1
|
Norekian TP, Moroz LL. The distribution and evolutionary dynamics of dopaminergic neurons in molluscs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600886. [PMID: 38979169 PMCID: PMC11230423 DOI: 10.1101/2024.06.26.600886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is one of the most versatile neurotransmitters in invertebrates. It's distribution and plethora of functions is likely coupled to feeding ecology, especially in Euthyneura (the largest clade of molluscs), which presents the broadest spectrum of environmental adaptations. Still, the analyses of dopamine-mediated signaling were dominated by studies of grazers. Here, we characterize the distribution of dopaminergic neurons in representatives of two distinct ecological groups: the sea angel - obligate predatory pelagic mollusc Clione limacina (Pteropoda, Gymnosomata) and its prey - the sea devil Limacina helicina (Pteropoda, Thecosomata) as well as the plankton eater Melibe leonina (Nudipleura, Nudibranchia). By using tyrosine hydroxylase-immunoreactivity (TH-ir) as a reporter, we showed that the dopaminergic system is moderately conservative among euthyneurans. Across all studied species, small numbers of dopaminergic neurons in the central ganglia contrast to significant diversification of TH-ir neurons in the peripheral nervous system, primarily representing sensory-like cells, which predominantly concentrated in the chemotactic areas and projecting afferent axons to the central nervous system. Combined with α-tubulin immunoreactivity, this study illuminates the unprecedented complexity of peripheral neural systems in gastropod molluscs, with lineage-specific diversification of sensory and modulatory functions.
Collapse
Affiliation(s)
| | - Leonid L. Moroz
- Whitney Laboratory, University of Florida, St. Augustine, FL, USA
- Departments of Neuroscience and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Györi J, Kohn AB, Romanova DY, Moroz LL. ATP signaling in the integrative neural center of Aplysia californica. Sci Rep 2021; 11:5478. [PMID: 33750901 PMCID: PMC7943599 DOI: 10.1038/s41598-021-84981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
ATP and its ionotropic P2X receptors are components of the most ancient signaling system. However, little is known about the distribution and function of purinergic transmission in invertebrates. Here, we cloned, expressed, and pharmacologically characterized the P2X receptors in the sea slug Aplysia californica—a prominent neuroscience model. AcP2X receptors were successfully expressed in Xenopus oocytes and displayed activation by ATP with two-phased kinetics and Na+-dependence. Pharmacologically, they were different from other P2X receptors. The ATP analog, Bz-ATP, was a less effective agonist than ATP, and PPADS was a more potent inhibitor of the AcP2X receptors than the suramin. AcP2X were uniquely expressed within the cerebral F-cluster, the multifunctional integrative neurosecretory center. AcP2X receptors were also detected in the chemosensory structures and the early cleavage stages. Therefore, in molluscs, rapid ATP-dependent signaling can be implicated both in development and diverse homeostatic functions. Furthermore, this study illuminates novel cellular and systemic features of P2X-type ligand-gated ion channels for deciphering the evolution of neurotransmitters.
Collapse
Affiliation(s)
- János Györi
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary.,Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, 117485, Russia
| | - Leonid L Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA. .,Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
4
|
Beach GA, Habib MR, El Hiani Y, Miller MW, Croll RP. Localization of keyhole limpet hemocyanin-like immunoreactivity in the nervous system of Biomphalaria alexandrina. J Neurosci Res 2019; 97:1469-1482. [PMID: 31379045 PMCID: PMC10401489 DOI: 10.1002/jnr.24497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023]
Abstract
Recent years have led to increased effort to describe and understand the peripheral nervous system and its influence on central mechanisms and behavior in gastropod molluscs. This study revealed that an antibody raised against keyhole limpet hemocyanin (KLH) cross-reacts with an antigen(s) found extensively in both the central and the peripheral nervous systems of Biomphalaria alexandrina. The results revealed KLH-like immunoreactive (LIR) neurons in the cerebral, pedal, buccal, left pleural, right parietal, and visceral ganglion within the CNS with fibers projecting throughout all the peripheral nerves. Numerous KLH-LIR peripheral sensory neurons located in the foot, lips, tentacles, mantle, esophagus, and penis exhibited a bipolar morphology with long tortuous dendrites. KLH-LIR cells were also present in the eye and statocyst, thus suggesting the labeling of multiple sensory modalities/cell types. KLH-LIR cells did not co-localize with tyrosine hydroxylase (TH)-LIR cells, which have previously been described in this and other gastropods. The results thus provide descriptions of thousands of peripheral sensory neurons, not previously described in detail. Future research should seek to pair sensory modalities with peripheral cell type and attempt to further elucidate the nature of KLH-like reactivity. These findings also emphasize the need for caution when analyzing results obtained through use of antibodies raised against haptens conjugated to carrier proteins, suggesting the need for stringent controls to help limit potential confounds caused by cross-reactivity. In addition, this study is the first to describe neuronal cross-reactivity with KLH in Biomphalaria, which could provide a substrate for host-parasite interactions with a parasitic trematode, Schistosoma.
Collapse
Affiliation(s)
- Griffin A Beach
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Yassine El Hiani
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Mark W Miller
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Roger P Croll
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Brown JW, Schaub BM, Klusas BL, Tran AX, Duman AJ, Haney SJ, Boris AC, Flanagan MP, Delgado N, Torres G, Rolón-Martínez S, Vaasjo LO, Miller MW, Gillette R. A role for dopamine in the peripheral sensory processing of a gastropod mollusc. PLoS One 2018; 13:e0208891. [PMID: 30586424 PMCID: PMC6306152 DOI: 10.1371/journal.pone.0208891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/27/2018] [Indexed: 11/26/2022] Open
Abstract
Histological evidence points to the presence of dopamine (DA) in the cephalic sensory organs of multiple gastropod molluscs, suggesting a possible sensory role for the neurotransmitter. We investigated the sensory function of DA in the nudipleuran Pleurobranchaea californica, in which the central neural correlates of sensation and foraging behavior have been well characterized. Tyrosine hydroxylase-like immunoreactivity (THli), a signature of the dopamine synthetic pathway, was similar to that found in two other opisthobranchs and two pulmonates previously studied: 1) relatively few (<100) THli neuronal somata were observed in the central ganglia, with those observed found in locations similar to those documented in the other snails but varying in number, and 2) the vast majority of THli somata were located in the peripheral nervous system, were associated with ciliated, putative primary sensory cells, and were highly concentrated in chemotactile sensory organs, giving rise to afferent axons projecting to the central nervous system. We extended these findings by observing that applying a selective D2/D3 receptor antagonist to the chemo- and mechanosensory oral veil-tentacle complex of behaving animals significantly delayed feeding behavior in response to an appetitive stimulus. A D1 blocker had no effect. Recordings of the two major cephalic sensory nerves, the tentacle and large oral veil nerves, in a deganglionated head preparation revealed a decrease of stimulus-evoked activity in the former nerve following application of the same D2/D3 antagonist. Broadly, our results implicate DA in sensation and engender speculation regarding the foraging-based decisions the neurotransmitter may serve in the nervous system of Pleurobranchaea and, by extension, other gastropods.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Program in Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, United States of America
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brittany M. Schaub
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bennett L. Klusas
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Andrew X. Tran
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alexander J. Duman
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Samantha J. Haney
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Abigail C. Boris
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Megan P. Flanagan
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nadia Delgado
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Grace Torres
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Solymar Rolón-Martínez
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Lee O. Vaasjo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Rhanor Gillette
- Program in Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, United States of America
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular & Integrative Physiology and the Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
6
|
Svehla P, Bédécarrats A, Jahn C, Nargeot R, Ciobanu L. Intracellular manganese enhanced MRI signals reflect the frequency of action potentials in Aplysia neurons. J Neurosci Methods 2017; 295:121-128. [PMID: 29248445 DOI: 10.1016/j.jneumeth.2017.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Manganese-enhanced magnetic resonance imaging (MEMRI) is an increasingly popular alternative to standard functional MRI methods in animal studies. The contrast in MEMRI images is based on the accumulation of Mn2+ ions inside neurons, and, since manganese can serve as calcium analogue, this accumulation reflects calcium dynamics providing versatile information about brain neuroarchitecture and functionality. However, despite its use as a functional imaging tool, the exact relationship between the MEMRI signal and neuronal activity remains elusive. NEW METHOD In order to better understand the mechanisms underlying Mn2+ accumulation resulting in MEMRI signal enhancement we investigated single neuron responses of isolated Aplysia buccal ganglia subjected to chemical (dopamine) or electrical stimulation of an input nerve (oesophageal nerve). The elicited electrical activity that represents a fictive feeding was recorded with electrophysiological methods and the Mn2+ uptake in individual neurons was evaluated with MEMRI at 17.2T. RESULTS & COMPARISON WITH EXISTING METHOD(S) We show a positive correlation between bursts of electrical activity and MEMRI signal intensity in identified neurons and demonstrate that the MEMRI signal reflects mainly fast and high membrane depolarization processes such as action potentials, and it is not sensitive to slow and small membrane depolarizations, such as post-synaptic potentials.
Collapse
Affiliation(s)
- Pavel Svehla
- NeuroSpin, CEA Saclay, 91191 Gif-sur-Yvette, France; University Paris-Sud, XI, 91450 Orsay, France
| | | | | | - Romuald Nargeot
- University of Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Luisa Ciobanu
- NeuroSpin, CEA Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Neveu CL, Costa RM, Homma R, Nagayama S, Baxter DA, Byrne JH. Unique Configurations of Compression and Truncation of Neuronal Activity Underlie l-DOPA-Induced Selection of Motor Patterns in Aplysia. eNeuro 2017; 4:ENEURO.0206-17.2017. [PMID: 29071298 PMCID: PMC5654236 DOI: 10.1523/eneuro.0206-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022] Open
Abstract
A key issue in neuroscience is understanding the ways in which neuromodulators such as dopamine modify neuronal activity to mediate selection of distinct motor patterns. We addressed this issue by applying either low or high concentrations of l-DOPA (40 or 250 μM) and then monitoring activity of up to 130 neurons simultaneously in the feeding circuitry of Aplysia using a voltage-sensitive dye (RH-155). l-DOPA selected one of two distinct buccal motor patterns (BMPs): intermediate (low l-DOPA) or bite (high l-DOPA) patterns. The selection of intermediate BMPs was associated with shortening of the second phase of the BMP (retraction), whereas the selection of bite BMPs was associated with shortening of both phases of the BMP (protraction and retraction). Selection of intermediate BMPs was also associated with truncation of individual neuron spike activity (decreased burst duration but no change in spike frequency or burst latency) in neurons active during retraction. In contrast, selection of bite BMPs was associated with compression of spike activity (decreased burst latency and duration and increased spike frequency) in neurons projecting through specific nerves, as well as increased spike frequency of protraction neurons. Finally, large-scale voltage-sensitive dye recordings delineated the spatial distribution of neurons active during BMPs and the modification of that distribution by the two concentrations of l-DOPA.
Collapse
Affiliation(s)
- Curtis L Neveu
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Renan M Costa
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ryota Homma
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
8
|
Robert A, Monsinjon T, Delbecque JP, Olivier S, Poret A, Foll FL, Durand F, Knigge T. Neuroendocrine disruption in the shore crab Carcinus maenas: Effects of serotonin and fluoxetine on chh- and mih-gene expression, glycaemia and ecdysteroid levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:192-204. [PMID: 27060239 DOI: 10.1016/j.aquatox.2016.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Serotonin, a highly conserved neurotransmitter, controls many biological functions in vertebrates, but also in invertebrates. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are commonly used in human medication to ease depression by affecting serotonin levels. Their residues and metabolites can be detected in the aquatic environment and its biota. They may also alter serotonin levels in aquatic invertebrates, thereby perturbing physiological functions. To investigate whether such perturbations can indeed be expected, shore crabs (Carcinus maenas) were injected either with serotonin, fluoxetine or a combination of both. Dose-dependent effects of fluoxetine ranging from 250 to 750nM were investigated. Gene expression of crustacean hyperglycemic hormone (chh) as well as moult inhibiting hormone (mih) was assessed by RT-qPCR at 2h and 12h after injection. Glucose and ecdysteroid levels in the haemolymph were monitored in regular intervals until 12h. Serotonin led to a rapid increase of chh and mih expression. On the contrary, fluoxetine only affected chh and mih expression after several hours, but kept expression levels significantly elevated. Correspondingly, serotonin rapidly increased glycaemia, which returned to normal or below normal levels after 12h. Fluoxetine, however, resulted in a persistent low-level increase of glycaemia, notably during the period when negative feedback regulation reduced glycaemia in the serotonin treated animals. Ecdysteroid levels were significantly decreased by serotonin and fluoxetine, with the latter showing less pronounced and less rapid, but longer lasting effects. Impacts of fluoxetine on glycaemia and ecdysteroids were mostly observed at higher doses (500 and 750nM) and affected principally the response dynamics, but not the amplitude of glycaemia and ecdysteroid-levels. These results suggest that psychoactive drugs are able to disrupt neuroendocrine control in decapod crustaceans, as they interfere with the normal regulation of the serotonergic system.
Collapse
Affiliation(s)
- Alexandrine Robert
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Jean-Paul Delbecque
- University of Bordeaux, CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Avenue des Facultés, F-33405 Talence Cedex, France
| | - Stéphanie Olivier
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Agnès Poret
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Frank Le Foll
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Fabrice Durand
- Normandy University, UNIHAVRE, Faculty of Science and Technics, 25 rue Philippe Lebon, F-76063 Le Havre, France
| | - Thomas Knigge
- Normandy University, UNIHAVRE, UMR SEBIO, Environmental Stress and Aquatic Biomonitoring, 25 rue Philippe Lebon, F-76063 Le Havre, France.
| |
Collapse
|
9
|
Campos TDL, Young ND, Korhonen PK, Hall RS, Mangiola S, Lonie A, Gasser RB. Identification of G protein-coupled receptors in Schistosoma haematobium and S. mansoni by comparative genomics. Parasit Vectors 2014; 7:242. [PMID: 24884876 PMCID: PMC4100253 DOI: 10.1186/1756-3305-7-242] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic disease affecting ~200 million people worldwide. Schistosoma haematobium and S. mansoni are two relatively closely related schistosomes (blood flukes), and the causative agents of urogenital and hepatointestinal schistosomiasis, respectively. The availability of genomic, transcriptomic and proteomic data sets for these two schistosomes now provides unprecedented opportunities to explore their biology, host interactions and schistosomiasis at the molecular level. A particularly important group of molecules involved in a range of biological and developmental processes in schistosomes and other parasites are the G protein-coupled receptors (GPCRs). Although GPCRs have been studied in schistosomes, there has been no detailed comparison of these receptors between closely related species. Here, using a genomic-bioinformatic approach, we identified and characterised key GPCRs in S. haematobium and S. mansoni (two closely related species of schistosome). METHODS Using a Hidden Markov Model (HMM) and Support Vector Machine (SVM)-based pipeline, we classified and sub-classified GPCRs of S. haematobium and S. mansoni, combined with phylogenetic and transcription analyses. RESULTS We identified and classified classes A, B, C and F as well as an unclassified group of GPCRs encoded in the genomes of S. haematobium and S. mansoni. In addition, we characterised ligand-specific subclasses (i.e. amine, peptide, opsin and orphan) within class A (rhodopsin-like). CONCLUSIONS Most GPCRs shared a high degree of similarity and conservation, except for members of a particular clade (designated SmGPR), which appear to have diverged between S. haematobium and S. mansoni and might explain, to some extent, some of the underlying biological differences between these two schistosomes. The present set of annotated GPCRs provides a basis for future functional genomic studies of cellular GPCR-mediated signal transduction and a resource for future drug discovery efforts in schistosomes.
Collapse
Affiliation(s)
| | - Neil D Young
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Implication of dopaminergic modulation in operant reward learning and the induction of compulsive-like feeding behavior in Aplysia. Learn Mem 2013; 20:318-27. [PMID: 23685764 DOI: 10.1101/lm.029140.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Feeding in Aplysia provides an amenable model system for analyzing the neuronal substrates of motivated behavior and its adaptability by associative reward learning and neuromodulation. Among such learning processes, appetitive operant conditioning that leads to a compulsive-like expression of feeding actions is known to be associated with changes in the membrane properties and electrical coupling of essential action-initiating B63 neurons in the buccal central pattern generator (CPG). Moreover, the food-reward signal for this learning is conveyed in the esophageal nerve (En), an input nerve rich in dopamine-containing fibers. Here, to investigate whether dopamine (DA) is involved in this learning-induced plasticity, we used an in vitro analog of operant conditioning in which electrical stimulation of En substituted the contingent reinforcement of biting movements in vivo. Our data indicate that contingent En stimulation does, indeed, replicate the operant learning-induced changes in CPG output and the underlying membrane and synaptic properties of B63. Significantly, moreover, this network and cellular plasticity was blocked when the input nerve was stimulated in the presence of the DA receptor antagonist cis-flupenthixol. These results therefore suggest that En-derived dopaminergic modulation of CPG circuitry contributes to the operant reward-dependent emergence of a compulsive-like expression of Aplysia's feeding behavior.
Collapse
|
11
|
Variables controlling entry into and exit from the steady-state, one of two modes of feeding in Aplysia. PLoS One 2012; 7:e45241. [PMID: 23028872 PMCID: PMC3460933 DOI: 10.1371/journal.pone.0045241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/16/2012] [Indexed: 11/19/2022] Open
Abstract
Background Aplysia feeding is a model system for examining the neural mechanisms by which changes in motivational state control behavior. When food is intermittently present, Aplysia eat large meals controlled by a balance between food stimuli exciting feeding and gut stimuli inhibiting feeding. However, when food is continuously present animals are in a state in which feeding is relatively inhibited and animals eat little. We examined which stimuli provided by food and feeding initiate steady-state inhibition of feeding, and which stimuli maintain the inhibition. Results Multiple stimuli were found to control entry into the steady-state inhibition, and its maintenance. The major variable governing entry into the steady-state is fill of the gut with bulk provided by food, but this stimulus cannot alone cause entry into the steady-state. Food odor and nutritional stimuli such as increased hemolymph glucose and L-arginine concentrations also contribute to inhibition of feeding leading to entry into the steady-state. Although food odor can alone cause some inhibition of feeding, it does not amplify the effect of gut fill. By contrast, neither increased hemolymph glucose nor L-arginine alone inhibits feeding in hungry animals, but both amplify the inhibitory effects of food odor, and increased glucose also amplifies the effect of gut fill. The major variable maintaining the steady-state is the continued presence of food odor, which can alone maintain the steady-state for 48–72 hrs. Neither increased glucose nor L-arginine can alone preserve the steady-state, although they partially preserve it. Glucose and arginine partially extend the effect of food odor after 72 hrs. Conclusions These findings show that control of Aplysia feeding is more complex than was previously thought, in that multiple inhibitory factors interact in its control.
Collapse
|
12
|
Kawai R, Kobayashi S, Fujito Y, Ito E. Multiple Subtypes of Serotonin Receptors in the Feeding Circuit of a Pond Snail. Zoolog Sci 2011; 28:517-25. [DOI: 10.2108/zsj.28.517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Nargeot R, Simmers J. Neural mechanisms of operant conditioning and learning-induced behavioral plasticity in Aplysia. Cell Mol Life Sci 2011; 68:803-16. [PMID: 21042832 PMCID: PMC11114654 DOI: 10.1007/s00018-010-0570-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/17/2023]
Abstract
Associative learning in goal-directed behaviors, in contrast to reflexive behaviors, can alter processes of decision-making in the selection of appropriate action and its initiation, thereby enabling animals, including humans, to gain a predictive understanding of their external environment. In the mollusc Aplysia, recent studies on appetitive operant conditioning in which the animal learns about the positive consequences of its behavior have provided insights into this form of associative learning which, although ubiquitous, remains mechanistically poorly understood. The findings support increasing evidence that central circuit- and cell-wide sites other than chemical synaptic connections, including electrical coupling and membrane conductances controlling intrinsic neuronal excitability and underlying voltage-dependent plateauing or oscillatory mechanisms, may serve as the neural substrates for behavioral plasticity resulting from operant conditioning. Aplysia therefore continues to provide a model system for understanding learning and memory formation that enables establishing the neurobiological links between behavioral, network, and cellular levels of analysis.
Collapse
Affiliation(s)
- Romuald Nargeot
- Laboratoire Mouvement, Adaptation, Cognition, Université Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France.
| | | |
Collapse
|
14
|
Serotonergic cerebral cells control activity of cilia in the foregut of the pteropod mollusk Clione limacina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:25-32. [PMID: 20827479 DOI: 10.1007/s00359-010-0581-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Bilaterally symmetrical pair of serotonergic cells, named C1 in Clione, has been described in the cerebral ganglia of all gastropod species. Here we describe a new role of C1 cells in gastropod mollusks: control of activity of ciliated epithelium in the foregut. Detailed morphological investigation of C1 neurons in the pteropod mollusk Clione limacina revealed that these cells among other destinations send their neurites into foregut where they produce intense arborization with large varicosities along the processes. Intracellular stimulation of a single C1 induced pronounced activation (often followed by inhibition) of cilia lining the foregut. This activation was substantially reduced by serotonin antagonist mianserin. Bath application of serotonin also induced transient increase in ciliary transport rate, followed by inhibition of ciliary activity up to its full cessation in some areas of isolated foregut. These data suggest that C1 in Clione may use serotonin to influence cilia in the foregut. Taking into account high homology of serotonergic cerebral cells across studied species we can speculate that these cells may be involved in the neural control of cilia in the foregut in other gastropod mollusks.
Collapse
|
15
|
Díaz-Balzac CA, Mejías W, Jiménez LB, García-Arrarás JE. The catecholaminergic nerve plexus of Holothuroidea. ZOOMORPHOLOGY 2010; 129:99-109. [PMID: 20827375 DOI: 10.1007/s00435-010-0103-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Catecholamines have been extensively reported to be present in most animal groups, including members of Echinodermata. In this study, we investigated the presence and distribution of catecholaminergic nerves in two members of the Holothuroidea, Holothuria glaberrima (Selenka, 1867) (Aspidochirotida, Holothuroidea) and Holothuria mexicana (Ludwig, 1875) (Aspidochirotida, Holothuroidea), by using induced fluorescence for catecholamines on tissue sections and immunohistochemistry with an antibody that recognizes tyrosine hydroxylase. The presence of a catecholaminergic nerve plexus similar in distribution and extension to those previously reported in other members of Echinodermata was observed. This plexus, composed of cells and fibers, is found in the ectoneural component of the echinoderm nervous system and is continuous with the circumoral nerve ring and the radial nerves, tentacular nerves, and esophageal plexus. In addition, fluorescent nerves in the tube feet are continuous with the catecholaminergic components of the radial nerve cords. This is the first comprehensive report on the presence and distribution of catecholamines in the nervous system of Holothuroidea. The continuity and distribution of the catecholaminergic plexus strengthen the notion that the catecholaminergic cells are interneurons, since these do not form part of the known sensory or motor circuits and the fluorescence is confined to organized nervous tissue.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Biology, University of Puerto Rico, Río Piedras Campus, Box 23360, Río Piedras, PR 00931-3360, USA
| | | | | | | |
Collapse
|
16
|
Wu JS, Vilim FS, Hatcher NG, Due MR, Sweedler JV, Weiss KR, Jing J. Composite modulatory feedforward loop contributes to the establishment of a network state. J Neurophysiol 2010; 103:2174-84. [PMID: 20181731 DOI: 10.1152/jn.01054.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Feedforward loops (FFLs) are one of many network motifs identified in a variety of complex networks, but their functional role in neural networks is not well understood. We provide evidence that combinatorial actions of multiple modulators may be organized as FFLs to promote a specific network state in the Aplysia feeding motor network. The Aplysia feeding central pattern generator (CPG) receives two distinct inputs-a higher-order interneuron cerebral-buccal interneuron-2 (CBI-2) and the esophageal nerve (EN)-that promote ingestive and egestive motor programs, respectively. EN stimulation elicits a persistent egestive network state, which enables the network to temporarily express egestive programs following a switch of input from the EN to CBI-2. Previous work showed that a modulatory CPG element, B65, is specifically activated by the EN and participates in establishing the egestive state by enhancing activity of egestion-promoting B20 interneurons while suppressing activity and synaptic outputs of ingestion-promoting B40 interneurons. Here a peptidergic contribution is mediated by small cardioactive peptide (SCP). Immunostaining and mass spectrometry show that SCP is present in the EN and is released on EN stimulation. Importantly, SCP directly enhances activity and synaptic outputs of B20 and suppresses activity and synaptic outputs of B40. Moreover, SCP promotes B65 activity. Thus the direct and indirect (through B65) pathways to B20 and B40 from SCPergic neurons constitute two FFLs with one functioning to promote egestive output and the other to suppress ingestive output. This composite FFL consisting of the two combined FFLs appears to be an effective means to co-regulate activity of two competing elements that do not inhibit each other, thereby contributing to establish specific network states.
Collapse
Affiliation(s)
- Jin-Sheng Wu
- Dept. of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|