1
|
Green WW, Boyes K, McFadden C, Daghfous G, Auclair F, Zhang H, Li W, Dubuc R, Zielinski BS. Odorant organization in the olfactory bulb of the sea lamprey. ACTA ACUST UNITED AC 2017; 220:1350-1359. [PMID: 28183864 DOI: 10.1242/jeb.150466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/27/2017] [Indexed: 11/20/2022]
Abstract
Olfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ. The response duration for local field potential recordings was similar in the lateral and dorsal regions, and both were longer than medial responses. All three regions responded to amino acid odorants. The dorsal and medial regions, but not the lateral region, responded to steroids. These findings show evidence for olfactory streams in the sea lamprey olfactory bulb: the lateral region responds to amino acids from sensory input in the main olfactory epithelium, the dorsal region responds to steroids (taurocholic acid and pheromones) and to amino acids from sensory input in the main olfactory epithelium, and the medial bulbar region responds to amino acids and steroids stimulating the accessory olfactory organ. These findings indicate that olfactory subsystems are present at the base of vertebrate evolution and that regionality in the lamprey olfactory bulb has some aspects previously seen in other vertebrate species.
Collapse
Affiliation(s)
- Warren W Green
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Karl Boyes
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Charrie McFadden
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Gheylen Daghfous
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada H3C3P8.,Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - François Auclair
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada H3C3P8.,Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - Huiming Zhang
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada H3C3P8.,Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, QC, Canada H3C3J7
| | - Barbara S Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B3P4 .,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada N9B3P4
| |
Collapse
|
2
|
Romaus-Sanjurjo D, Fernández-López B, Sobrido-Cameán D, Barreiro-Iglesias A, Rodicio MC. Cloning of the GABA B Receptor Subunits B1 and B2 and their Expression in the Central Nervous System of the Adult Sea Lamprey. Front Neuroanat 2016; 10:118. [PMID: 28008311 PMCID: PMC5143684 DOI: 10.3389/fnana.2016.00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
In vertebrates, γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the central nervous system (CNS) acting through ionotropic (GABAA) and metabotropic (GABAB) receptors. The GABAB receptor produces a slow inhibition since it activates second messenger systems through the binding and activation of guanine nucleotide-binding proteins [G-protein-coupled receptors (GPCRs)]. Lampreys are a key reference to understand molecular evolution in vertebrates. The importance of the GABAB receptor for the modulation of the circuits controlling locomotion and other behaviors has been shown in pharmacological/physiological studies in lampreys. However, there is no data about the sequence of the GABAB subunits or their expression in the CNS of lampreys. Our aim was to identify the sea lamprey GABAB1 and GABAB2 transcripts and study their expression in the CNS of adults. We cloned two partial sequences corresponding to the GABAB1 and GABAB2 cDNAs of the sea lamprey as confirmed by sequence analysis and comparison with known GABAB sequences of other vertebrates. In phylogenetic analyses, the sea lamprey GABAB sequences clustered together with GABABs sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. We observed a broad and overlapping expression of both transcripts in the entire CNS. Expression was mainly observed in neuronal somas of the periventricular regions including the identified reticulospinal cells. No expression was observed in identifiable fibers. Comparison of our results with those reported in other vertebrates indicates that a broad and overlapping expression of the GABAB subunits in the CNS is a conserved character shared by agnathans and gnathostomes.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Blanca Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
3
|
Pose-Méndez S, Candal E, Mazan S, Rodríguez-Moldes I. Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan–gnathostome transition. Brain Struct Funct 2015; 221:1321-35. [DOI: 10.1007/s00429-014-0973-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022]
|
4
|
Fernández-López B, Villar-Cerviño V, Valle-Maroto SM, Barreiro-Iglesias A, Anadón R, Rodicio MC. The glutamatergic neurons in the spinal cord of the sea lamprey: an in situ hybridization and immunohistochemical study. PLoS One 2012; 7:e47898. [PMID: 23110124 PMCID: PMC3478272 DOI: 10.1371/journal.pone.0047898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/18/2012] [Indexed: 12/22/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter involved in spinal cord circuits in vertebrates, but in most groups the distribution of glutamatergic spinal neurons is still unknown. Lampreys have been extensively used as a model to investigate the neuronal circuits underlying locomotion. Glutamatergic circuits have been characterized on the basis of the excitatory responses elicited in postsynaptic neurons. However, the presence of glutamatergic neurochemical markers in spinal neurons has not been investigated. In this study, we report for the first time the expression of a vesicular glutamate transporter (VGLUT) in the spinal cord of the sea lamprey. We also study the distribution of glutamate in perikarya and fibers. The largest glutamatergic neurons found were the dorsal cells and caudal giant cells. Two additional VGLUT-positive gray matter populations, one dorsomedial consisting of small cells and another one lateral consisting of small and large cells were observed. Some cerebrospinal fluid-contacting cells also expressed VGLUT. In the white matter, some edge cells and some cells associated with giant axons (Müller and Mauthner axons) and the dorsolateral funiculus expressed VGLUT. Large lateral cells and the cells associated with reticulospinal axons are in a key position to receive descending inputs involved in the control of locomotion. We also compared the distribution of glutamate immunoreactivity with that of γ-aminobutyric acid (GABA) and glycine. Colocalization of glutamate and GABA or glycine was observed in some small spinal cells. These results confirm the glutamatergic nature of various neuronal populations, and reveal new small-celled glutamatergic populations, predicting that some glutamatergic neurons would exert complex actions on postsynaptic neurons.
Collapse
Affiliation(s)
- Blanca Fernández-López
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Verona Villar-Cerviño
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Silvia M. Valle-Maroto
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
5
|
Candiani S, Moronti L, Ramoino P, Schubert M, Pestarino M. A neurochemical map of the developing amphioxus nervous system. BMC Neurosci 2012; 13:59. [PMID: 22676056 PMCID: PMC3484041 DOI: 10.1186/1471-2202-13-59] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/27/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Amphioxus, representing the most basal group of living chordates, is the best available proxy for the last invertebrate ancestor of the chordates. Although the central nervous system (CNS) of amphioxus comprises only about 20,000 neurons (as compared to billions in vertebrates), the developmental genetics and neuroanatomy of amphioxus are strikingly vertebrate-like. In the present study, we mapped the distribution of amphioxus CNS cells producing distinctive neurochemicals. To this end, we cloned genes encoding biosynthetic enzymes and/or transporters of the most common neurotransmitters and assayed their developmental expression in the embryo and early larva. RESULTS By single and double in situ hybridization experiments, we identified glutamatergic, GABAergic/glycinergic, serotonergic and cholinergic neurons in developing amphioxus. In addition to characterizing the distribution of excitatory and inhibitory neurons in the developing amphioxus CNS, we observed that cholinergic and GABAergic/glycinergic neurons are segmentally arranged in the hindbrain, whereas serotonergic, glutamatergic and dopaminergic neurons are restricted to specific regions of the cerebral vesicle and the hindbrain. We were further able to identify discrete groups of GABAergic and glutamatergic interneurons and cholinergic motoneurons at the level of the primary motor center (PMC), the major integrative center of sensory and motor stimuli of the amphioxus nerve cord. CONCLUSIONS In this study, we assessed neuronal differentiation in the developing amphioxus nervous system and compiled the first neurochemical map of the amphioxus CNS. This map is a first step towards a full characterization of the neurotransmitter signature of previously described nerve cell types in the amphioxus CNS, such as motoneurons and interneurons.
Collapse
Affiliation(s)
- Simona Candiani
- Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova, Viale Benedetto XV, 5, 16132 Genoa, Italy.
| | | | | | | | | |
Collapse
|
6
|
Villar-Cerviño V, Barreiro-Iglesias A, Mazan S, Rodicio MC, Anadón R. Glutamatergic neuronal populations in the forebrain of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J Comp Neurol 2012; 519:1712-35. [PMID: 21452205 DOI: 10.1002/cne.22597] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the importance of glutamate as a major excitatory neurotransmitter in the brain, the distribution of glutamatergic populations in the brain of most vertebrates is still unknown. Here, we studied for the first time the distribution of glutamatergic neurons in the forebrain of the sea lamprey (Petromyzon marinus), belonging to the most ancient group of vertebrates (agnathans). For this, we used in situ hybridization with probes for a lamprey vesicular glutamate transporter (VGLUT) in larvae and immunofluorescence with antiglutamate antibodies in both larvae and adults. We also compared glutamate and γ-aminobutyric acid (GABA) immunoreactivities in sections using double-immunofluorescence methods. VGLUT-expressing neurons were observed in the olfactory bulb, pallium, septum, subhippocampal lobe, preoptic region, thalamic eminence, prethalamus, thalamus, epithalamus, pretectum, hypothalamus, posterior tubercle, and nucleus of the medial longitudinal fascicle. Comparison of VGLUT signal and glutamate immunoreactivity in larval forebrain revealed a consistent distribution of positive cells, which were numerous in most regions. Glutamate-immunoreactive cell populations were also found in similar regions of the adult forebrain. These include mitral-like cells of the olfactory bulbs and abundant cells in the lateral pallium, septum, and various diencephalic regions, mainly in the prethalamus, thalamus, habenula, pineal complex, and pretectum. Only a small portion of the glutamate-immunoreactive cells showed colocalization with GABA, which was observed mainly in the olfactory bulb, telencephalon, hypothalamus, ventral thalamus, and pretectum. Comparison with glutamatergic cells observed in rodent forebrains suggests that the regional distribution of glutamatergic cells does not differ greatly in lampreys and mammals.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | |
Collapse
|