1
|
Hokanson JA, Langdale CL, Grill WM. Pathways and parameters of sacral neuromodulation in rats. Am J Physiol Renal Physiol 2023; 325:F757-F769. [PMID: 37795537 PMCID: PMC10874681 DOI: 10.1152/ajprenal.00123.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023] Open
Abstract
The stimulation paradigm for sacral neuromodulation has remained largely unchanged since its inception. We sought to determine, in rats, whether stimulation-induced increases in bladder capacity correlated with the proportion of sensory pudendal (PudS) neurons at each stimulated location (L6, S1). If supported, this finding could guide the choice of stimulation side (left/right) and level (S2, S3, S4) in humans. Unexpectedly, we observed that acute stimulation at clinically relevant (low) amplitudes [1-1.5 × motor threshold (Tm)], did not increase bladder capacity, regardless of stimulus location (L6 or S1). More importantly for the ability to test our hypothesis, there was little anatomic variation, and S1 infrequently contributed nerve fibers to the PudS nerve. During mapping studies we noticed that large increases in PudS nerve activation occurred at amplitudes exceeding 2Tm. Thus, additional cystometric studies were conducted, this time with stimulation of the L6-S1 trunk, to examine further the relationship between stimulation amplitude and cystometric parameters. Stimulation at 1Tm to 6Tm evoked increases in bladder capacity and decreases in voiding efficiency that mirrored those produced by PudS nerve stimulation. Many animal studies involving electrical stimulation of nerves of the lower urinary tract use stimulation amplitudes that exceed those used clinically (∼1Tm). Our results confirm that high amplitudes generate immediate changes in cystometric parameters; however, the relationship to low-amplitude chronic stimulation in humans remains unclear. Additional studies are needed to understand changes that occur with chronic stimulation, how these changes relate to therapeutic outcomes, and the contribution of specific nerve fibers to these changes.NEW & NOTEWORTHY Acute low-amplitude electrical stimulation of sacral nerve (sacral neuromodulation) did not increase bladder capacity in anesthetized CD, obese-prone, or obese-resistant rats. Increasing stimulation amplitude correlated with increases in bladder capacity and pudendal sensory nerve recruitment. It is unclear how the high-amplitude acute stimulation that is commonly used in animal experiments to generate immediate effects compares mechanistically to the chronic low-amplitude stimulation used clinically.
Collapse
Affiliation(s)
- James A Hokanson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, Wisconsin, United States
| | - Christopher L Langdale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, United States
- Department of Neurobiology, Duke University, Durham, North Carolina, United States
- Department of Neurosurgery, Duke University, Durham, North Carolina, United States
| |
Collapse
|
2
|
Time course for urethral neuromuscular reestablishment and its facilitated recovery by transcutaneous neuromodulation after simulated birth trauma in rats. Sci Rep 2021; 11:21591. [PMID: 34732833 PMCID: PMC8566552 DOI: 10.1038/s41598-021-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 11/08/2022] Open
Abstract
The aims of the study were to determine the time-course of urinary incontinence recovery after vaginal distension (VD), elucidate the mechanisms of injury from VD leading to external urethral sphincter (EUS) dysfunction, and assess if transcutaneous electrical stimulation (TENS) of the dorsal nerve of the clitoris facilitates recovery of urinary continence after VD. Rats underwent 4-h VD, 4-h sham VD (SH-VD), VD plus 1-h DNC TENS, and VD plus 1-h sham TENS (SH-TENS). TENS or SH-TENS were applied immediately and at days 2 and 4 post-VD. Micturition behavior, urethral histochemistry and histology, EUS and nerve electrophysiology, and cystometrograms were evaluated. VD induced urine leakage and significantly disrupted EUS fibers and nerve-conduction (VD vs SH-VD group;p < 0.01). Urine leakage disappeared 13 days post-VD (p < 0.001). Structural and functional recovery of EUS neuromuscular circuitry started by day 6 post-VD, but did not fully recover by day 11 post-VD (p > 0.05). TENS significantly decreased the frequency of urine leakage post-VD (days 5–7;p < 0.01). We conclude that rat urinary continence after VD requires 2 weeks to recover, although urethra structure is not fully recovered. TENS facilitated urinary continence recovery after VD. Additional studies are necessary to assess if TENS could be used in postpartum women.
Collapse
|
3
|
Potts BA, Degoski DJ, Brooks JM, Peterson AC, Nelson DE, Brink TS, Fraser MO. Timing of sacral neurostimulation is important for increasing bladder capacity in the anesthetized rat. Am J Physiol Renal Physiol 2019; 317:F1183-F1188. [PMID: 31411072 DOI: 10.1152/ajprenal.00167.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We assessed the effects of limited application of sacral neurostimulation (SNS) during bladder filling on bladder capacity using our previously published SNS model in rats. Female Sprague-Dawley rats (n = 24) were urethane anesthetized (1.2 g/kg sc) and implanted with jugular venous and transvesical bladder catheters. L6/S1 nerve trunks were isolated bilaterally, and two electrodes were placed on each exposed nerve. True bladder capacity (TBC) was determined using stable single-fill cystometrograms. In the first series of experiments, SNS was applied at the onset of bladder filling for 25%, 50%, 75%, and 100% of the previous control filling cycle duration (n = 10). In the second series of experiments, SNS was applied during the first, second, third, and fourth 25% and the first and second 50% of the control fill. In the first series, a significant increase in TBC was observed only when SNS was applied for 75% or 100% of the control fill duration (30% and 35%, respectively, P < 0.05). In the second series, significant increases in TBC only occurred during the fourth 25% period and second 50% period (32% and 43%, respectively, P < 0.001). Results from the second series also revealed an increase in subsequent single-fill bladder capacities (TBC) only when SNS was applied during the second 50% of the prior fill cycle. These data indicate that the application of SNS during the final 50% of the bladder fill cycle is necessary and sufficient for increasing bladder capacity.
Collapse
Affiliation(s)
- Bradley A Potts
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | | | | | - Andrew C Peterson
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Dwight E Nelson
- Research and Core Technology, Restorative Therapies Group, Medtronic Incorporated, Minneapolis, Minnesota
| | - Thaddeus S Brink
- Research and Core Technology, Restorative Therapies Group, Medtronic Incorporated, Minneapolis, Minnesota
| | - Matthew O Fraser
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, North Carolina.,Institute for Medical Research, Durham, North Carolina.,Research and Development Department, Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
4
|
Salazar BH, Hoffman KA, Zhang C, Zhang Y, Cruz Y, Boone TB, Munoz A. Modulatory effects of intravesical P2X2/3 purinergic receptor inhibition on lower urinary tract electromyographic properties and voiding function of female rats with moderate or severe spinal cord injury. BJU Int 2019; 123:538-547. [PMID: 30255543 PMCID: PMC6715153 DOI: 10.1111/bju.14561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the role that intravesical P2X2/3 purinergic receptors (P2X2/3Rs) play in early and advanced neurogenic lower urinary tract (LUT) dysfunction after contusion spinal cord injury (SCI) in female rats. MATERIALS AND METHODS Female Sprague-Dawley rats received a thoracic Th8/Th9 spinal cord contusion with either force of 100 kDy (cN); moderate) or 150 kDy (cN; severe); Sham rats had no injury. Evaluations on urethane-anesthetised rats were conducted at either 2 or 4 weeks after SCI. LUT electrical signals and changes in bladder pressure were simultaneously recorded using cystometry and a set of custom-made flexible microelectrodes, before and after intravesical application of the P2X2/3R antagonist AF-353 (10 μM), to determine the contribution of P2X2/3R-mediated LUT modulation. RESULTS Severe SCI significantly increased bladder contraction frequency, and reduced both bladder pressure amplitude and intraluminal-pressure high-frequency oscillations (IPHFO). Intravesical P2X2/3R inhibition did not modify bladder pressure or IPHFO in the Sham and moderate-SCI rats, although did increase the intercontractile interval (ICI). At 2 weeks after SCI, the Sham and moderate-SCI rats had significant LUT electromyographic activity during voiding, with a noticeable reduction in LUT electrical signals seen at 4 weeks after SCI. Intravesical inhibition of P2X2/3R increased the ICI in the Sham and moderate-SCI rats at both time-points, but had no effect on rats with severe SCI. The external urethral sphincter (EUS) showed strong and P2X2/3R-independent electrical signals in the Sham and moderate-SCI rats in the early SCI stage. At 4 weeks after SCI, the responsiveness of the EUS was significantly attenuated, independently of SCI intensity. CONCLUSIONS This study shows that electrophysiological properties of the LUT are progressively impaired depending on SCI intensity and that intravesical P2X2/3R inhibition can attenuate electrical activity in the neurogenic LUT at early, but not at semi-chronic SCI. This translational study should be useful for planning clinical evaluations.
Collapse
Affiliation(s)
- Betsy H. Salazar
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
| | - Kristopher A. Hoffman
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
| | - Chuan Zhang
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
- Department of Biomedical Engineering University of Houston
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangdong, China
| | - Yingchun Zhang
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
- Department of Biomedical Engineering University of Houston
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangdong, China
| | - Yolanda Cruz
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, México
| | - Timothy B. Boone
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
- Department of Urology, Houston Methodist Hospital
| | - Alvaro Munoz
- Regenerative Medicine and Tissue Engineering Program-Urology, Houston Methodist Research Institute
- Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, México
- Corresponding Author: Alvaro Munoz, PhD, Current affiliation: Centro Universitario del Norte, Universidad de Guadalajara, Carretera Federal No. 23, Km. 191, C.P. 46200, Colotlán, Jalisco, México., / Tel: +52-33-1058-5200 (Ext. 33679) / Fax: +1713-441-6463
| |
Collapse
|
5
|
Mirto-Aguilar N, Palacios JL, Munoz A, Juárez M, Cruz Y. Urethral regions with differential tissular composition may underlie urinary continence and voiding function in female rats. Neurourol Urodyn 2019; 38:893-901. [PMID: 30779374 DOI: 10.1002/nau.23934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/10/2019] [Indexed: 11/07/2022]
Abstract
AIMS To analyze, in female rats, the anatomical and histological features of the urethra and its relationship with the vagina and clitoris, and its innervation. METHODS Seventeen adult female Wistar rats were used. Gross anatomy and acetylcholinesterase (AchE) histochemistry were performed to describe the urethral features, adjacent structures, and innervation. The histomorphometric characteristics of the urethra were determined in transversal, longitudinal, or coronal sections stained with Masson's Trichrome. RESULTS The female rat urethra is not a homogeneous tubular organ. The pre-pelvic and pelvic regions are firmly attached to the vagina with belt-like striated fibers forming a urethra-vaginal complex. The bulbar regions have curved segments and a narrow lumen. The clitoral region is characterized by a urethra-clitoral complex surrounded by a vascular plexus. The lumen area and thickness of the urethral layers significantly varied between regions (P < 0.05). Innervation of the urethra arrives from the major pelvic ganglion, the dorsal nerve of the clitoris (DNC), and the motor branch of the sacral plexus (MBSP). CONCLUSIONS Differential tissular composition of the urethra may underlie urinary continence and voiding dysfunction through different physiological mechanisms. The urethra-vagina complex seems to be the main site controlling urinary continence through active muscular mechanisms, while the bulbar urethra provides passive mechanisms and the urethra-clitoris complex seems to be crucial for distal urethral closure by means of a periurethral vascular network.
Collapse
Affiliation(s)
- Nancy Mirto-Aguilar
- Doctorado en Investigaciones Cerebrales, Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | - José L Palacios
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Tlaxcala, México
| | - Alvaro Munoz
- Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco, México
| | - Margarita Juárez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Yolanda Cruz
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
6
|
Nascimento RMD, Estruc TM, Pereira JLA, Souza EC, Souza Junior P, Abidu-Figueiredo M. ORIGIN AND ANTIMERIC DISTRIBUTION OF THE OBTURATOR NERVES IN THE NEW ZEALAND RABBITS. CIÊNCIA ANIMAL BRASILEIRA 2019. [DOI: 10.1590/1089-6891v20e-55428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract New Zealand rabbits are widely used as experimental models and represent an important casuistic in veterinary practices. The musculoskeletal conformation of rabbits frequently leads to the occurrence of lumbosacral lesions with neural involvement. In order to contribute to the comparative anatomy and the understanding of these lesions, the origin and distribution of the obturator nerves of 30 New Zealand rabbits (15 males and 15 females) previously fixed in 10% formaldehyde were studied by dissection. The obturator nerves were originated from the ventral spinal branches of L6 and L7 in 63.3% of the cases, L5 and L6 in 13.4%, only L7 in 13.4%, L7 and S1 in 6.6 % and of L6, L7 and S1 in 3.3%. The spinal segment that most contributed to the formation of the nerve was L7 (86.6% of the nerves). The obturator nerves emitted in all the specimens, a variable number of branches for the internal obturator, external obturator, pectineum, adductor and gracilis muscles. No significant differences were observed between the frequencies of the origin and muscular branches of the obturator nerves when comparing sex and antimers.
Collapse
|
7
|
Castelán F, López‐García K, Moreno‐Pérez S, Zempoalteca R, Corona‐Quintanilla DL, Romero‐Ortega MI, Jiménez‐Estrada I, Martínez‐Gómez M. Multiparity affects conduction properties of pelvic floor nerves in rabbits. Brain Behav 2018; 8:e01105. [PMID: 30240150 PMCID: PMC6192397 DOI: 10.1002/brb3.1105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Women often develop pelvic floor dysfunction due to damage to the pelvic musculature during childbirth; however, the effect on pelvic floor nerves function is less understood. This study used adult rabbits to evaluate the electrophysiological and histological characteristics of the bulbospongiosus (Bsn) and pubococcygeus nerves (Pcn) in multiparity. METHODS Compound nerve action potentials (CNAP) were compared between age-matched nulliparous and multiparous animals and associated to the histological characteristics of myelinated axons from the Bsn and Pcn nerves. The extensor digitorum longus nerve (EDLn) was used as negative control. Data were analyzed with unpaired two-tailed Student's t test or Mann-Whitney U test to determine significant differences between groups. RESULTS The onset and peak latencies, duration, and conduction velocity of the motor fibers in these pelvic nerves were not significantly different between nulliparous and multiparous animals. However, the peak-to-peak amplitude and area of the CNAP in both Bsn and Pcn were reduced in multiparous rabbits. Histology showed a higher percentage of axons with myelin disorganization caused by multiparity in these pelvic nerves. Together, the data indicate a reduction in the number of functional pelvic axons due to multiparity. As expected, no effect of parity was observed in the EDLn controls. CONCLUSIONS Present findings demonstrated that multiparity affects myelination and consequently conduction properties in the small pelvic floor nerves.
Collapse
Affiliation(s)
- Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoTlaxcalaMéxico
- Centro Tlaxcala de Biología de la ConductaUniversidad Autónoma de TlaxcalaTlaxcalaMéxico
| | - Kenia López‐García
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoTlaxcalaMéxico
| | - Suelem Moreno‐Pérez
- Centro Tlaxcala de Biología de la ConductaUniversidad Autónoma de TlaxcalaTlaxcalaMéxico
| | - René Zempoalteca
- Maestría en Ciencias BiológicasUniversidad Autónoma de TlaxcalaTlaxcalaMéxico
| | | | | | - Ismael Jiménez‐Estrada
- Departamento de Fisiología, Biofísica y NeurocienciasCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalCiudad de MéxicoMéxico
| | - Margarita Martínez‐Gómez
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoTlaxcalaMéxico
- Centro Tlaxcala de Biología de la ConductaUniversidad Autónoma de TlaxcalaTlaxcalaMéxico
| |
Collapse
|
8
|
Jiang HH, Song QX, Gill BC, Balog BM, Juarez R, Cruz Y, Damaser MS. Electrical stimulation of the pudendal nerve promotes neuroregeneration and functional recovery from stress urinary incontinence in a rat model. Am J Physiol Renal Physiol 2018; 315:F1555-F1564. [PMID: 30132345 DOI: 10.1152/ajprenal.00431.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pudendal nerve can be injured during vaginal delivery of children, and slowed pudendal nerve regeneration has been correlated with development of stress urinary incontinence (SUI). Simultaneous injury to the pudendal nerve and its target muscle, the external urethral sphincter (EUS), during delivery likely leads to slowed neuroregeneration. The goal of this study was to determine if repeat electrical stimulation of the pudendal nerve improves SUI recovery and promotes neuroregeneration in a dual muscle and nerve injury rat model of SUI. Rats received electrical stimulation or sham stimulation of the pudendal nerve twice weekly for up to 2 wk after injury. A separate cohort of rats received sham injury and sham stimulation. Expression of brain-derived neurotrophic factor (BDNF) and βII-tubulin expression in Onuf's nucleus were measured 2, 7, and 14 days after injury. Urodynamics, leak point pressure (LPP), and EUS electromyography (EMG) were recorded 14 days after injury. Electrical stimulation significantly increased expression of BDNF at all time points and βII-tubulin 1 and 2 wk after injury. Two weeks after injury, LPP and EUS EMG during voiding and LPP testing were significantly decreased compared with sham-injured animals. Electrical stimulation significantly increased EUS activity during voiding, although LPP did not fully recover. Repeat pudendal nerve stimulation promotes neuromuscular continence mechanism recovery possibly via a neuroregenerative response through BDNF upregulation in the pudendal motoneurons in this model of SUI. Electrical stimulation of the pudendal nerve may therefore improve recovery after childbirth and ameliorate symptoms of SUI by promoting neuroregeneration after injury.
Collapse
Affiliation(s)
- Hai-Hong Jiang
- Neuro-Urology Center, Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang , China.,Glickman Urological and Kidney Institute, Cleveland Clinic , Cleveland, Ohio
| | - Qi-Xiang Song
- Department of Urology, Changhai Hospital, The Second Military Medical University , Shanghai , China.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Bradley C Gill
- Glickman Urological and Kidney Institute, Cleveland Clinic , Cleveland, Ohio.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Brian M Balog
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio.,Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center , Cleveland, Ohio.,Department of Biology, University of Akron , Akron, Ohio
| | - Raul Juarez
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio.,Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala , Tlaxcala, Mexico
| | - Yolanda Cruz
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio.,Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala , Tlaxcala, Mexico
| | - Margot S Damaser
- Glickman Urological and Kidney Institute, Cleveland Clinic , Cleveland, Ohio.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio.,Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center , Cleveland, Ohio
| |
Collapse
|
9
|
Takaoka EI, Kurobe M, Okada H, Takai S, Suzuki T, Shimizu N, Kwon J, Nishiyama H, Yoshimura N, Chermansky CJ. Effect of TRPV4 activation in a rat model of detrusor underactivity induced by bilateral pelvic nerve crush injury. Neurourol Urodyn 2018; 37:2527-2534. [PMID: 30095183 DOI: 10.1002/nau.23790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
AIMS To produce an animal model of peripheral neurogenic detrusor underactivity (DU) and to evaluate the effect of TRPV4 receptor activation in this DU model. METHODS In female Sprague-Dawley rats, bilateral pelvic nerve crush (PNC) was performed by using sharp forceps. After 10 days, awake cystometrograms (CMG) were recorded in sham and PNC rats. A TRPV4 agonist (GSK 1016790A) with or without a TRPV4 antagonist (RN1734) were administered intravesically and CMG parameters were compared before and after drug administration in each group. The TRPV4 transcript level in the bladder mucosa and histological changes were also evaluated. RESULTS In CMG, PNC rats showed significant increases in intercontraction intervals (ICI), number of non-voiding contractions (NVCs), baseline pressure, threshold pressure, bladder capacity, voided volumes, and post-void residual (PVR) compared to sham rats. Contraction amplitude and voiding efficiency were significantly decreased in PNC rats. In PNC rats, intravesical application of GSK1016790A (1.5 μM) significantly decreased ICI, bladder capacity, voided volume, and PVR without increasing NVCs, and these effects were blocked by RN1734 (5.0 μM). In contrast, 1.5 μM GSK1016790A had no significant effects on CMG parameters in normal rats. TRPV4 expression within the bladder mucosa of PNC rats was increased in association with urothelial thickening. CONCLUSIONS Rats with bilateral PNC showed characteristics of DU, and this model seems appropriate for further evaluation of peripheral neurogenic mechanisms of DU. Also, TRPV4 receptors, the activation of which reduced bladder capacity and PVR, could be a target for DU treatment.
Collapse
Affiliation(s)
- Ei-Ichiro Takaoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Urology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masahiro Kurobe
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Urology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroki Okada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shun Takai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Takahisa Suzuki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hiroyuki Nishiyama
- Department of Urology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
10
|
Brouillard CBJ, Crook JJ, Irazoqui PP, Lovick TA. Suppression of Urinary Voiding by Conditional High Frequency Stimulation of the Pelvic Nerve in Conscious Rats. Front Physiol 2018; 9:437. [PMID: 29760663 PMCID: PMC5936782 DOI: 10.3389/fphys.2018.00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Female Wistar rats were instrumented to record bladder pressure and to stimulate the left pelvic nerve. Repeated voids were induced by continuous infusion of saline into the bladder (11.2 ml/h) via a T-piece in the line to the bladder catheter. In each animal tested (n = 6) high frequency pelvic nerve stimulation (1-3 kHz, 1-2 mA sinusoidal waveform for 60 s) applied within 2 s of the onset of a sharp rise in bladder pressure signaling an imminent void was able to inhibit micturition. Voiding was modulated in three ways: (1) Suppression of voiding (four rats, n = 13 trials). No fluid output or a very small volume of fluid expelled (<15% of the volume expected based on the mean of the previous 2 or 3 voids). Voiding suppressed for the entirety of the stimulation period (60 s) and resumed within 37 s of stopping stimulation. (2) Void deferred (four rats, n = 6 trials). The imminent void was suppressed (no fluid expelled) but a void occurred later in the stimulation period (12-44 s, mean 24.5 ± 5.2 s after the onset of the stimulation). (3) Reduction in voided volume (five rats, n = 20 trials). Voiding took place but the volume of fluid voided was 15-80% (range 21.8-77.8%, mean 45.3 ± 3.6%) of the volume expected from the mean of the preceding two or three voids. Spontaneous voiding resumed within 5 min of stopping stimulation. Stimulation during the filling phase in between voids had no effect. The experiments demonstrate that conditional high frequency stimulation of the pelvic nerve started at the onset of an imminent void can inhibit voiding. The effect was rapidly reversible and was not accompanied by any adverse behavioral side effects.
Collapse
Affiliation(s)
- Charly B J Brouillard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jonathan J Crook
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Pedro P Irazoqui
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Thelma A Lovick
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
11
|
Electrical Activity of the Bladder Is Attenuated by Intravesical Inhibition of P2X2/3 Receptors During Micturition in Female Rats. Int Neurourol J 2017; 21:259-269. [PMID: 29298472 PMCID: PMC5756821 DOI: 10.5213/inj.1734998.499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/27/2017] [Indexed: 01/23/2023] Open
Abstract
Purpose To simultaneously monitor electrical discharges in various bladder regions and the external urethral sphincter (EUS) during voiding contractions, and to assess the functional role of myogenic modulation of the lower urinary tract (LUT) by ionotropic purinergic receptors containing the P2X3 subunit. Methods Female Sprague-Dawley rats were anesthetized with urethane, and implanted with a suprapubic catheter for open cystometry. Flexible microelectrodes were placed ventrally in the bladder dome, upper bladder, lower bladder, and bladder base, along with the middle section of the exposed EUS. Intravesical P2X3-containing receptors were blocked with AF-323, a specific P2X3-P2X2/3 receptor antagonist. A digital electrophysiology amplifier was used to record electrical and cystometric signals throughout the LUT. Results Electrical activity in the LUT started before effective voiding contractions. Bladder pressure and electrical waveforms showed consistent out-of-phase activity when compared with the recordings made at the EUS. This pattern was also observed during voiding contractions in the presence of AF-353, supporting the hypothesis that during bladder distension, activation of P2X3-containing receptors is required for voiding contractions. Furthermore, the inhibition of P2X3-containing receptors significantly decreased the amplitude of electrical signals in the urinary bladder, but not the base or EUS. Conclusions Our results provide novel information about the regulation of the micturition process by P2X3-containing receptors located in the inner layers of the bladder.
Collapse
|
12
|
Cruz Y, Lucio RA, Palacios JL. Neural and Endocrine Factors Contribute to the Comorbidity of Urinary and Sexual Dysfunctions. CURRENT SEXUAL HEALTH REPORTS 2017. [DOI: 10.1007/s11930-017-0129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Hokanson JA, Langdale CL, Sridhar A, Grill WM. Stimulation of the sensory pudendal nerve increases bladder capacity in the rat. Am J Physiol Renal Physiol 2017; 314:F543-F550. [PMID: 29141938 DOI: 10.1152/ajprenal.00373.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pudendal nerve stimulation is a promising treatment approach for lower urinary tract dysfunction, including symptoms of overactive bladder. Despite some promising clinical studies, there remain many unknowns as to how best to stimulate the pudendal nerve to maximize therapeutic efficacy. We quantified changes in bladder capacity and voiding efficiency during single-fill cystometry in response to electrical stimulation of the sensory branch of the pudendal nerve in urethane-anesthetized female Wistar rats. Increases in bladder capacity were dependent on both stimulation amplitude and rate. Stimulation that produced increases in bladder capacity also led to reductions in voiding efficiency. Also, there was a stimulation carryover effect, and increases in bladder capacity persisted during several nonstimulated trials following stimulated trials. Intravesically administered PGE2 reduced bladder capacity, producing a model of overactive bladder (OAB), and sensory pudendal nerve stimulation again increased bladder capacity but also reduced voiding efficiency. This study serves as a basis for future studies that seek to maximize the therapeutic efficacy of sensory pudendal nerve stimulation for the symptoms of OAB.
Collapse
Affiliation(s)
- James A Hokanson
- Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | | | - Arun Sridhar
- Bioelectronics R&D, Galvani, Stevenage , United Kingdom
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University , Durham, North Carolina.,Department of Electrical and Computer Engineering, Duke University , Durham, North Carolina.,Department of Neurobiology, Duke University , Durham, North Carolina.,Department of Surgery, Duke University , Durham, North Carolina
| |
Collapse
|
14
|
Cruz Y, Hernández-Plata I, Lucio RA, Zempoalteca R, Castelán F, Martínez-Gómez M. Anatomical organization and somatic axonal components of the lumbosacral nerves in female rabbits. Neurourol Urodyn 2017; 36:1749-1756. [PMID: 28102579 DOI: 10.1002/nau.23209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 11/06/2022]
Abstract
AIM To determine the anatomical organization and somatic axonal components of the lumbosacral nerves in female rabbits. METHODS Chinchilla adult anesthetized female rabbits were used. Anatomical, electrophysiological, and histological studies were performed. RESULTS L7, S1, and some fibers from S2 and S3 form the lumbosacral trunk, which gives origin to the sciatic nerve and innervation to the gluteal region. From S2 to S3 originates the pudendal nerve, whose branches innervates the striated anal and urethra sphincters, as well as the bulbospongiosus, ischiocavernosus, and constrictor vulvae muscles. The sensory field of the pudendal nerve is ∼1800 mm2 and is localized in the clitoral sheath and perineal and perigenital skin. The organization of the pudendal nerve varies between individuals, three patterns were identified, and one of them was present in 50% of the animals. From S3 emerge the pelvic nerve, which anastomoses to form a plexus localized between the vagina and the rectum. The innervation of the pelvic floor originates from S3 to S4 fibers. CONCLUSIONS Most of the sacral spinal nerves of rabbit are mixed, carrying sensory, and motor information. Sacral nerves innervate the hind limbs, pelvic viscera, clitoris, perineal muscles, inguinal and anal glands and perineal, perigenital, and rump skin. The detailed description of the sacral nerves organization, topography, and axonal components further the knowledge of the innervation in pelvic and perinal structures of the female rabbit. This information will be useful in future studies about the physiology and physiopathology of urinary, fecal, reproductive, and sexual functions.
Collapse
Affiliation(s)
- Yolanda Cruz
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - René Zempoalteca
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, D.F., Tlaxcala, México
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México.,Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, D.F., Tlaxcala, México
| |
Collapse
|
15
|
Palacios JL, Juárez M, Morán C, Xelhuantzi N, Damaser MS, Cruz Y. Neuroanatomic and behavioral correlates of urinary dysfunction induced by vaginal distension in rats. Am J Physiol Renal Physiol 2016; 310:F1065-73. [PMID: 26936873 PMCID: PMC6880194 DOI: 10.1152/ajprenal.00417.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to use a model of simulated human childbirth in rats to determine the damage to genitourinary structures and behavioral signs of urinary dysfunction induced by vaginal distension (VD) in female rats. In experiment 1, the length of the genitourinary tract and the nerves associated with it were measured immediately after simulated human delivery induced by VD or sham (SH) procedures. Electroneurograms of the dorsal nerve of the clitoris (DNC) were also recorded. In experiment 2, histological characteristics of the bladder and major pelvic ganglion of VD and SH rats were evaluated. In experiment 3, urinary parameters were determined in conscious animals during 6 h of dark and 6 h of light before and 3 days after VD or SH procedures. VD significantly increased distal vagina width (P < 0.001) and the length of the motor branch of the sacral plexus (P < 0.05), DNC (P < 0.05), and vesical nerves (P < 0.01) and decreased DNC frequency and amplitude of firing. VD occluded the pelvic urethra, inducing urinary retention, hematomas in the bladder, and thinness of the epithelial (P < 0.05) and detrusor (P < 0.01) layers of the bladder. Major pelvic ganglion parameters were not modified after VD. Rats dripped urine in unusual places to void, without the stereotyped behavior of micturition after VD. The neuroanatomic injuries after VD occur alongside behavioral signs of urinary incontinence as determined by a new behavioral tool for assessing micturition in conscious animals.
Collapse
Affiliation(s)
- J L Palacios
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - M Juárez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - C Morán
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - N Xelhuantzi
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - M S Damaser
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio; and Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Y Cruz
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México; Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México;
| |
Collapse
|
16
|
Sullivan MP, Yalla SV. Post-Coital Urinary Incontinence: Lessons Learned about Pelvic Neuronal Pathways. J Urol 2015; 195:249-50. [PMID: 26549547 DOI: 10.1016/j.juro.2015.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/29/2022]
Affiliation(s)
| | - Subbarao V Yalla
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| |
Collapse
|
17
|
Juárez R, Zempoalteca R, Pacheco P, Lucio RA, Medel A, Cruz Y. Activity of the external urethral sphincter evoked by genital stimulation in male rats. Neurourol Urodyn 2015; 35:914-919. [DOI: 10.1002/nau.22850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/22/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Raúl Juárez
- Doctorado en Ciencias Biológicas; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - René Zempoalteca
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - Pablo Pacheco
- Instituto de Investigaciones Biomédicas; UNAM; D.F. México
| | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - Alfonso Medel
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - Yolanda Cruz
- Doctorado en Ciencias Biológicas; Universidad Autónoma de Tlaxcala; Tlaxcala México
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala México
| |
Collapse
|
18
|
Cruz Y, Juárez R, Medel A, Corona-Quintanilla DL, Pacheco P, Juárez M. Coital Urinary Incontinence Induced by Impairment of the Dorsal Nerve of the Clitoris in Rats. J Urol 2015. [PMID: 26196732 DOI: 10.1016/j.juro.2015.06.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE We determined the effect of chronic bilateral neurectomy of the dorsal nerve of the clitoris on urinary parameters and sexual behavior of conscious female rats. MATERIALS AND METHODS A total of 18 anesthetized virgin female Wistar rats were used in this study, including 11 that underwent bilateral neurectomy of the dorsal nerve of the clitoris and 7 that underwent sham surgery. Urinary parameters were determined in awake animals preoperatively, and 3 and 10 days postoperatively. Sexual behavior was tested 14 days postoperatively to determine whether the females expelled urine during sexual encounters. After male ejaculation the females were anesthetized with urethane to record external urethral sphincter electromyogram activity in response to clitoris, perigenital skin and vaginal stimulation. Neurectomy was corroborated anatomically. RESULTS Sham surgery did not significantly modify urinary parameter values. However, bilateral neurectomy of the dorsal nerve of the clitoris significantly increased voiding frequency and voiding duration (p <0.05). It did not significantly affect the flow rate, voided volume or voiding interval. Of females that underwent bilateral neurectomy of the dorsal nerve of the clitoris 67% expelled urine just after male ejaculation. CONCLUSIONS These results suggest that the pudendal nerve is an important neural pathway in the convergence and crosstalk of female urogenital neural circuits, and genital deafferentation may be a causal factor of coital urinary incontinence. Rats with bilateral transection of the dorsal nerve of the clitoris may serve as an animal model of coital incontinence.
Collapse
Affiliation(s)
- Yolanda Cruz
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| | - Raúl Juárez
- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Alfonso Medel
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | - Pablo Pacheco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Margarita Juárez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
19
|
McCarthy CJ, Tomasella E, Malet M, Seroogy KB, Hökfelt T, Villar MJ, Gebhart GF, Brumovsky PR. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord. Brain Struct Funct 2015; 221:1985-2004. [PMID: 25749859 DOI: 10.1007/s00429-015-1019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.
Collapse
Affiliation(s)
- Carly J McCarthy
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - Eugenia Tomasella
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Malet
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marcelo J Villar
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - G F Gebhart
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pablo R Brumovsky
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
Novel spinal pathways identified by neuronal c-Fos expression after urethrogenital reflex activation in female guinea pigs. Neuroscience 2015; 288:37-50. [DOI: 10.1016/j.neuroscience.2014.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/26/2014] [Accepted: 12/13/2014] [Indexed: 12/18/2022]
|
21
|
Cruz Y, Pastelín C, Balog BM, Zaszczurynski PJ, Damaser MS. Somatomotor and sensory urethral control of micturition in female rats. Am J Physiol Renal Physiol 2014; 307:F1207-14. [PMID: 25339694 DOI: 10.1152/ajprenal.00255.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In rats, axons of external urethral sphincter (EUS) motoneurons travel through the anastomotic branch of the pudendal nerve (ABPD) and anastomotic branch of the lumbosacral trunk (ABLT) and converge in the motor branch of the sacral plexus (MBSP). The aim of the present study was to determine in female rats the contribution of these somatomotor pathways and urethral sensory innervation from the dorsal nerve of the clitoris on urinary continence and voiding. EUS electromyographic (EMG) activity during cystometry, leak point pressure (LPP), and voiding efficiency (VE) were assessed in anesthetized virgin Sprague-Dawley female rats before and after transection of the above nerve branches. Transection of the MBSP eliminated EUS EMG, decreased LPP by 50%, and significantly reduced bladder contraction duration, peak pressure, intercontraction interval, and VE. Transection of the ABPD or ABLT decreased EUS EMG discharge and LPP by 25% but did not affect VE. Transection of the dorsal nerve of the clitoris did not affect LPP but reduced contraction duration, peak pressure, intercontraction interval, and VE. We conclude that somatomotor control of micturition is provided by the MBSP with axons travelling through the ABPD and ABLT. Partial somatomotor urethral denervation induces mild urinary incontinence, whereas partial afferent denervation induces voiding dysfunction. ABPD and ABLT pathways could represent a safeguard ensuring innervation to the EUS in case of upper nerve damage. Detailed knowledge of neuroanatomy and functional innervation of the urethra will enable more accurate animal models of neural development, disease, and dysfunction in the future.
Collapse
Affiliation(s)
- Yolanda Cruz
- Centro Tlaxcala Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - César Pastelín
- Centro Tlaxcala Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México; Doctorado en Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Brian M Balog
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Paul J Zaszczurynski
- Advanced Platform Technology Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio; and
| | - Margot S Damaser
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio; Advanced Platform Technology Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio; and Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
22
|
Tovar A, Lara-Garcia M, Cruz Y, Pacheco P. Dorsal root activity evoked by stimulation of vagina–cervix–uterus junction in the rat. Brain Res 2013; 1496:49-54. [DOI: 10.1016/j.brainres.2012.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 11/16/2022]
|