1
|
Wyart C, Carbo-Tano M. Design of mechanosensory feedback during undulatory locomotion to enhance speed and stability. Curr Opin Neurobiol 2023; 83:102777. [PMID: 37666012 DOI: 10.1016/j.conb.2023.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Undulatory locomotion relies on the propagation of a wave of excitation in the spinal cord leading to consequential activation of segmental skeletal muscles along the body. Although this process relies on self-generated oscillations of motor circuits in the spinal cord, mechanosensory feedback is crucial to entrain the underlying oscillatory activity and thereby, to enhance movement power and speed. This effect is achieved through directional projections of mechanosensory neurons either sensing stretching or compression of the trunk along the rostrocaudal axis. Different mechanosensory feedback pathways act in concert to shorten and fasten the excitatory wave propagating along the body. While inhibitory mechanosensory cells feedback inhibition on excitatory premotor interneurons and motor neurons, excitatory mechanosensory cells feedforward excitation to premotor excitatory interneurons. Together, diverse mechanosensory cells coordinate the activity of skeletal muscles controlling the head and tail to optimize speed and stabilize balance during fast locomotion.
Collapse
Affiliation(s)
- Claire Wyart
- Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, Paris 75013, France.
| | - Martin Carbo-Tano
- Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, Paris 75013, France. https://twitter.com/martincarbotano
| |
Collapse
|
2
|
Capano JG, Boback SM, Weller HI, Cieri RL, Zwemer CF, Brainerd EL. Modular lung ventilation in Boa constrictor. J Exp Biol 2022; 225:274764. [PMID: 35325925 DOI: 10.1242/jeb.243119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
The evolution of constriction and of large prey ingestion within snakes are key innovations that may explain the remarkable diversity, distribution and ecological scope of this clade, relative to other elongate vertebrates. However, these behaviors may have simultaneously hindered lung ventilation such that early snakes may have had to circumvent these mechanical constraints before those behaviors could evolve. Here, we demonstrate that Boa constrictor can modulate which specific segments of ribs are used to ventilate the lung in response to physically hindered body wall motions. We show that the modular actuation of specific segments of ribs likely results from active recruitment or quiescence of derived accessory musculature. We hypothesize that constriction and large prey ingestion were unlikely to have evolved without modular lung ventilation because of their interference with lung ventilation, high metabolic demands and reliance on sustained lung convection. This study provides a new perspective on snake evolution and suggests that modular lung ventilation evolved during or prior to constriction and large prey ingestion, facilitating snakes' remarkable radiation relative to other elongate vertebrates.
Collapse
Affiliation(s)
- John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Scott M Boback
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | - Hannah I Weller
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Robert L Cieri
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Charles F Zwemer
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Thandiackal R, Melo K, Paez L, Herault J, Kano T, Akiyama K, Boyer F, Ryczko D, Ishiguro A, Ijspeert AJ. Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing. Sci Robot 2021; 6:6/57/eabf6354. [PMID: 34380756 DOI: 10.1126/scirobotics.abf6354] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/21/2021] [Indexed: 01/23/2023]
Abstract
Undulatory swimming represents an ideal behavior to investigate locomotion control and the role of the underlying central and peripheral components in the spinal cord. Many vertebrate swimmers have central pattern generators and local pressure-sensitive receptors that provide information about the surrounding fluid. However, it remains difficult to study experimentally how these sensors influence motor commands in these animals. Here, using a specifically designed robot that captures the essential components of the animal neuromechanical system and using simulations, we tested the hypothesis that sensed hydrodynamic pressure forces can entrain body actuation through local feedback loops. We found evidence that this peripheral mechanism leads to self-organized undulatory swimming by providing intersegmental coordination and body oscillations. Swimming can be redundantly induced by central mechanisms, and we show that, therefore, a combination of both central and peripheral mechanisms offers a higher robustness against neural disruptions than any of them alone, which potentially explains how some vertebrates retain locomotor capabilities after spinal cord lesions. These results broaden our understanding of animal locomotion and expand our knowledge for the design of robust and modular robots that physically interact with the environment.
Collapse
Affiliation(s)
- Robin Thandiackal
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,Harvard University, Cambridge MA, USA
| | - Kamilo Melo
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,KM-RoBoTa Sàrl, Renens, Switzerland
| | - Laura Paez
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | | - Auke J Ijspeert
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Knüsel J, Crespi A, Cabelguen JM, Ijspeert AJ, Ryczko D. Reproducing Five Motor Behaviors in a Salamander Robot With Virtual Muscles and a Distributed CPG Controller Regulated by Drive Signals and Proprioceptive Feedback. Front Neurorobot 2020; 14:604426. [PMID: 33424576 PMCID: PMC7786271 DOI: 10.3389/fnbot.2020.604426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Diverse locomotor behaviors emerge from the interactions between the spinal central pattern generator (CPG), descending brain signals and sensory feedback. Salamander motor behaviors include swimming, struggling, forward underwater stepping, and forward and backward terrestrial stepping. Electromyographic and kinematic recordings of the trunk show that each of these five behaviors is characterized by specific patterns of muscle activation and body curvature. Electrophysiological recordings in isolated spinal cords show even more diverse patterns of activity. Using numerical modeling and robotics, we explored the mechanisms through which descending brain signals and proprioceptive feedback could take advantage of the flexibility of the spinal CPG to generate different motor patterns. Adapting a previous CPG model based on abstract oscillators, we propose a model that reproduces the features of spinal cord recordings: the diversity of motor patterns, the correlation between phase lags and cycle frequencies, and the spontaneous switches between slow and fast rhythms. The five salamander behaviors were reproduced by connecting the CPG model to a mechanical simulation of the salamander with virtual muscles and local proprioceptive feedback. The main results were validated on a robot. A distributed controller was used to obtain the fast control loops necessary for implementing the virtual muscles. The distributed control is demonstrated in an experiment where the robot splits into multiple functional parts. The five salamander behaviors were emulated by regulating the CPG with two descending drives. Reproducing the kinematics of backward stepping and struggling however required stronger muscle contractions. The passive oscillations observed in the salamander's tail during forward underwater stepping could be reproduced using a third descending drive of zero to the tail oscillators. This reduced the drag on the body in our hydrodynamic simulation. We explored the effect of local proprioceptive feedback during swimming and forward terrestrial stepping. We found that feedback could replace or reduce the need for different drives in both cases. It also reduced the variability of intersegmental phase lags toward values appropriate for locomotion. Our work suggests that different motor behaviors do not require different CPG circuits: a single circuit can produce various behaviors when modulated by descending drive and sensory feedback.
Collapse
Affiliation(s)
- Jérémie Knüsel
- Biorobotics Laboratory (BioRob), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Institute for Optimisation and Data Analysis (IODA), Bern University of Applied Sciences, Biel, Switzerland
| | - Alessandro Crespi
- Biorobotics Laboratory (BioRob), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean-Marie Cabelguen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862 - Neurocentre Magendie, Université de Bordeaux, Bordeaux, France
| | - Auke J Ijspeert
- Biorobotics Laboratory (BioRob), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.,Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Kamska V, Daley M, Badri-Spröwitz A. 3D Anatomy of the Quail Lumbosacral Spinal Canal-Implications for Putative Mechanosensory Function. Integr Org Biol 2020; 2:obaa037. [PMID: 33791575 PMCID: PMC7810575 DOI: 10.1093/iob/obaa037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Birds are diverse and agile vertebrates capable of aerial, terrestrial, aquatic, and arboreal locomotion. Evidence suggests that birds possess a novel balance sensing organ in the lumbosacral spinal canal, a structure referred to as the "lumbosacral organ" (LSO), which may contribute to their locomotor agility and evolutionary success. The mechanosensing mechanism of this organ remains unclear. Here we quantify the 3D anatomy of the lumbosacral region of the common quail, focusing on establishing the geometric and biomechanical properties relevant to potential mechanosensing functions. We combine digital and classic dissection to create a 3D anatomical model of the quail LSO and estimate the capacity for displacement and deformation of the soft tissues. We observe a hammock-like network of denticulate ligaments supporting the lumbosacral spinal cord, with a close association between the accessory lobes and ligamentous intersections. The relatively dense glycogen body has the potential to apply loads sufficient to pre-stress denticulate ligaments, enabling external accelerations to excite tuned oscillations in the LSO soft tissue, leading to strain-based mechanosensing in the accessory lobe neurons. Considering these anatomical features together, the structure of the LSO is reminiscent of a mass-spring-based accelerometer.
Collapse
Affiliation(s)
- Viktoriia Kamska
- Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Monica Daley
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Alexander Badri-Spröwitz
- Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Hamlet CL, Hoffman KA, Tytell ED, Fauci LJ. The role of curvature feedback in the energetics and dynamics of lamprey swimming: A closed-loop model. PLoS Comput Biol 2018; 14:e1006324. [PMID: 30118476 PMCID: PMC6114910 DOI: 10.1371/journal.pcbi.1006324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/29/2018] [Accepted: 06/24/2018] [Indexed: 12/02/2022] Open
Abstract
Like other animals, lampreys have a central pattern generator (CPG) circuit that activates muscles for locomotion and also adjusts the activity to respond to sensory inputs from the environment. Such a feedback system is crucial for responding appropriately to unexpected perturbations, but it is also active during normal unperturbed steady swimming and influences the baseline swimming pattern. In this study, we investigate different functional forms of body curvature-based sensory feedback and evaluate their effects on steady swimming energetics and kinematics, since little is known experimentally about the functional form of curvature feedback. The distributed CPG is modeled as chains of coupled oscillators. Pairs of phase oscillators represent the left and right sides of segments along the lamprey body. These activate muscles that flex the body and move the lamprey through a fluid environment, which is simulated using a full Navier-Stokes model. The emergent curvature of the body then serves as an input to the CPG oscillators, closing the loop. We consider two forms of feedback, each consistent with experimental results on lamprey proprioceptive sensory receptors. The first, referred to as directional feedback, excites or inhibits the oscillators on the same side, depending on the sign of a chosen gain parameter, and has the opposite effect on oscillators on the opposite side. We find that directional feedback does not affect beat frequency, but does change the duration of muscle activity. The second feedback model, referred to as magnitude feedback, provides a symmetric excitatory or inhibitory effect to oscillators on both sides. This model tends to increase beat frequency and reduces the energetic cost to the lamprey when the gain is high and positive. With both types of feedback, the body curvature has a similar magnitude. Thus, these results indicate that the same magnitude of curvature-based feedback on the CPG with different functional forms can cause distinct differences in swimming performance. When animals move, they receive sensory inputs, which in turn are used to modulate the movement. Relatively little is known about how these inputs affect performance during steady locomotion. Using a computational model of a swimming lamprey, we investigated two different types of feedback, both consistent with experimental data. Both have strong, but different, effects on swimming speed and energy consumption, suggesting that sensory feedback is crucial not just for responding to perturbations, but also for high performance steady locomotion.
Collapse
Affiliation(s)
- Christina L. Hamlet
- Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania, United States of America
- * E-mail:
| | - Kathleen A. Hoffman
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Eric D. Tytell
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Lisa J. Fauci
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| |
Collapse
|
7
|
Massarelli N, Clapp G, Hoffman K, Kiemel T. Entrainment Ranges for Chains of Forced Neural and Phase Oscillators. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2016; 6:6. [PMID: 27091694 PMCID: PMC4835419 DOI: 10.1186/s13408-016-0038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Sensory input to the lamprey central pattern generator (CPG) for locomotion is known to have a significant role in modulating lamprey swimming. Lamprey CPGs are known to have the ability to entrain to a bending stimulus, that is, in the presence of a rhythmic signal, the CPG will change its frequency to match the stimulus frequency. Bending experiments in which the lamprey spinal cord has been removed and mechanically bent back and forth at a single point have been used to determine the range of frequencies that can entrain the CPG rhythm. First, we model the lamprey locomotor CPG as a chain of neural oscillators with three classes of neurons and sinusoidal forcing representing edge cell input. We derive a phase model using the connections described in the neural model. This results in a simpler model yet maintains some properties of the neural model. For both the neural model and the derived phase model, entrainment ranges are computed for forcing at different points along the chain while varying both intersegmental coupling strength and the coupling strength between the forcer and chain. Entrainment ranges for chains with nonuniform intersegmental coupling asymmetry are larger when forcing is applied to the middle of the chain than when it is applied to either end, a result that is qualitatively similar to the experimental results. In the limit of weak coupling in the chain, the entrainment results of the neural model approach the entrainment results for the derived phase model. Both biological experiments and the robustness of non-monotonic entrainment ranges as a function of the forcing position across different classes of CPG models with nonuniform asymmetric coupling suggest that a specific property of the intersegmental coupling of the CPG is key to entrainment.
Collapse
Affiliation(s)
- Nicole Massarelli
- />Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Geoffrey Clapp
- />Department of Mathematics, University of Maryland, College Park, MD 20742 USA
| | - Kathleen Hoffman
- />Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 USA
| | - Tim Kiemel
- />Department of Kinesiology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
8
|
Hsu LJ, Zelenin PV, Orlovsky GN, Deliagina TG. Supraspinal control of spinal reflex responses to body bending during different behaviours in lampreys. J Physiol 2016; 595:883-900. [PMID: 27589479 DOI: 10.1113/jp272714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications. To study this issue, we took advantage of an in vitro brainstem-spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour. Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons. NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks. In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. ABSTRACT Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem-spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP-5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal.
Collapse
Affiliation(s)
- Li-Ju Hsu
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Pavel V Zelenin
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Grigori N Orlovsky
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Tatiana G Deliagina
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| |
Collapse
|
9
|
Ryczko D, Knüsel J, Crespi A, Lamarque S, Mathou A, Ijspeert AJ, Cabelguen JM. Flexibility of the axial central pattern generator network for locomotion in the salamander. J Neurophysiol 2014; 113:1921-40. [PMID: 25540227 DOI: 10.1152/jn.00894.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In tetrapods, limb and axial movements are coordinated during locomotion. It is well established that inter- and intralimb coordination show considerable variations during ongoing locomotion. Much less is known about the flexibility of the axial musculoskeletal system during locomotion and the neural mechanisms involved. Here we examined this issue in the salamander Pleurodeles waltlii, which is capable of locomotion in both aquatic and terrestrial environments. Kinematics of the trunk and electromyograms from the mid-trunk epaxial myotomes were recorded during four locomotor behaviors in freely moving animals. A similar approach was used during rhythmic struggling movements since this would give some insight into the flexibility of the axial motor system. Our results show that each of the forms of locomotion and the struggling behavior is characterized by a distinct combination of mid-trunk motor patterns and cycle durations. Using in vitro electrophysiological recordings in isolated spinal cords, we observed that the spinal networks activated with bath-applied N-methyl-d-aspartate could generate these axial motor patterns. In these isolated spinal cord preparations, the limb motor nerve activities were coordinated with each mid-trunk motor pattern. Furthermore, isolated mid-trunk spinal cords and hemicords could generate the mid-trunk motor patterns. This indicates that each side of the cord comprises a network able to generate coordinated axial motor activity. The roles of descending and sensory inputs in the behavior-related changes in axial motor coordination are discussed.
Collapse
Affiliation(s)
- D Ryczko
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| | - J Knüsel
- Biorobotics Laboratory (BIOROB), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - A Crespi
- Biorobotics Laboratory (BIOROB), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Lamarque
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| | - A Mathou
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| | - A J Ijspeert
- Biorobotics Laboratory (BIOROB), Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J M Cabelguen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 862-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France; and
| |
Collapse
|
10
|
Deliagina TG, Beloozerova IN, Orlovsky GN, Zelenin PV. Contribution of supraspinal systems to generation of automatic postural responses. Front Integr Neurosci 2014; 8:76. [PMID: 25324741 PMCID: PMC4181245 DOI: 10.3389/fnint.2014.00076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/14/2014] [Indexed: 11/13/2022] Open
Abstract
Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms - spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed.
Collapse
Affiliation(s)
| | | | | | - Pavel V. Zelenin
- Department of Neuroscience, Karolinska InstituteStockholm, Sweden
| |
Collapse
|
11
|
Hsu LJ, Orlovsky GN, Zelenin PV. Different forms of locomotion in the spinal lamprey. Eur J Neurosci 2014; 39:2037-49. [PMID: 24641591 DOI: 10.1111/ejn.12553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/12/2014] [Indexed: 11/28/2022]
Abstract
Forward locomotion has been extensively studied in different vertebrate animals, and the principal role of spinal mechanisms in the generation of this form of locomotion has been demonstrated. Vertebrate animals, however, are capable of other forms of locomotion, such as backward walking and swimming, sideward walking, and crawling. Do the spinal mechanisms play a principal role in the generation of these forms of locomotion? We addressed this question in lampreys, which are capable of five different forms of locomotion - fast forward swimming, slow forward swimming, backward swimming, forward crawling, and backward crawling. To induce locomotion in lampreys spinalised at the second gill level, we used either electrical stimulation of the spinal cord at different rostrocaudal levels, or tactile stimulation of specific cutaneous receptive fields from which a given form of locomotion could be evoked in intact lampreys. We found that any of the five forms of locomotion could be evoked in the spinal lamprey by electrical stimulation of the spinal cord, and some of them by tactile stimulation. These results suggest that spinal mechanisms in the lamprey, in the absence of phasic supraspinal commands, are capable of generating the basic pattern for all five forms of locomotion observed in intact lampreys. In spinal lampreys, the direction of swimming did not depend on the site of spinal cord stimulation, but on the stimulation strength. The direction of crawling strongly depended on the body configuration. The spinal structures presumably activated by spinal cord stimulation and causing different forms of locomotion are discussed.
Collapse
Affiliation(s)
- Li-Ju Hsu
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | | | | |
Collapse
|
12
|
Tytell ED, Hsu CY, Fauci LJ. The role of mechanical resonance in the neural control of swimming in fishes. ZOOLOGY 2013; 117:48-56. [PMID: 24433627 DOI: 10.1016/j.zool.2013.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022]
Abstract
The bodies of many fishes are flexible, elastic structures; if you bend them, they spring back. Therefore, they should have a resonant frequency: a bending frequency at which the output amplitude is maximized for a particular input. Previous groups have hypothesized that swimming at this resonant frequency could maximize efficiency, and that a neural circuit called the central pattern generator might be able to entrain to a mechanical resonance. However, fishes swim in water, which may potentially damp out many resonant effects. Additionally, their bodies are elongated, which means that bending can occur in complicated ways along the length of the body. We review previous studies of the mechanical properties of fish bodies, and then present new data that demonstrate complex bending properties of elongated fish bodies. Resonant peaks in amplitude exist, but there may be many of them depending on the body wavelength. Additionally, they may not correspond to the maximum swimming speed. Next, we describe experiments using a closed-loop preparation of the lamprey, in which a preparation of the spinal cord is linked to a real-time simulation of the muscle and body properties, allowing us to examine resonance entrainment as we vary the simulated resonant frequency. We find that resonance entrainment does occur, but is rare. Gain had a significant, though weak, effect, and a nonlinear muscle model produced resonance entrainment more often than a linear filter. We speculate that resonance may not be a critical effect for efficient swimming in elongate, anguilliform swimmers, though it may be more important for stiffer carangiform and thunniform fishes.
Collapse
Affiliation(s)
- Eric D Tytell
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA.
| | - Chia-Yu Hsu
- Department of Applied Mathematics, Feng Chia University, Taiwan
| | - Lisa J Fauci
- Department of Mathematics, Tulane University, 6823 Saint Charles Avenue, New Orleans, LA 70118, USA
| |
Collapse
|