1
|
Shaikh AG, Wong A, Zee DS, Jinnah HA. Why are voluntary head movements in cervical dystonia slow? Parkinsonism Relat Disord 2015; 21:561-6. [PMID: 25818535 DOI: 10.1016/j.parkreldis.2015.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Rapid head movements associated with a change in fixation (head saccades) have been reported to be slow in cervical dystonia (CD). Such slowing is typically measured as an increase in time to complete a movement. The mechanisms responsible for this slowing are poorly understood. METHODS We measured head saccades in 11 CD patients and 11 healthy subjects using a magnetic search coil technique. RESULTS Head saccades in CD took longer to reach a desired target location. This longer duration was due to multiple pauses in the trajectory of the head movement. The head velocity of each segment of the (interrupted) head movement was appropriate for the desired total movement amplitude. The head velocity was, however, higher for the amplitude of the individual interrupted movements. These results suggest that brain programs the proper head movement amplitude, but the movement is interrupted by pathological pauses. CONCLUSION Voluntary head saccades have a longer duration in CD due to frequent pauses. The frequent pauses reflect pathological interruptions of normally programmed intended head movement.
Collapse
Affiliation(s)
- Aasef G Shaikh
- Department of Neurology, Emory University, Atlanta, GA, USA; Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.
| | - Aaron Wong
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - David S Zee
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Hutchinson M, Isa T, Molloy A, Kimmich O, Williams L, Molloy F, Moore H, Healy DG, Lynch T, Walsh C, Butler J, Reilly RB, Walsh R, O'Riordan S. Cervical dystonia: a disorder of the midbrain network for covert attentional orienting. Front Neurol 2014; 5:54. [PMID: 24803911 PMCID: PMC4009446 DOI: 10.3389/fneur.2014.00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/03/2014] [Indexed: 01/30/2023] Open
Abstract
While the pathogenesis of cervical dystonia remains unknown, recent animal and clinical experimental studies have indicated its probable mechanisms. Abnormal temporal discrimination is a mediational endophenotype of cervical dystonia and informs new concepts of disease pathogenesis. Our hypothesis is that both abnormal temporal discrimination and cervical dystonia are due to a disorder of the midbrain network for covert attentional orienting caused by reduced gamma-aminobutyric acid (GABA) inhibition, resulting, in turn, from as yet undetermined, genetic mutations. Such disinhibition is (a) subclinically manifested by abnormal temporal discrimination due to prolonged duration firing of the visual sensory neurons in the superficial laminae of the superior colliculus and (b) clinically manifested by cervical dystonia due to disinhibited burst activity of the cephalomotor neurons of the intermediate and deep laminae of the superior colliculus. Abnormal temporal discrimination in unaffected first-degree relatives of patients with cervical dystonia represents a subclinical manifestation of defective GABA activity both within the superior colliculus and from the substantia nigra pars reticulata. A number of experiments are required to prove or disprove this hypothesis.
Collapse
Affiliation(s)
- Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences , Okazaki , Japan
| | - Anna Molloy
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Okka Kimmich
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Laura Williams
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Fiona Molloy
- Department of Neurophysiology, Beaumont Hospital , Dublin , Ireland
| | | | - Daniel G Healy
- Department of Neurology, Beaumont Hospital , Dublin , Ireland
| | - Tim Lynch
- Dublin Neurological Institute, Mater Misericordiae Hospital , Dublin , Ireland
| | - Cathal Walsh
- Department of Statistics, Trinity College Dublin , Dublin , Ireland
| | - John Butler
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard Walsh
- Department of Neurology, The Adelaide and Meath Hospital , Dublin , Ireland
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| |
Collapse
|
4
|
A hypothetical universal model of cerebellar function: reconsideration of the current dogma. THE CEREBELLUM 2014; 12:758-72. [PMID: 23584616 DOI: 10.1007/s12311-013-0477-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is commonly studied in the context of the classical eyeblink conditioning model, which attributes an adaptive motor function to cerebellar learning processes. This model of cerebellar function has quite a few shortcomings and may in fact be somewhat deficient in explaining the myriad functions attributed to the cerebellum, functions ranging from motor sequencing to emotion and cognition. The involvement of the cerebellum in these motor and non-motor functions has been demonstrated in both animals and humans in electrophysiological, behavioral, tracing, functional neuroimaging, and PET studies, as well as in clinical human case studies. A closer look at the cerebellum's evolutionary origin provides a clue to its underlying purpose as a tool which evolved to aid predation rather than as a tool for protection. Based upon this evidence, an alternative model of cerebellar function is proposed, one which might more comprehensively account both for the cerebellum's involvement in a myriad of motor, affective, and cognitive functions and for the relative simplicity and ubiquitous repetitiveness of its circuitry. This alternative model suggests that the cerebellum has the ability to detect coincidences of events, be they sensory, motor, affective, or cognitive in nature, and, after having learned to associate these, it can then trigger (or "mirror") these events after having temporally adjusted their onset based on positive/negative reinforcement. The model also provides for the cerebellum's direction of the proper and uninterrupted sequence of events resulting from this learning through the inhibition of efferent structures (as demonstrated in our lab).
Collapse
|
5
|
Abstract
The mammalian superior colliculus (SC) and its nonmammalian homolog, the optic tectum, constitute a major node in processing sensory information, incorporating cognitive factors, and issuing motor commands. The resulting action-to orient toward or away from a stimulus-can be accomplished as an integrated movement across oculomotor, cephalomotor, and skeletomotor effectors. The SC also participates in preserving fixation during intersaccadic intervals. This review highlights the repertoire of movements attributed to SC function and analyzes the significance of results obtained from causality-based experiments (microstimulation and inactivation). The mechanisms potentially used to decode the population activity in the SC into an appropriate movement command are also discussed.
Collapse
Affiliation(s)
- Neeraj J Gandhi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|