingly, the expression of Lrrn4 was mainly observed in TrkC-positive neurons at E13.5, and the predominant expression was shifted from TrkC-positive neurons to TrkA-positive neurons between E15.5 and E17.5. As the central afferents of TrkC-positive and TrkA-positive neurons begin to penetrate into the spinal cord to form synapse with secondary neurons at E13.5 and E15.5, respectively, the time course of Lrrn4 expression may suggest the contribution of Lrrn4 to synaptic formation. In addition, some cell adhesion molecules containing leucine-rich repeat are identified as synaptic adhesion molecules, suggesting that the spatiotemporal expression pattern of Lrrn4 contributes to the development of synaptic function in the DRG neurons.
Collapse
Affiliation(s)
- Takayoshi Bando
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 641-8509, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Duraku LS, Hossaini M, Schüttenhelm BN, Holstege JC, Baas M, Ruigrok TJ, Walbeehm ET. Re-innervation patterns by peptidergic Substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain. Exp Neurol 2013; 241:13-24. [DOI: 10.1016/j.expneurol.2012.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/24/2012] [Accepted: 11/29/2012] [Indexed: 12/27/2022]
|
12
|
Daigo E, Sakuma Y, Miyoshi K, Noguchi K, Kotani J. Increased expression of interleukin-18 in the trigeminal spinal subnucleus caudalis after inferior alveolar nerve injury in the rat. Neurosci Lett 2012; 529:39-44. [DOI: 10.1016/j.neulet.2012.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023]
|
13
|
Jongen JL, Holstege JC. Propagation of Spinal Nociceptive Activity in the Spatial and Temporal Domains. Neuroscientist 2011; 18:8-14. [DOI: 10.1177/1073858410391813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nociceptive stimuli are transmitted through thinly myelinated or unmyelinated primary afferent fibers called nociceptors, which terminate mainly in the superficial dorsal horn of the spinal cord. While most nociceptive fibers terminate in the spinal segment of the entrance, (collateral) fibers may ascend and descend several segments upon their entry into the spinal cord, which is reflected in the receptive fields of central nociceptive neurons. In chronic pain states like inflammatory or neuropathic pain, the area of nociceptive activity may expand even further in rostrocaudal and mediolateral directions. Also, within minutes (inflammatory pain) or days (neuropathic pain), an increased sensitivity of peripheral and central nociceptive neurons will develop, which is referred to as sensitization. While anatomical, physiological, and psychophysical techniques have focused on one particular aspect of central sensitization at a time, functional imaging techniques like functional MRI, intrinsic optical imaging, and autofluorescent flavoprotein imaging (AFI) are able to capture both spatial and temporal dimensions of central sensitization simultaneously. AFI and other neuroimaging techniques may clarify fundamental aspects relating to the spread of nociceptive activity within the spinal cord and may thus provide a practical tool to test the efficacy of new analgesic drugs or procedures in animals and ultimately in humans.
Collapse
Affiliation(s)
| | - Jan C. Holstege
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Keast JR, Forrest SL, Osborne PB. Sciatic nerve injury in adult rats causes distinct changes in the central projections of sensory neurons expressing different glial cell line-derived neurotrophic factor family receptors. J Comp Neurol 2010; 518:3024-45. [PMID: 20533358 DOI: 10.1002/cne.22378] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most small unmyelinated neurons in adult rat dorsal root ganglia (DRG) express one or more of the coreceptors targeted by glial cell line-derived neurotrophic factor (GDNF), neurturin, and artemin (GFRalpha1, GFRalpha2, and GFRalpha3, respectively). The function of these GDNF family ligands (GFLs) is not fully elucidated but recent evidence suggests GFLs could function in sensory neuron regeneration after nerve injury and peripheral nociceptor sensitization. In this study we used immunohistochemistry to determine if the DRG neurons targeted by each GFL change after sciatic nerve injury. We compared complete sciatic nerve transection and the chronic constriction model and found that the pattern of changes incurred by each injury was broadly similar. In lumbar spinal cord there was a widespread increase in neuronal GFRalpha1 immunoreactivity (IR) in the L1-6 dorsal horn. GFRalpha3-IR also increased but in a more restricted area. In contrast, GFRalpha2-IR decreased in patches of superficial dorsal horn and this loss was more extensive after transection injury. No change in calcitonin gene-related peptide-IR was detected after either injury. Analysis of double-immunolabeled L5 DRG sections suggested the main effect of injury on GFRalpha1- and GFRalpha3-IR was to increase expression in both myelinated and unmyelinated neurons. In contrast, no change in basal expression of GFRalpha2-IR was detected in DRG by analysis of fluorescence intensity and there was a small but significant reduction in GFRalpha2-IR neurons. Our results suggest that the DRG neuronal populations targeted by GDNF, neurturin, or artemin and the effect of exogenous GFLs could change significantly after a peripheral nerve injury.
Collapse
Affiliation(s)
- Janet R Keast
- Pain Management Research Institute, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards NSW 2065, Australia.
| | | | | |
Collapse
|
15
|
Abstract
Pain arises from activation of peripheral nociceptors, and strong noxious stimuli may cause an increase in spinal excitability called central sensitization, which is likely involved in many pathological pain states. So far, it has not been achieved to simultaneously visualize in vivo both the temporal and spatial aspects of spinal activity, including central sensitization. Using autofluorescent flavoprotein imaging (AFI), an optical technique suitable for mapping activity in nervous tissue, we demonstrate a close temporal and spatial correlation of electrically evoked nociceptive input with the spinal AFI signal, representing spinal neuronal activity. The AFI signal increases linearly with stimulation intensity. Furthermore, we found that the AFI signal was much larger in intensity and size when the same electrical stimulation was applied after the induction of central sensitization by a subcutaneous capsaicin injection. Finally, innocuous palpation of the hindpaw did not evoke an AFI response in naive animals, but after capsaicin injection a strong response was obtained. This is the first report demonstrating simultaneously the temporal and spatial propagation of spinal nociceptive activity in vivo.
Collapse
|
16
|
Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci 2009; 29:11161-71. [PMID: 19741123 DOI: 10.1523/jneurosci.3365-09.2009] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate whether astroglia in the medullary dorsal horn (trigeminal spinal subnucleus caudalis; Vc) may be involved in orofacial neuropathic pain following trigeminal nerve injury. The effects of intrathecal administration of the astroglial aconitase inhibitor sodium fluoroacetate (FA) were tested on Vc astroglial hyperactivity [as revealed by glial fibrillary acid protein (GFAP) labeling], nocifensive behavior, Vc extracellular signal-regulated kinase phosphorylation (pERK), and Vc neuronal activity in inferior alveolar nerve-transected (IANX) rats. Compared with sham-control rats, a significant increase occurred in GFAP-positive cells in ipsilateral Vc at postoperative day 7 in IANX rats, which was prevented following FA administration. FA significantly increased the reduced head withdrawal latency to high-intensity heat stimulation of the maxillary whisker pad skin in IANX rats, although it did not significantly affect the reduced escape threshold to low-intensity mechanical stimulation of the whisker skin in IANX rats. FA also significantly reduced the increased number of pERK-like immunoreactive cells in Vc and the enhanced Vc nociceptive neuronal responses following high-intensity skin stimulation that were documented in IANX rats, and glutamine administration restored the enhanced responses. These various findings provide the first documentation that astroglia is involved in the enhanced nociceptive responses of functionally identified Vc nociceptive neurons and in the associated orofacial hyperalgesia following trigeminal nerve injury.
Collapse
|
17
|
Receptor tyrosine kinases and respiratory motor plasticity. Respir Physiol Neurobiol 2009; 164:242-51. [PMID: 18634908 DOI: 10.1016/j.resp.2008.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/13/2008] [Accepted: 06/18/2008] [Indexed: 11/23/2022]
Abstract
Protein kinases are a family of enzymes that transfer a phosphate group from adenosine tri-phosphate to an amino acid residue on a protein. The receptor tyrosine kinases (RTKs) are expressed on the outer cell membrane, bind extracellular protein ligands, and phosphorylate tyrosine residues on other proteins-essentially permitting communication between cells. Such activity regulates multiple aspects of cellular physiology including cell growth and differentiation, adhesion, motility, cell death, and morphological and synaptic plasticity. This review will focus on the role of RTKs in respiratory motor plasticity, with particular emphasis on long-term changes in respiratory motoneuron function. Reflecting the predominant literature, specific attention will be devoted to the role of tropomyosin-related kinase type B (TrkB) activation on phrenic motoneuron activity. However, many RTKs share similar patterns of expression and mechanisms of ligand-induced activation and downstream signaling. Thus, a perspective based on TrkB-induced phrenic motor plasticity may provide insight into the potential roles of other RTKs in the neural control of breathing. Finally, understanding how different RTKs affect respiratory motor output in the long-term may provide future avenues for pharmacological development with the goal of increasing respiratory motor output in disorders such as obstructive sleep apnea and after spinal cord injury. This is best illustrated in recent studies where we have used small, highly diffusible molecules to transactivate TrkB receptors near phrenic motoneurons to improve breathing after cervical spinal cord injury.
Collapse
|
18
|
Zhou HL, Yang HJ, Li YM, Wang Y, Yan L, Guo XL, Ba YC, Liu S, Wang TH. Changes in Glial cell line-derived neurotrophic factor expression in the rostral and caudal stumps of the transected adult rat spinal cord. Neurochem Res 2008; 33:927-37. [PMID: 18095158 PMCID: PMC2270371 DOI: 10.1007/s11064-007-9536-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 10/23/2007] [Indexed: 02/05/2023]
Abstract
Limited information is available regarding the role of endogenous Glial cell line-derived neurotrophic factor (GDNF) in the spinal cord following transection injury. The present study investigated the possible role of GDNF in injured spinal cords following transection injury (T(9)-T(10)) in adult rats. The locomotor function recovery of animals by the BBB (Basso, Beattie, Bresnahan) scale score showed that hindlimb support and stepping function increased gradually from 7 days post operation (dpo) to 21 dpo. However, the locomotion function in the hindlimbs decreased effectively in GDNF-antibody treated rats. GDNF immunoreactivty in neurons in the ventral horn of the rostral stump was stained strongly at 3 and 7 dpo, and in the caudal stump at 14 dpo, while immunostaining in astrocytes was also seen at all time-points after transection injury. Western blot showed that the level of GDNF protein underwent a rapid decrease at 7 dpo in both stumps, and was followed by a partial recovery at a later time-point, when compared with the sham-operated group. GDNF mRNA-positive signals were detected in neurons of the ventral horn, especially in lamina IX. No regenerative fibers from corticospinal tract can be seen in the caudal segment near the injury site using BDA tracing technique. No somatosensory evoked potentials (SEP) could be recorded throughout the experimental period as well. These findings suggested that intrinsic GDNF in the spinal cord could play an essential role in neuroplasticity. The mechanism may be that GDNF is involved in the regulation of local circuitry in transected spinal cords of adult rats.
Collapse
Affiliation(s)
- Hao-Li Zhou
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Hui-Juan Yang
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Yong-Mei Li
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Ying Wang
- Nursing Department, Weifang Medical College, Weifang, 261042 China
| | - Ling Yan
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Xi-Liang Guo
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Ying-Chun Ba
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Su Liu
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
- Department of Histology, Embryology and Neurobiology, College of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
19
|
The neurotrophic effects of glial cell line-derived neurotrophic factor on spinal motoneurons are restricted to fusimotor subtypes. J Neurosci 2008; 28:2131-46. [PMID: 18305247 DOI: 10.1523/jneurosci.5185-07.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) regulates multiple aspects of spinal motoneuron (MN) development, including gene expression, target selection, survival, and synapse elimination, and mice lacking either GDNF or its receptors GDNF family receptor alpha1 (GFRalpha1) and Ret exhibit a 25% reduction of lumbar MNs at postnatal day 0 (P0). Whether this loss reflects a generic trophic role for GDNF and thus a reduction of all MN subpopulations, or a more restricted role affecting only specific MN subpopulations, such as those innervating individual muscles, remains unclear. We therefore examined MN number and innervation in mice in which Ret, GFRalpha1, or GDNF was deleted and replaced by reporter alleles. Whereas nearly all hindlimb muscles exhibited normal gross innervation, intrafusal muscle spindles displayed a significant loss of innervation in most but not all muscles at P0. Furthermore, we observed a dramatic and restricted loss of small myelinated axons in the lumbar ventral roots of adult mice in which the function of either Ret or GFRalpha1 was inactivated in MNs early in development. Finally, we demonstrated that the period during which spindle-innervating MNs require GDNF for survival is restricted to early neonatal development, because mice in which the function of Ret or GFRalpha1 was inactivated after P5 failed to exhibit denervation of muscle spindles or MN loss. Therefore, although GDNF influences several aspects of MN development, the survival-promoting effects of GDNF during programmed cell death are mostly confined to spindle-innervating MNs.
Collapse
|
20
|
Quartu M, Serra MP, Boi M, Ferretti MT, Lai ML, Del Fiacco M. Tissue distribution of Ret, GFRalpha-1, GFRalpha-2 and GFRalpha-3 receptors in the human brainstem at fetal, neonatal and adult age. Brain Res 2007; 1173:36-52. [PMID: 17825269 DOI: 10.1016/j.brainres.2007.07.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 11/30/2022]
Abstract
Occurrence and localization of receptor components of the glial cell line-derived neurotrophic factor (GDNF) family ligands, the Ret receptor tyrosine kinase and the GDNF family receptor (GFR) alpha-1 to -3, were examined by immunohistochemistry in the normal human brainstem at fetal, neonatal, and adult age. Immunoreactive elements were detectable at all examined ages with uneven distribution and consistent pattern for each receptor. As a rule, the GFRalpha-1 and GFRalpha-2 antisera produced the most abundant and diffuse tissue labelling. Immunoreactive perikarya were observed within sensory and motor nuclei of cranial nerves, dorsal column nuclei, olivary nuclear complex, reticular formation, pontine nuclei, locus caeruleus, raphe nuclei, substantia nigra, and quadrigeminal plate. Nerve fibers occurred within gracile and cuneate fasciculi, trigeminal spinal tract and nucleus, facial, trigeminal, vestibular and oculomotor nerves, solitary tract, medial longitudinal fasciculus, medial lemniscus, and inferior and superior cerebellar peduncles. Occasionally, glial cells were stained. Age changes were appreciable in the distribution pattern of each receptor. On the whole, in the grey matter, labelled perikarya were more frequently observed in pre- and perinatal than in adult specimens; on the other hand, in discrete regions, nerve fibers and terminals were abundant and showed a plexiform arrangement only in adult tissue; finally, distinct fiber systems in the white matter were immunolabelled only at pre- and perinatal ages. The results obtained suggest the involvement of Ret and GFRalpha receptors signalling in processes subserving both the organization of discrete brainstem neuronal systems during development and their functional activity and maintenance in adult life.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | |
Collapse
|