1
|
Wang W, Wang C, Nan Y, Zhou Y, Wei R, Ling S, Wu H, Deng L, Gao J, He Q, Huang X, Zhang C, Li D, Pu M. Morphological Characteristics of Retinal Ganglion Cells in the Retinas of Giant Pandas (Ailuropoda melanoleuca). J Comp Neurol 2024; 532:e25661. [PMID: 39139013 DOI: 10.1002/cne.25661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024]
Abstract
Vision plays a crucial role in the survival of animals, and the visual system has particularly selectively evolved in response to the visual environment, ecological niche, and species habitats in vertebrate species. To date, a horizontal streak of retinal ganglion cell (RGC) distribution pattern is observed across mammal species. Here, we report that the giant panda's vertically oriented visual streak, combined with current evidence of the animal's forward-placed eyes, ocular structure, and retinal neural topographic distribution patterns, presents the emergence of a well-adapted binocular visual system. Our results suggest that the giant panda may use a unique way to processing binocular visual information. Results of mathematical simulation are in favor of this hypothesis. The topographic distribution properties of RGCs reported here could be essential for understanding the visual adaptation and evolution of this living fossil.
Collapse
Affiliation(s)
- Wenyao Wang
- School of Basic Medical Sciences, Peking University, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Yan Nan
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ronping Wei
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Jie Gao
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qihua He
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xin Huang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Mingliang Pu
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Hancock GRA, Grayshon L, Burrell R, Cuthill I, Hoodless A, Troscianko J. Habitat geometry rather than visual acuity limits the visibility of a ground-nesting bird's clutch to terrestrial predators. Ecol Evol 2023; 13:e10471. [PMID: 37720061 PMCID: PMC10501817 DOI: 10.1002/ece3.10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
The nests of ground-nesting birds rely heavily on camouflage for their survival, and predation risk, often linked to ecological changes from human activity, is a major source of mortality. Numerous ground-nesting bird populations are in decline, so understanding the effects of camouflage on their nesting behavior is relevant to their conservation concerns. Habitat three-dimensional (3D) geometry, together with predator visual abilities, viewing distance, and viewing angle, determine whether a nest is either visible, occluded, or too far away to detect. While this link is intuitive, few studies have investigated how fine-scale geometry is likely to help defend nests from different predator guilds. We quantified nest visibility based on 3D occlusion, camouflage, and predator visual modeling in northern lapwings, Vanellus vanellus, on different land management regimes. Lapwings selected local backgrounds that had a higher 3D complexity at a spatial scale greater than their entire clutches compared to local control sites. Importantly, our findings show that habitat geometry-rather than predator visual acuity-restricts nest visibility for terrestrial predators and that their field habitats, perceived by humans as open, are functionally closed with respect to a terrestrial predator searching for nests on the ground. Taken together with lapwings' careful nest site selection, our findings highlight the importance of considering habitat geometry for understanding the evolutionary ecology and management of conservation sites for ground-nesting birds.
Collapse
Affiliation(s)
| | | | - Ryan Burrell
- Faculty of Science and TechnologyBournemouth UniversityDorsetUK
| | - Innes Cuthill
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | |
Collapse
|
3
|
Paszta W, Goździewska-Harłajczuk K, Klećkowska-Nawrot J. Morphology and Histology of the Orbital Region and Eye of the Asiatic Black Bear (Ursus thibetanus)—Similarities and Differences within the Caniformia Suborder. Animals (Basel) 2022; 12:ani12070801. [PMID: 35405790 PMCID: PMC8997068 DOI: 10.3390/ani12070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we present first data concerning the morphological observations of the orbital region, eye tunics, upper and lower eyelids, superficial gland of the third eyelid with the third eyelid, and lacrimal gland in captive adult male Asiatic black bear. The following research methods were used in the work: the eyeball morphometry, the orbital region description, macroscopic description, morphometric and histological analysis of the eye tunics and selected the accessory organs of the eye (Fontana–Masson, hematoxylin & eosin (H&E), Methyl-green-pyronin Y (MGP Y), Movat pentachrome, and picro-Mallory trichrome) as well as histochemical examination (PAS, AB pH 1.0, AB pH 2.5, AB pH 2.5/PAS and HDI). The eyeball of the Asiatic black bear was a spherical shape, while the periorbita was funnel/conical-shaped and the eye socket was of the open type. The cornea was absent of the Bowman’s membrane similar to all domestic dogs and some wild dogs. There were palisades of Vogt in the corneal limbus epithelium similar to the Canidae. Degenerative choroidal tapetum lucidum similar to ranch mink (Mustelidae) has been found. The pupil was big and round in shape. The ciliary muscle, dilatator and sphincter muscle were well developed, similar to the pinnipeds. The lens was biconvex round, similar to the Canidae. The retina was composed similarly to the diurnal terrestrial carnivores. In both eyelids were observed very well-developed tarsal glands, ciliary glands and sebaceous glands. The orbital zone in the eyelids was characterized by lymphoid follicles, diffuse lymphocytes and specialized high endothelial venules. In the anterior palpebral margin of the upper eyelid, soft and short eyelashes were observed, while in the lower eyelids they were absent. The third eyelid was T-shaped and composed of the hyaline tissue, and it contained CALT, similar to that in Canidae. The superficial gland of the third eyelid was a multilobar alveolar branched complex with seromucous nature, while the lacrimal gland was also a multilobar acinar branched complex gland, but producing a mucous–serous secretion. The results of our research indicate that the features of the anatomy of the eye and orbital region in Asiatic black bear are also typical of the Ursidae family. Moreover, a detailed analysis of the morphological eye region may be useful in comparative studies and veterinary diagnostics in this bear species.
Collapse
Affiliation(s)
- Wojciech Paszta
- Wroclaw Zoological Garden, Wróblewskiego 1/5, 51-618 Wrocław, Poland
- Correspondence: (W.P.); (K.G.-H.)
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska 1, 51-631 Wrocław, Poland;
- Correspondence: (W.P.); (K.G.-H.)
| | - Joanna Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska 1, 51-631 Wrocław, Poland;
| |
Collapse
|
4
|
Heyward JL, Reynolds BD, Foster ML, Archibald KE, Stoskopf MK, Mowat FM. Retinal cone photoreceptor distribution in the American black bear (Ursus americanus). Anat Rec (Hoboken) 2020; 304:662-672. [PMID: 32510783 DOI: 10.1002/ar.24472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 11/06/2022]
Abstract
The distribution of cone photoreceptor subtypes (important for color vision and vision quality) varies widely in different carnivore species, but there have been limited studies on bear (ursid) cone distribution. A previous behavioral study suggests that American black bears (Ursus americanus) are dichromatic, indicating that they possess two cone subtypes, although the retinal distribution of cones is unknown. The purpose of this study was to examine the subtype and topography of cones in American black bear retinas to further predict the nature of their color vision and image resolution. We studied 10 eyes from seven individual legally hunted black bears in northeastern North Carolina. Cryosections and retinal wholemounts were labeled using antibodies targeting two cone opsin subtypes: long/medium (L/M) wavelength sensitive and short (S) wavelength sensitive. Cones in fluorescent microscopy images were counted and density maps were created for retinal wholemounts. The black bear retina contains both cone subtypes and L/M cones outnumber S cones by at least 3:1, a finding confirmed in retinal frozen sections. There are higher concentrations of S cones present than typically seen in other carnivores with some evidence for co-expression of L/M and S cones. A cone-dense area centralis is present dorsotemporal to the optic nerve, similar to other carnivores. These results confirm that American black bears are predicted to have a dichromatic vision with high acuity indicated by the presence of a dorsotemporally located area centralis.
Collapse
Affiliation(s)
- Jennifer L Heyward
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | | | - Melanie L Foster
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Kate E Archibald
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA.,Environmental Medicine Consortium, North Carolina State University, Raleigh, North Carolina, USA.,The Maryland Zoo in Baltimore, Baltimore, Maryland, USA
| | - Michael K Stoskopf
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA.,Environmental Medicine Consortium, North Carolina State University, Raleigh, North Carolina, USA
| | - Freya M Mowat
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA.,Environmental Medicine Consortium, North Carolina State University, Raleigh, North Carolina, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Canei J, Burtea C, Nonclercq D. Comparative study of the visual system of two psammophilic lizards (Scincus scincus &Eumeces schneideri). Vision Res 2020; 171:17-30. [PMID: 32360540 DOI: 10.1016/j.visres.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
Sand deserts are common biotopes on the earth's surface. Some specialized vertebrate species have colonized these ecological habitats by living buried in the sand. Among these so called psammophilic species are the Scincidae sand dune living species Scincus scincus and Eumeces schneideri. These two skinks share a relatively similar behavioral ecology by living buried in sand, almost all the time for S. scincus and at least for some part of the day for E. schneideri. The visual system of these two lizards was investigated by histological, immunohistochemical, Magnetic Resonance Imaging (MRI) and morphometric techniques. Both skink species exhibit a retina lacking fovea, composed predominantly of cones presenting two types of oil droplets (pale blue-green and colorless). Both species possess a subset of rod like-photoreceptors (about 1 rod for 30 cones) evidenced by anti-rhodopsin immunoreactivity. A ratio 1:1-1:2 between ganglion cells and photoreceptors points to a linear connection (photoreceptors/bipolar neurons/ganglion cells) in the retina and indicates that both skinks more likely possess good visual acuity, even in the peripheral retina. The MRI analysis revealed differences between the species concerning the eye structures, with a more spherical eye shape for S. scincus, as well as a more flattened lens. The relative lens diameter of both species seems to correspond to a rather photopic pattern. Beside the fact that S. scincus and E. schneideri have different lifestyles, their visual capacities seem similar, and, generally speaking, these two psammophilic species theoretically exhibit visual capacities not far away from non-fossorial species.
Collapse
Affiliation(s)
- Jérôme Canei
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, 23, Place du Parc, B-7000 Mons, Belgium
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, B-7000 Mons, Belgium
| | - Denis Nonclercq
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, 23, Place du Parc, B-7000 Mons, Belgium.
| |
Collapse
|
6
|
Malkemper EP, Mason MJ, Burda H. Functional anatomy of the middle and inner ears of the red fox, in comparison to domestic dogs and cats. J Anat 2020; 236:980-995. [PMID: 32068262 PMCID: PMC7219625 DOI: 10.1111/joa.13159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023] Open
Abstract
Anatomical middle and inner ear parameters are often used to predict hearing sensitivities of mammalian species. Given that ear morphology is substantially affected both by phylogeny and body size, it is interesting to consider whether the relatively small anatomical differences expected in related species of similar size have a noticeable impact on hearing. We present a detailed anatomical description of the middle and inner ears of the red fox Vulpes vulpes, a widespread, wild carnivore for which a behavioural audiogram is available. We compare fox ears to those of the well‐studied and similarly sized domestic dog and cat, taking data for dogs and cats from the literature as well as providing new measurements of basilar membrane (BM) length and hair cell numbers and densities in these animals. Our results show that the middle ear of the red fox is very similar to that of dogs. The most obvious difference from that of the cat is the lack of a fully formed bony septum in the bulla tympanica of the fox. The cochlear structures of the fox, however, are very like those of the cat, whereas dogs have a broader BM in the basal cochlea. We further report that the mass of the middle ear ossicles and the bulla volume increase with age in foxes. Overall, the ear structures of foxes, dogs and cats are anatomically very similar, and their behavioural audiograms overlap. However, the results of several published models and correlations that use middle and inner ear measurements to predict aspects of hearing were not always found to match well with audiogram data, especially when it came to the sharper tuning in the fox audiogram. This highlights that, although there is evidently a broad correspondence between structure and function, it is not always possible to draw direct links when considering more subtle differences between related species.
Collapse
Affiliation(s)
- Erich Pascal Malkemper
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Matthew J Mason
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hynek Burda
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| |
Collapse
|