1
|
Tompkins JD, Clason TA, Hardwick JC, Girard BM, Merriam LA, May V, Parsons RL. Activation of MEK/ERK signaling contributes to the PACAP-induced increase in guinea pig cardiac neuron excitability. Am J Physiol Cell Physiol 2016; 311:C643-C651. [PMID: 27488668 DOI: 10.1152/ajpcell.00164.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 01/12/2023]
Abstract
Pituitary adenylate cyclase (PAC)-activating polypeptide (PACAP) peptides (Adcyap1) signaling at the selective PAC1 receptor (Adcyap1r1) participate in multiple homeostatic and stress-related responses, yet the cellular mechanisms underlying PACAP actions remain to be completely elucidated. PACAP/PAC1 receptor signaling increases excitability of neurons within the guinea pig cardiac ganglia, and as these neurons are readily accessible, this neuronal system is particularly amenable to study of PACAP modulation of ionic conductances. The present study investigated how PACAP activation of MEK/ERK signaling contributed to the peptide-induced increase in cardiac neuron excitability. Treatment with the MEK inhibitor PD 98059 blocked PACAP-stimulated phosphorylated ERK and, in parallel, suppressed the increase in cardiac neuron excitability. However, PD 98059 did not blunt the ability of PACAP to enhance two inward ionic currents, one flowing through hyperpolarization-activated nonselective cationic channels (Ih) and another flowing through low-voltage-activated calcium channels (IT), which support the peptide-induced increase in excitability. Thus a PACAP- and MEK/ERK-sensitive, voltage-dependent conductance(s), in addition to Ih and IT, modulates neuronal excitability. Despite prior work implicating PACAP downregulation of the KV4.2 potassium channel in modulation of excitability in other cells, treatment with the KV4.2 current blocker 4-aminopyridine did not replicate the PACAP-induced increase in excitability in cardiac neurons. However, cardiac neurons express the ERK target, the NaV1.7 sodium channel, and treatment with the selective NaV1.7 channel inhibitor PF-04856264 decreased the PACAP modulation of excitability. From these results, PACAP/PAC1 activation of MEK/ERK signaling may phosphorylate the NaV1.7 channel, enhancing sodium currents near the threshold, an action contributing to repetitive firing of the cardiac neurons exposed to PACAP.
Collapse
Affiliation(s)
- John D Tompkins
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California
| | - Todd A Clason
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | | | - Beatrice M Girard
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Laura A Merriam
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Victor May
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Rodney L Parsons
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
2
|
Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC, Muha EA, Rhim AD, Davis BM. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A 2016; 113:3078-83. [PMID: 26929329 PMCID: PMC4801275 DOI: 10.1073/pnas.1512603113] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations.
Collapse
MESH Headings
- Adenocarcinoma in Situ/pathology
- Adenocarcinoma in Situ/physiopathology
- Afferent Pathways
- Animals
- Animals, Newborn
- Capsaicin/administration & dosage
- Capsaicin/pharmacology
- Capsaicin/therapeutic use
- Carcinoma, Pancreatic Ductal/etiology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/physiopathology
- Carcinoma, Pancreatic Ductal/prevention & control
- Carcinoma, Pancreatic Ductal/therapy
- Ceruletide/toxicity
- Denervation
- Disease Progression
- Female
- Ganglia, Sympathetic/physiopathology
- Genes, ras
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelitis/complications
- Myelitis/genetics
- Myelitis/physiopathology
- Neoplasm Invasiveness
- Pancreas/innervation
- Pancreatic Neoplasms/etiology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/physiopathology
- Pancreatic Neoplasms/prevention & control
- Pancreatic Neoplasms/therapy
- Pancreatitis/chemically induced
- Pancreatitis/complications
- Pancreatitis/physiopathology
- Precancerous Conditions/chemically induced
- Precancerous Conditions/complications
- Precancerous Conditions/physiopathology
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/physiology
- Spinal Cord/physiopathology
- Spinothalamic Tracts/physiopathology
- Thoracic Vertebrae
Collapse
Affiliation(s)
- Jami L Saloman
- Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kathryn M Albers
- Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dongjun Li
- Comprehensive Cancer Center and Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109
| | - Douglas J Hartman
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Howard C Crawford
- Department of Internal Medicine, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Emily A Muha
- Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Andrew D Rhim
- Comprehensive Cancer Center and Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109;
| | - Brian M Davis
- Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261;
| |
Collapse
|
3
|
Smith KS, Rush RA, Rogers ML. Characterization and changes in neurotrophin receptor p75-Expressing motor neurons in SOD1(G93A) G1H mice [corrected]. J Comp Neurol 2015; 523:1664-82. [PMID: 25711805 DOI: 10.1002/cne.23763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
Mice with high numbers of the Cu/Zn superoxide dismutase-1 G93A transgene (SOD1(G93A) G1H) have become the most commonly used animal model to study amyotrophic lateral sclerosis. This study investigated changes in size, numbers, and cell stress/death markers of motor neuron numbers in G1H mice that re-express the common p75 neurotrophin receptor (p75NTR). SOD1(G93A) G1H mice and age-matched C57BL/6J controls at 60, 80, 100, 120 days and end stage/140 days were analyzed for p75NTR, choline acetyltransferase (ChAT), activating transcription factor 3 (ATF3), and cleaved caspase-3. In addition, motor neuron counts and soma sizes were recorded. Motor neurons re-expressing p75NTR in SOD1(G93A) G1H mice were first observed at 80 days, and this continued to 140 days, peaking at 100-120 days at ∼5%. The soma area of motor neurons re-expressing p75NTR was always 600-800 µm(2) , suggesting that these are alpha motor neurons, which was confirmed after examination of somas post injection of a retrogradely transported antibody to p75NTR in 110-day-old SOD1(G93A) G1H mice. In motor neurons not re-expressing p75NTR, the frequency of small soma 200-400 µm2 motor neurons increased, whereas the larger 600-900 µm2 motor neurons decreased with progression, indicating that large motor neurons were dying off and shrinking in the process. There was minimal coexpression of p75NTR with ATF3, a marker for cell stress, but 85% coexpressed the apoptotic marker cleaved caspase-3. These findings indicate that in SOD1(G93A) G1H mice, p75NTR re-expression is detectable from 80 days in a small population of large motor neurons that represent 5% of the total motor neurons. Furthermore, p75NTR re-expression occurs in larger alpha motor neurons that express cleaved caspsase-3 and are destined to die.
Collapse
Affiliation(s)
- Kevin S Smith
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia, 5001
| | - Robert A Rush
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia, 5001
| | - Mary-Louise Rogers
- Centre for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia, 5001
| |
Collapse
|
4
|
Mauffray M, Domingues O, Hentges F, Zimmer J, Hanau D, Michel T. Neurturin influences inflammatory responses and airway remodeling in different mouse asthma models. THE JOURNAL OF IMMUNOLOGY 2015; 194:1423-33. [PMID: 25595789 DOI: 10.4049/jimmunol.1402496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurturin (NTN) was previously described for its neuronal activities, but recently, we have shown that this factor is also involved in asthma physiopathology. However, the underlying mechanisms of NTN are unclear. The aim of this study was to investigate NTN involvement in acute bronchial Th2 responses, to analyze its interaction with airway structural cells, and to study its implication in remodeling during acute and chronic bronchial inflammation in C57BL/6 mice. We analyzed the features of allergic airway inflammation in wild-type and NTN(-/-) mice after sensitization with two different allergens, OVA and house dust mite. We showed that NTN(-/-) dendritic cells and T cells had a stronger tendency to activate the Th2 pathway in vitro than similar wild-type cells. Furthermore, NTN(-/-) mice had significantly increased markers of airway remodeling like collagen deposition. NTN(-/-) lung tissues showed higher levels of neutrophils, cytokine-induced neutrophil chemoattractant, matrix metalloproteinase 9, TNF-α, and IL-6. Finally, NTN had the capacity to decrease IL-6 and TNF-α production by immune and epithelial cells, showing a direct anti-inflammatory activity on these cells. Our findings support the hypothesis that NTN could modulate the allergic inflammation in different mouse asthma models.
Collapse
Affiliation(s)
- Marion Mauffray
- Department of Infection and Immunity, Laboratory of Immunogenetics and Allergology, Public Research Center for Health, L-1526 Luxembourg, Luxembourg; and
| | - Olivia Domingues
- Department of Infection and Immunity, Laboratory of Immunogenetics and Allergology, Public Research Center for Health, L-1526 Luxembourg, Luxembourg; and
| | - François Hentges
- Department of Infection and Immunity, Laboratory of Immunogenetics and Allergology, Public Research Center for Health, L-1526 Luxembourg, Luxembourg; and
| | - Jacques Zimmer
- Department of Infection and Immunity, Laboratory of Immunogenetics and Allergology, Public Research Center for Health, L-1526 Luxembourg, Luxembourg; and
| | - Daniel Hanau
- Mixed Research Unit-S949, INSERM-University of Strasbourg, Biology and Pharmacology of Haemostasis and Thrombosis, Blood Transfusion Center-Alsace, 67065 Strasbourg, France
| | - Tatiana Michel
- Department of Infection and Immunity, Laboratory of Immunogenetics and Allergology, Public Research Center for Health, L-1526 Luxembourg, Luxembourg; and
| |
Collapse
|
5
|
Girard BM, Merriam LA, Tompkins JD, Vizzard MA, Parsons RL. Decrease in neuronal nicotinic acetylcholine receptor subunit and PSD-93 transcript levels in the male mouse MPG after cavernous nerve injury or explant culture. Am J Physiol Renal Physiol 2013; 305:F1504-12. [PMID: 24049141 DOI: 10.1152/ajprenal.00343.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quantitative real-time PCR was used to test whether cavernous nerve injury leads to a decrease in major pelvic ganglia (MPG) neuronal nicotinic ACh receptor (nAChR) subunit and postsynaptic density (PSD)-93 transcript levels. Subunits α3, β4, and α7, commonly expressed in the MPG, were selected for analysis. After 72 h in explant culture, MPG transcript levels for α3, β4, α7, and PSD-93 were significantly depressed. Three days after cavernous nerve axotomy or crush in vivo, transcript levels for α3, β4, and PSD-93, but not for α7, were significantly depressed. Three days after dissection of the cavernous nerve free of underlying tissue and application of a 5-mm lateral stretch (manipulation), transcript levels for α3 and PSD-93 were also significantly decreased. Seven days after all three surgical procedures, α3 transcript levels remained depressed, but PSD-93 transcript levels were still decreased only after axotomy or nerve crush. At 30 days postsurgery, transcript levels for the nAChR subunits and PSD-93 had recovered. ACh-induced currents were significantly smaller in MPG neurons dissociated from 3-day explant cultured ganglia than from those recorded in neurons dissociated from acutely isolated ganglia; this observation provides direct evidence showing that a decrease in nAChR function was coincident with a decrease in nAChR subunit transcript levels. We conclude that a downregulation of nAChR subunit and PSD-93 expression after cavernous nerve injury, or even manipulation, could interrupt synaptic transmission within the MPG and thus contribute to the loss of neural control of urogenital organs after pelvic surgeries.
Collapse
Affiliation(s)
- Beatrice M Girard
- Dept. of Neurological Sciences, College of Medicine, Univ. of Vermont, Burlington, VT 05405.
| | | | | | | | | |
Collapse
|
6
|
Galanin Expression in the Mouse Major Pelvic Ganglia During Explant Culture and Following Cavernous Nerve Transection. J Mol Neurosci 2012; 48:713-20. [DOI: 10.1007/s12031-012-9810-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022]
|
7
|
The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J Mol Cell Cardiol 2011; 52:667-76. [PMID: 22172449 PMCID: PMC3314977 DOI: 10.1016/j.yjmcc.2011.11.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/06/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023]
Abstract
The autonomic phenotype of congestive cardiac failure is characterised by high sympathetic drive and impaired vagal tone, which are independent predictors of mortality. We hypothesize that impaired bradycardia to peripheral vagal stimulation following high-level sympathetic drive is due to sympatho-vagal crosstalk by the adrenergic co-transmitters galanin and neuropeptide-Y (NPY). Moreover we hypothesize that galanin acts similarly to NPY by reducing vagal acetylcholine release via a receptor mediated, protein kinase-dependent pathway. Prolonged right stellate ganglion stimulation (10 Hz, 2 min, in the presence of 10 μM metoprolol) in an isolated guinea pig atrial preparation with dual autonomic innervation leads to a significant (p < 0.05) reduction in the magnitude of vagal bradycardia (5 Hz) maintained over the subsequent 20 min (n = 6). Immunohistochemistry demonstrated the presence of galanin in a small number of tyrosine hydroxylase positive neurons from freshly dissected stellate ganglion tissue sections. Following 3 days of tissue culture however, most stellate neurons expressed galanin. Stellate stimulation caused the release of low levels of galanin and significantly higher levels of NPY into the surrounding perfusate (n = 6, using ELISA). The reduction in vagal bradycardia post sympathetic stimulation was partially reversed by the galanin receptor antagonist M40 after 10 min (1 μM, n = 5), and completely reversed with the NPY Y2 receptor antagonist BIIE 0246 at all time points (1 μM, n = 6). Exogenous galanin (n = 6, 50–500 nM) also reduced the heart rate response to vagal stimulation but had no effect on the response to carbamylcholine that produced similar degrees of bradycardia (n = 6). Galanin (500 nM) also significantly attenuated the release of 3H-acetylcholine from isolated atria during field stimulation (5 Hz, n = 5). The effect of galanin on vagal bradycardia could be abolished by the galanin receptor antagonist M40 (n = 5). Importantly the GalR1 receptor was immunofluorescently co-localised with choline acetyl-transferase containing neurons at the sinoatrial node. The protein kinase C inhibitor calphostin (100 nM, n = 6) abolished the effect of galanin on vagal bradycardia whilst the protein kinase A inhibitor H89 (500 nM, n = 6) had no effect. These results demonstrate that prolonged sympathetic activation releases the slowly diffusing adrenergic co-transmitter galanin in addition to NPY, and that this contributes to the attenuation in vagal bradycardia via a reduction in acetylcholine release. This effect is mediated by GalR1 receptors on vagal neurons coupled to protein kinase C dependent signalling pathways. The role of galanin may become more important following an acute injury response where galanin expression is increased.
Collapse
|
8
|
Peddie CJ, Keast JR. Pelvic Nerve Injury Causes a Rapid Decrease in Expression of Choline Acetyltransferase and Upregulation of c-Jun and ATF-3 in a Distinct Population of Sacral Preganglionic Neurons. Front Neurosci 2011; 5:6. [PMID: 21283532 PMCID: PMC3031092 DOI: 10.3389/fnins.2011.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 11/13/2022] Open
Abstract
Autonomic regulation of the urogenital organs is impaired by injuries sustained during pelvic surgery or compression of lumbosacral spinal nerves (e.g., cauda equina syndrome). To understand the impact of injury on both sympathetic and parasympathetic components of this nerve supply, we performed an experimental surgical and immunohistochemical study on adult male rats, where the structure of this complex part of the nervous system has been well defined. We performed unilateral transection of pelvic or hypogastric nerves and analyzed relevant regions of lumbar and sacral spinal cord, up to 4 weeks after injury. Expression of c-Jun, the neuronal injury marker activating transcription factor-3 (ATF-3), and choline acetyltransferase (ChAT) were examined. We found little evidence for chemical or structural changes in substantial numbers of functionally related but uninjured spinal neurons (e.g., in sacral preganglionic neurons after hypogastric nerve injury), failing to support the concept of compensatory events. The effects of injury were greatest in sacral cord, ipsilateral to pelvic nerve transection. Here, around half of all preganglionic neurons expressed c-Jun within 1 week of injury, and substantial ATF-3 expression also occurred, especially in neurons with complete loss of ChAT-immunoreactivity. There did not appear to be any death of retrogradely labeled neurons, in contrast to axotomy studies performed on other regions of spinal cord or sacral ventral root avulsion models. Each of the effects we observed occurred in only a subpopulation of preganglionic neurons at that spinal level, raising the possibility that distinct functional subgroups have different susceptibility to trauma-induced degeneration and potentially different regenerative abilities. Identification of the cellular basis of these differences may provide insights into organ-specific strategies for attenuating degeneration or promoting regeneration of these circuits after trauma.
Collapse
Affiliation(s)
- Christopher J Peddie
- Pain Management Research Institute and Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital St Leonards, NSW, Australia
| | | |
Collapse
|
9
|
Merriam LA, Locknar SA, Girard BM, Parsons RL. Somatic ATP release from guinea pig sympathetic neurons does not require calcium-induced calcium release from internal stores. Am J Physiol Cell Physiol 2010; 299:C836-43. [PMID: 20668213 PMCID: PMC2957269 DOI: 10.1152/ajpcell.00036.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/22/2010] [Indexed: 11/22/2022]
Abstract
Prior studies indicated that a Ca(2+)-dependent release of ATP can be initiated from the soma of sympathetic neurons dissociated from guinea pig stellate ganglia. Previous studies also indicated that Ca(2+)-induced Ca(2+) release (CICR) can modulate membrane excitability in these same neurons. As Ca(2+) release from internal stores is thought to support somatodendritic transmitter release in other neurons, the present study investigated whether CICR is essential for somatic ATP release from dissociated sympathetic neurons. Caffeine increased intracellular Ca(2+) and activated two inward currents: a slow inward current (SIC) in 85% of cells, and multiple faster inward currents [asynchronous transient inward currents (ASTICs)] in 40% of cells voltage-clamped to negative potentials. Caffeine evoked both currents when cells were bathed in a Ca(2+)-deficient solution, indicating that both were initiated by Ca(2+) release from ryanodine-sensitive stores in the endoplasmic reticulum. Sodium influx contributed to generation of both SICs and ASTICs, but only ASTICs were inhibited by the presence of the P2X receptor blocker PPADs. Thus ASTICs, but not SICs, resulted from an ATP activation of P2X receptors. Ionomycin induced ASTICs in a Ca(2+)-containing solution, but not when it was applied in a Ca(2+)-deficient solution, demonstrating the key requirement for external Ca(2+) in initiating ASTICs by ionomycin. Pretreatment with drugs to deplete the internal stores of Ca(2+) did not block the ability of ionomycin or long depolarizing voltage steps to initiate ASTICs. Although a caffeine-induced release of Ca(2+) from internal stores can elicit both SICs and ASTICs in dissociated sympathetic neurons, CICR is not required for the somatic release of ATP.
Collapse
Affiliation(s)
- Laura A Merriam
- Department of Anatomy and Neurobiology, Univ. of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
10
|
Girard BM, Galli JR, Young BA, Vizzard MA, Parsons RL. PACAP expression in explant cultured mouse major pelvic ganglia. J Mol Neurosci 2010; 42:370-7. [PMID: 20407844 DOI: 10.1007/s12031-010-9359-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/22/2010] [Indexed: 12/19/2022]
Abstract
The major pelvic ganglia (MPG) contain both parasympathetic and sympathetic postganglionic neurons and provide much of the autonomic innervation to urogenital organs and components of the lower bowel. Whereas many parasympathetic neurons were found to express vasoactive intestinal polypeptide (VIP), no MPG neurons exhibited immunoreactivity for pituitary adenylate cyclase-activating polypeptide (PACAP). However, in 3-day cultured MPGs, numerous PACAP-IR cells and nerve fibers were present, and transcript levels for PACAP increased significantly. In 3-day cultured MPGs, PACAP immunoreactivity was seen in cells that were also immunoreactive for VIP or neuronal nitric oxide synthase, but not tyrosine hydroxylase, indicating that PACAP expression occurred preferentially in MPG parasympathetic postganglionic neurons. Transcript levels for the VPAC2, but not VPAC1 or PAC1 receptor, also increased significantly following 3 days in culture. Transcript levels of activating transcription factor 3 (ATF-3), a marker of cellular injury, were increased 64-fold in 3-day explants, and ATF-3-IR nuclei were evident in both TH-IR and nNOS-IR neurons as well as in non-neuronal cells. In sum, these results demonstrate that, although only the parasympathetic neurons in explant cultured MPGs increase expression of PACAP, both sympathetic and parasympathetic postganglionic neurons in the cultured MPG whole-mount increase expression of ATF-3.
Collapse
Affiliation(s)
- Beatrice M Girard
- Departments of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
11
|
Starkey ML, Davies M, Yip PK, Carter LM, Wong DJN, McMahon SB, Bradbury EJ. Expression of the regeneration-associated protein SPRR1A in primary sensory neurons and spinal cord of the adult mouse following peripheral and central injury. J Comp Neurol 2009; 513:51-68. [PMID: 19107756 DOI: 10.1002/cne.21944] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Small proline-rich repeat protein 1A (SPRR1A) is expressed in dorsal root ganglion (DRG) neurons following peripheral nerve injury but it is not known whether SPRR1A is differentially expressed following injury to peripheral versus central DRG projections and a detailed characterization of expression in sensory neuron subpopulations and spinal cord has not been performed. Here we use immunocytochemical techniques to characterize SPRR1A expression following sciatic nerve, dorsal root, and dorsal column injury in adult mice. SPRR1A was not detected in naïve spinal cord, DRG, or peripheral nerves and there was minimal expression following injury to the centrally projecting branches of DRG neurons. However, following peripheral (sciatic) nerve injury, intense SPRR1A immunoreactivity was observed in the dorsal horn and motoneurons of the spinal cord, in L4/5 DRG neurons, and in the injured nerve. A time-course study comparing expression following sciatic nerve crush and transection revealed maximum SPRR1A levels at day 7 in both models. However, while SPRR1A was downregulated to baseline by 30 days postlesion following crush injury, it remained elevated 30 days after transection. Cell-size and double-labeling studies revealed that SPRR1A was expressed by DRG cells of all sizes and colocalized with classical markers of DRG subpopulations and their primary afferent terminals. High coexpression of SPRR1A with activating transcription factor-3 and growth-associated protein-43 was observed, indicating that it is expressed by injured and regenerating neurons. This study supports the hypothesis that SPRR1A is a regeneration-associated gene and that SPRR1A provides a valuable marker to assess the regenerative potential of injured neurons.
Collapse
Affiliation(s)
- Michelle L Starkey
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Wolfson Wing, King's College London, London Bridge, London.
| | | | | | | | | | | | | |
Collapse
|
12
|
Nangle MR, Keast JR. Deafferentation and axotomy each cause neurturin-independent upregulation of c-Jun in rodent pelvic ganglia. Exp Neurol 2009; 215:271-80. [DOI: 10.1016/j.expneurol.2008.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 11/25/2022]
|